15.3.2 Graphics Objects

The hierarchy of graphics objects was explained above. See Introduction to Graphics Structures. Here the specific objects are described, and the properties contained in these objects are discussed. Keep in mind that graphics objects are always referenced by handle.

root

The top level of the hierarchy and the parent of all figure objects. Use groot to obtain the handle of the root graphics object.

figure

A figure window.

axes

A set of axes. This object is a child of a figure object and may be a parent of line, text, image, patch, surface, or light objects.

line

A line in two or three dimensions.

text

Text annotations.

image

A bitmap image.

patch

A filled polygon, currently limited to two dimensions.

surface

A three-dimensional surface.

light

A light object used for lighting effects on patches and surfaces.

15.3.2.1 Creating Graphics Objects

You can create any graphics object primitive by calling the function of the same name as the object; In other words, figure, axes, line, text, image, patch, surface, and light functions. These fundamental graphic objects automatically become children of the current axes object as if hold on was in place. Separately, axes will automatically become children of the current figure object and figures will become children of the root object.

If this auto-joining feature is not desired then it is important to call newplot first to prepare a new figure and axes for plotting. Alternatively, the easier way is to call a high-level graphics routine which will both create the plot and then populate it with low-level graphics objects. Instead of calling line, use plot. Or use surf instead of surface. Or use fill or fill3 instead of patch.

 
: axes ()
: axes (property, value, …)
: axes (hpar, property, value, …)
: axes (hax)
: h = axes (…)

Create a Cartesian axes object and return a handle to it, or set the current axes to hax.

Called without any arguments, or with property/value pairs, construct a new axes. The optional argument hpar is a graphics handle specifying the parent for the new axes and may be a figure, uipanel, or uitab.

Called with a single axes handle argument hax, the function makes hax the current axes (as returned by gca). It also makes the figure which contains hax the current figure (as returned by gcf). Finally, it restacks the parent object’s children property so that the axes hax appears before all other axes handles in the list. This causes hax to be displayed on top of any other axes objects (Z-order stacking). In addition it restacks any legend or colorbar objects associated with hax so that they are also visible.

Programming Note: The full list of properties is documented at Axes Properties.

See also: gca, set, get.

 
: line ()
: line (x, y)
: line (x, y, z)
: line ("xdata", x, "ydata", y)
: line ("xdata", x, "ydata", y, "zdata", z)
: line (…, property, value)
: line (hax, …)
: h = line (…)

Create a line object from x and y (and possibly z) and insert it in the current axes.

In the standard calling form the data x, y, and z may be scalars, vectors, or matrices. In the case of matrix inputs, line will attempt to orient scalars and vectors so the results can be plotted. This requires that one of the dimensions of the vector match either the number of rows or the number of columns of the matrix.

In the low-level calling form (50% higher performance) where the data is specified by name (line ("xdata", x, …)) the data must be vectors. If no data is specified (line ()) then x == y = [0, 1].

Multiple property-value pairs may be specified for the line object, but they must appear in pairs.

If called with only property/value pairs then any unspecified properties use their default values as specified on the root object.

If the first argument hax is an axes handle, then plot into this axes, rather than the current axes returned by gca.

The optional return value h is a graphics handle (or vector of handles) to the line objects created.

Programming Note: The full list of properties is documented at Line Properties.

The function line differs from plot in that line objects are inserted in to the current axes without first clearing the plot.

See also: image, patch, rectangle, surface, text.

 
: patch ()
: patch (x, y, c)
: patch (x, y, z, c)
: patch ("Faces", faces, "Vertices", verts, …)
: patch (…, "prop", val, …)
: patch (…, propstruct, …)
: patch (hax, …)
: h = patch (…)

Create patch object in the current axes with vertices at locations (x, y) and of color c.

If the vertices are matrices of size MxN then each polygon patch has M vertices and a total of N polygons will be created. If some polygons do not have M vertices use NaN to represent "no vertex". If the z input is present then 3-D patches will be created.

The color argument c can take many forms. To create polygons which all share a single color use a string value (e.g., "r" for red), a scalar value which is scaled by caxis and indexed into the current colormap, or a 3-element RGB vector with the precise TrueColor.

If c is a vector of length N then the ith polygon will have a color determined by scaling entry c(i) according to caxis and then indexing into the current colormap. More complicated coloring situations require directly manipulating patch property/value pairs.

