GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
oct-inttypes.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 2004-2025 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include "fpucw-wrappers.h"
31#include "lo-error.h"
32#include "oct-inttypes.h"
33
34template <typename T>
35const octave_int<T> octave_int<T>::s_zero (static_cast<T> (0));
36
37template <typename T>
38const octave_int<T> octave_int<T>::s_one (static_cast<T> (1));
39
40// Define type names.
41
42#define DEFINE_OCTAVE_INT_TYPENAME(TYPE, TYPENAME) \
43 template <> \
44 OCTAVE_API const char * \
45 octave_int<TYPE>::type_name () { return TYPENAME; }
46
52DEFINE_OCTAVE_INT_TYPENAME (uint16_t, "uint16")
53DEFINE_OCTAVE_INT_TYPENAME (uint32_t, "uint32")
54DEFINE_OCTAVE_INT_TYPENAME (uint64_t, "uint64")
55
56template <class T>
57template <class S>
58T
59octave_int_base<T>::convert_real (const S& value)
60{
61 // Compute proper thresholds.
62 static const S thmin = compute_threshold (static_cast<S> (min_val ()),
63 min_val ());
64 static const S thmax = compute_threshold (static_cast<S> (max_val ()),
65 max_val ());
66 if (octave::math::isnan (value))
67 return static_cast<T> (0);
68 else if (value < thmin)
69 return min_val ();
70 else if (value > thmax)
71 return max_val ();
72 else
73 {
74 S rvalue = octave::math::round (value);
75 return static_cast<T> (rvalue);
76 }
77}
78
79#define INSTANTIATE_CONVERT_REAL_1(T, S) \
80 template \
81 OCTAVE_API \
82 T \
83 octave_int_base<T>::convert_real (const S&)
84
85#define INSTANTIATE_CONVERT_REAL(S) \
86 INSTANTIATE_CONVERT_REAL_1 (int8_t, S); \
87 INSTANTIATE_CONVERT_REAL_1 (uint8_t, S); \
88 INSTANTIATE_CONVERT_REAL_1 (int16_t, S); \
89 INSTANTIATE_CONVERT_REAL_1 (uint16_t, S); \
90 INSTANTIATE_CONVERT_REAL_1 (int32_t, S); \
91 INSTANTIATE_CONVERT_REAL_1 (uint32_t, S); \
92 INSTANTIATE_CONVERT_REAL_1 (int64_t, S); \
93 INSTANTIATE_CONVERT_REAL_1 (uint64_t, S)
94
97#if defined (OCTAVE_INT_USE_LONG_DOUBLE)
98INSTANTIATE_CONVERT_REAL (long double);
99#endif
100
101#if defined (OCTAVE_INT_USE_LONG_DOUBLE)
102
103# if defined (OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED)
104
105# define DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES(T) \
106 template <typename xop> \
107 bool \
108 octave_int_cmp_op::external_mop (double x, T y) \
109 { \
110 unsigned int oldcw = octave_begin_long_double_rounding (); \
111 \
112 bool retval = xop::op (static_cast<long double> (x), \
113 static_cast<long double> (y)); \
114 \
115 octave_end_long_double_rounding (oldcw); \
116 \
117 return retval; \
118 } \
119 \
120 template <typename xop> \
121 bool \
122 octave_int_cmp_op::external_mop (T x, double y) \
123 { \
124 unsigned int oldcw = octave_begin_long_double_rounding (); \
125 \
126 bool retval = xop::op (static_cast<long double> (x), \
127 static_cast<long double> (y)); \
128 \
129 octave_end_long_double_rounding (oldcw); \
130 \
131 return retval; \
132 }
133
134DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (int64_t)
135DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (uint64_t)
136
137# define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP(OP, T) \
138 template OCTAVE_API bool \
139 octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (double, T); \
140 \
141 template OCTAVE_API bool \
142 octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (T, double)
143
144# define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS(T) \
145 INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (lt, T); \
146 INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (le, T); \
147 INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (gt, T); \
148 INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ge, T); \
149 INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (eq, T); \
150 INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ne, T)
151
152INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (int64_t);
153INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (uint64_t);
154
155uint64_t
156octave_external_uint64_uint64_mul (uint64_t x, uint64_t y)
157{
158 unsigned int oldcw = octave_begin_long_double_rounding ();
159
161
163
164 return retval;
165}
166
167int64_t
168octave_external_int64_int64_mul (int64_t x, int64_t y)
169{
170 unsigned int oldcw = octave_begin_long_double_rounding ();
171
173
175
176 return retval;
177}
178
179// Note that if we return long double it is apparently possible for
180// truncation to happen at the point of storing the result in retval,
181// which can happen after we end long double rounding. Attempt to avoid
182// that problem by storing the full precision temporary value in the
183// integer value before we end the long double rounding mode.
