Next: Complex Arithmetic, Up: Arithmetic [Contents][Index]

- :
**exp***(*¶`x`) Compute

`e^x`

for each element of`x`.To compute the matrix exponential, see Linear Algebra.

**See also:**log.

- :
**log***(*¶`x`) Compute the natural logarithm,

`ln (`

, for each element of`x`)`x`.To compute the matrix logarithm, see Linear Algebra.

- :
**reallog***(*¶`x`) Return the real-valued natural logarithm of each element of

`x`.If any element results in a complex return value

`reallog`

aborts and issues an error.

- :
**log1p***(*¶`x`) Compute

`log (1 +`

accurately in the neighborhood of zero.`x`)

- :
**log10***(*¶`x`) Compute the base-10 logarithm of each element of

`x`.

- :
`y`=**log2***(*¶`x`) - :
*[*`f`,`e`] =**log2***(*¶`x`) Compute the base-2 logarithm of each element of

`x`.If called with one output, compute the base-2 logarithm such that

`2^`

.`y`=`x`If called with two output arguments, split

`x`into binary mantissa (`f`) and exponent (`e`) such that

where`x`=`f`* 2^`e``1/2 <= abs (`

and`f`) < 1`e`is an integer. If`x = 0`

,`f = e = 0`

.

- :
**pow2***(*¶`x`) - :
**pow2***(*¶`f`,`e`) With one input argument, compute 2 .^ x for each element of

`x`.With two input arguments, return f .* (2 .^ e).

- :
`n`=**nextpow2***(*¶`x`) Compute the exponent for the smallest power of two larger than the input.

For each element in the input array

`x`, return the first integer`n`such that 2^n ≥ abs (x).

- :
**realpow***(*¶`x`,`y`) Compute the real-valued, element-by-element power operator.

This is equivalent to

, except that`x`.^`y``realpow`

reports an error if any return value is complex.

- :
**sqrt***(*¶`x`) Compute the square root of each element of

`x`.If

`x`is negative, a complex result is returned.To compute the matrix square root, see Linear Algebra.

- :
**realsqrt***(*¶`x`) Return the real-valued square root of each element of

`x`.If any element results in a complex return value

`realsqrt`

aborts and issues an error.

- :
**cbrt***(*¶`x`) Compute the real-valued cube root of each element of

`x`.Unlike

, the result will be negative if`x`^(1/3)`x`is negative.If any element of

`x`is complex,`cbrt`

aborts with an error.**See also:**nthroot.

- :
**nthroot***(*¶`x`,`n`) -
Compute the real (non-complex)

`n`-th root of`x`.`x`must have all real entries and`n`must be a scalar. If`n`is an even integer and`x`has negative entries then`nthroot`

aborts and issues an error.Example:

nthroot (-1, 3) ⇒ -1 (-1) ^ (1 / 3) ⇒ 0.50000 - 0.86603i

Next: Complex Arithmetic, Up: Arithmetic [Contents][Index]