Instead of specifying polygons by matrices x and y, it is possible to present a unique list of vertices and then a list of polygon faces created from those vertices. In this case the "Vertices" matrix will be an Nx2 (2-D patch) or Nx3 (3-D patch). The MxN "Faces" matrix describes M polygons having N vertices—each row describes a single polygon and each column entry is an index into the "Vertices" matrix to identify a vertex. The patch object can be created by directly passing the property/value pairs "Vertices"/verts, "Faces"/faces as inputs.

Instead of using property/value pairs, any property can be set by passing a structure propstruct with the respective field names.

If the first argument hax is an axes handle, then plot into this axes, rather than the current axes returned by gca.

The optional return value h is a graphics handle to the created patch object.

Programming Notes:

  1. The full list of properties is documented at Patch Properties. Useful patch properties include: "edgecolor", "facecolor", "faces", "vertices", and "facevertexcdata".
  2. Unexpected geometry results can occur from mixing x-y-z and face-vertex forms of defining geometry.
  3. Unexpected patch color results can occur from using "cdata" color definitons with face-vertex defined geometry or "facevertexcdata" color definitions with x-y-z defined geometry.

See also: fill, get, set.

 
: surface (x, y, z, c)
: surface (x, y, z)
: surface (z, c)
: surface (z)
: surface (…, prop, val, …)
: surface (hax, …)
: h = surface (…)

Create a surface graphic object given matrices x and y from meshgrid and a matrix of values z corresponding to the x and y coordinates of the surface.

If x and y are vectors, then a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of z correspond to different y values. If only a single input z is given then x is taken to be 1:columns (z) and y is 1:rows (z).

Any property/value input pairs are assigned to the surface object.

If the first argument hax is an axes handle, then plot into this axes, rather than the current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.

Programming Note: The full list of properties is documented at Surface Properties.

See also: surf, mesh, patch, line.

 
: light ()
: light (…, "prop", val, …)
: light (hax, …)
: h = light (…)

Create a light object in the current axes or for axes hax.

When a light object is present in an axes object, and the properties "EdgeLighting" or "FaceLighting" of a patch or surface object are set to a value other than "none", these objects are drawn with lighting effects. Supported values for Lighting properties are "none" (no lighting effects), "flat" (faceted look of the objects), and "gouraud" (linear interpolation of the lighting effects between the vertices). If the lighting mode is set to "flat", the "FaceNormals" property is used for lighting. For "gouraud", the "VertexNormals" property is used.

Up to eight light objects are supported per axes. (Implementation dependent)

Lighting is only supported for OpenGL graphic toolkits (i.e., "fltk" and "qt").

A light object has the following properties which alter the appearance of the plot.

"Color": The color of the light can be passed as an

RGB-vector (e.g., [1 0 0] for red) or as a string (e.g., "r" for red). The default color is white ([1 1 1]).

"Position": The direction from which the light emanates as a

1x3-vector. The default direction is [1 0 1].

"Style": This string defines whether the light emanates from a

light source at infinite distance ("infinite") or from a local point source ("local"). The default is "infinite".

If the first argument hax is an axes handle, then add the light object to this axes, rather than the current axes returned by gca.

The optional return value h is a graphics handle to the created light object.

Programming Note: The full list of properties is documented at Light Properties.

See also: lighting, material, patch, surface.

15.3.2.2 Handle Functions

To determine whether a variable is a graphics object index, or an index to an axes or figure, use the functions ishghandle, isgraphics, isaxes, and isfigure.

 
: tf = ishghandle (h)

Return true if h is a graphics handle and false otherwise.

h may also be a matrix of handles in which case a logical array is returned that is true where the elements of h are graphics handles and false where they are not.

See also: isgraphics, isaxes, isfigure, ishandle.

 
: tf = isgraphics (h)
: tf = isgraphics (h, type)

Return true if h is a graphics handle (of type type) and false otherwise.

When no type is specified the function is equivalent to ishghandle.

See also: ishghandle, ishandle, isaxes, isfigure.

 
: tf = ishandle (h)

Return true if h is a handle to a graphics or Java object and false otherwise.

h may also be a matrix of handles in which case a logical array is returned that is true where the elements of h are handles to graphics or Java objects and false where they are not.

Programming Note: It is often more useful to test for a specific object type. To determine if a handle belongs to a graphics object use ishghandle or isgraphics. To determine if a handle belongs to a Java object use isjava.

See also: ishghandle, isgraphics, isjava.

 
: tf = isaxes (h)

Return true if h is an axes graphics handle and false otherwise.

If h is a matrix then return a logical array which is true where the elements of h are axes graphics handles and false where they are not.

See also: isfigure, ishghandle, isgraphics.

 
: tf = isfigure (h)

Return true if h is a figure graphics handle and false otherwise.

If h is a matrix then return a logical array which is true where the elements of h are figure graphics handles and false where they are not.

See also: isaxes, ishghandle, isgraphics.

The function gcf returns an index to the current figure object, or creates one if none exists. Similarly, gca returns the current axes object, or creates one (and its parent figure object) if none exists.

 
: h = groot ()

Return a handle to the root graphics object.

The root graphics object is the ultimate parent of all graphics objects.

In addition, the root object contains information about the graphics system as a whole such as the ScreenSize. Use get (groot) to find out what information is available.

Defaults for the graphic system as a whole are specified by setting properties of the root graphics object that begin with "Default". For example, to set the default font for all text objects to FreeSans use

set (groot, "DefaultTextFontName", "FreeSans")

Default properties can be deleted by using set with the special property value of "remove". To undo the default font assignment above use

set (groot, "DefaultTextFontName", "remove")

Programming Note: The root graphics object is identified by the special handle value of 0. At some point this unique value may change, but code can be made resistant to future changes by using groot which is guaranteed to always return the root graphics object.

See also: gcf, gca, get, set.

 
: h = gcf ()

Return a handle to the current figure.

The current figure is the default target for graphics output. If multiple figures exist, gcf returns the last created figure or the last figure that was clicked on with the mouse.

If a current figure does not exist, create one and return its handle. The handle may then be used to examine or set properties of the figure. For example,

fplot (@sin, [-10, 10]);
fig = gcf ();
set (fig, "numbertitle", "off", "name", "sin plot")

plots a sine wave, finds the handle of the current figure, and then renames the figure window to describe the contents.

Note: To find the current figure without creating a new one if it does not exist, query the "CurrentFigure" property of the root graphics object.

get (groot, "currentfigure");

See also: gca, gco, gcbf, gcbo, get, set.

 
: h = gca ()

Return a handle to the current axes object.

The current axes is the default target for graphics output. In the case of a figure with multiple axes, gca returns the last created axes or the last axes that was clicked on with the mouse.

If no current axes object exists, create one and return its handle. The handle may then be used to examine or set properties of the axes. For example,

ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

creates an empty axes object and then changes its location and size in the figure window.

Note: To find the current axes without creating a new axes object if it does not exist, query the "CurrentAxes" property of a figure.

get (gcf, "currentaxes");

See also: gcf, gco, gcbf, gcbo, get, set.

 
: h = gco ()
: h = gco (hfig)

Return a handle to the current object of the current figure, or a handle to the current object of the figure with handle hfig.

The current object of a figure is the object that was last clicked on. It is stored in the "CurrentObject" property of the target figure.

If the last mouse click did not occur on any child object of the figure, then the current object is the figure itself.

If no mouse click occurred in the target figure, this function returns an empty matrix.

Programming Note: The value returned by this function is not necessarily the same as the one returned by gcbo during callback execution. An executing callback can be interrupted by another callback and the current object may be changed.

See also: gcbo, gca, gcf, gcbf, get, set.

The get and set functions may be used to examine and set properties for graphics objects. For example,

get (groot)
    ⇒ ans =
       {
         type = root
         currentfigure = [](0x0)
         children = [](0x0)
         visible = on
         ...
       }

returns a structure containing all the properties of the root graphics object. As with all functions in Octave, the structure is returned by value, so modifying it will not modify the internal root object. To do that, you must use the set function. Also, note that in this case, the currentfigure property is empty, which indicates that there is no current figure window.

The get function may also be used to find the value of a single property. For example,

get (gca (), "xlim")
    ⇒ [ 0 1 ]

returns the range of the x-axis for the current axes object in the current figure.

To set graphics object properties, use the set function. For example,

set (gca (), "xlim", [-10, 10]);

sets the range of the x-axis for the current axes object in the current figure to ‘[-10, 10]’.

Default property values can also be queried if the set function is called without a value argument. When only one argument is given (a graphic handle) then a structure with defaults for all properties of the given object type is returned. For example,

set (gca ())

returns a structure containing the default property values for axes objects. If set is called with two arguments (a graphic handle and a property name) then only the defaults for the requested property are returned.

 
: val = get (h)
: val = get (h, p)

Return the value of the named property p from the graphics handle h.

If p is omitted, return the complete property list for h.

If h is a vector, return a cell array including the property values or lists respectively.

See also: set.

 
: set (h, property, value, …)
: set (h, {properties}, {values})
: set (h, pv)
: value_list = set (h, property)
: all_value_list = set (h)

Set named property values for the graphics handle (or vector of graphics handles) h.

There are three ways to give the property names and values:

  • as a comma-separated list of property, value pairs

    Each property is a string containing the property name, each value is a value of the appropriate type for the property. When there are multiple handles in h, each one is assigned the same value. For example:

    h = plot ([0, 1]);
    set (h, 'color', 'green');
    
  • as a cell array of strings properties containing property names and a cell array values containing property values.

    In this case, the number of columns of values must match the number of elements in properties. The first column of values contains values for the first entry in properties, etc. The number of rows of values must be 1 or match the number of elements of h. In the first case, each handle in h will be assigned the same values. In the second case, the first handle in h will be assigned the values from the first row of values and so on. For example:

    h = plot ([0, 1; 1, 0]);
    set (h, {'color'}, {'green'; 'red'});
    
  • as a structure pv

    This is the same as the first case where the field names of pv represent the property names, and the field values give the property values. As with the first case, it is only possible to set one value for a property which will be applied to all handles in h. For example:

    h = plot ([0, 1]);
    props.color = 'green';
    set (h, props);
    

The three syntaxes for setting properties may appear in any combination.

set is also used to query the list of values a named property will take. clist = set (h, "property") will return the list of possible values for "property" in the cell list clist. If no output variable is used then the list is formatted and printed to the screen.

If no property is specified (slist = set (h)) then a structure slist is returned where the fieldnames are the properties of the object h and the fields are the list of possible values for each property. If no output variable is used then the list is formatted and printed to the screen.

When querying properties only a single graphics handle h for a single graphics object is permitted.

Example Query

hf = figure ();
set (hf, "paperorientation")
⇒  [ landscape | {portrait} ]

shows the paperorientation property can take two values with the default being "portrait".

See also: get.

 
: parent = ancestor (h, type)
: parent = ancestor (h, type, "toplevel")

Return the first ancestor of handle object h whose type matches type, where type is a character string.

If type is a cell array of strings, return the first parent whose type matches any of the given type strings.

If the handle object h itself is of type type, return h.

If "toplevel" is given as a third argument, return the highest parent in the object hierarchy that matches the condition, instead of the first (nearest) one.

See also: findobj, findall, allchild.

 
: h = allchild (handles)

Find all children, including hidden children, of a graphics object.

This function is similar to get (h, "children"), but also returns hidden objects (HandleVisibility = "off").

If handles is a scalar, h will be a vector. Otherwise, h will be a cell matrix of the same size as handles and each cell will contain a vector of handles.

See also: findall, findobj, get, set.

 
: findfigs ()

Find all visible figures that are currently off the screen and move them onto the screen.

See also: allchild, figure, get, set.

Figures can be printed or saved in many graphics formats with print and saveas. Occasionally, however, it may be useful to save the original Octave handle graphic directly so that further modifications can be made such as modifying a title or legend.

This can be accomplished with the following functions by

fig_struct = hdl2struct (gcf);
save myplot.fig -struct fig_struct;
...
fig_struct = load ("myplot.fig");
struct2hdl (fig_struct);
 
: s = hdl2struct (h)

Return a structure, s, whose fields describe the properties of the object, and its children, associated with the handle, h.

The fields of the structure s are "type", "handle", "properties", "children", and "special".

See also: struct2hdl, hgsave, findobj.

 
: h = struct2hdl (s)
: h = struct2hdl (s, p)
: h = struct2hdl (s, p, hilev)

Construct a graphics handle object h from the structure s.

The structure must contain the fields "handle", "type", "children", "properties", and "special".

If the handle of an existing figure or axes is specified, p, the new object will be created as a child of that object. If no parent handle is provided then a new figure and the necessary children will be constructed using the default values from the root object.

A third boolean argument hilev can be passed to specify whether the function should preserve listeners/callbacks, e.g., for legends or hggroups. The default is false.

See also: hdl2struct, hgload, findobj.

 
: hnew = copyobj (horig)
: hnew = copyobj (horig, hparent)

Construct a copy of the graphic objects associated with the handles horig and return new handles hnew to the new objects.

If a parent handle hparent (root, figure, axes, or hggroup) is specified, the copied object will be created as a child of hparent.

If horig is a vector of handles, and hparent is a scalar, then each handle in the vector hnew has its "Parent" property set to hparent. Conversely, if horig is a scalar and hparent a vector, then each parent object will receive a copy of horig. If horig and hparent are both vectors with the same number of elements then hnew(i) will have parent hparent(i).

See also: struct2hdl, hdl2struct, findobj.