184// Similarly, the conversion from the 64-bit integer type to long double
185// must also occur in long double rounding mode.
186
187# define DEFINE_OCTAVE_LONG_DOUBLE_OP(T, OP, NAME) \
188 T \
189 external_double_ ## T ## _ ## NAME (double x, T y) \
190 { \
191 unsigned int oldcw = octave_begin_long_double_rounding (); \
192 \
193 T retval = T (x OP static_cast<long double> (y.value ())); \
194 \
195 octave_end_long_double_rounding (oldcw); \
196 \
197 return retval; \
198 } \
199 \
200 T \
201 external_ ## T ## _double_ ## NAME (T x, double y) \
202 { \
203 unsigned int oldcw = octave_begin_long_double_rounding (); \
204 \
205 T retval = T (static_cast<long double> (x.value ()) OP y); \
206 \
207 octave_end_long_double_rounding (oldcw); \
208 \
209 return retval; \
210 }
211
212# define DEFINE_OCTAVE_LONG_DOUBLE_OPS(T) \
213 DEFINE_OCTAVE_LONG_DOUBLE_OP (T, +, add); \
214 DEFINE_OCTAVE_LONG_DOUBLE_OP (T, -, sub); \
215 DEFINE_OCTAVE_LONG_DOUBLE_OP (T, *, mul); \
216 DEFINE_OCTAVE_LONG_DOUBLE_OP (T, /, div)
217
218DEFINE_OCTAVE_LONG_DOUBLE_OPS (octave_int64);
219DEFINE_OCTAVE_LONG_DOUBLE_OPS (octave_uint64);
220
221# endif
222
223#else
224
225// Define comparison operators
226
227template <typename xop>
228bool
230{
231 // The following cast changes the value to 2^64 (which is outside the range
232 // of `uint64_t`). Take care to handle this correctly (e.g., don't cast back
233 // to `uint64_t`)!
234 static const double xxup
235 = static_cast<double> (std::numeric_limits<uint64_t>::max ());
236 // This converts to the nearest double. Unless there's an equality, the
237 // result is clear.
238 double xx = x;
239 if (xx != y)
240 return xop::op (xx, y);
241 else
242 {
243 // If equality occurred we compare as integers.
244 if (xx == xxup)
245 return xop::gtval;
246 else
247 return xop::op (x, static_cast<uint64_t> (xx));
248 }
249}
250
251template <typename xop>
252bool
254{
255 // The following cast changes the value to 2^63 (which is outside the range
256 // of `int64_t`). Take care to handle this correctly (e.g., don't cast back
257 // to `int64_t`)! The same applies to the lower limit on systems using one's
258 // complement.
259 static const double xxup
260 = static_cast<double> (std::numeric_limits<int64_t>::max ());
261 static const double xxlo
262 = static_cast<double> (std::numeric_limits<int64_t>::min ());
263 // This converts to the nearest double. Unless there's an equality, the
264 // result is clear.
265 double xx = x;
266 if (xx != y)
267 return xop::op (xx, y);
268 else
269 {
270 // If equality occurred we compare as integers.
271 if (xx == xxup)
272 return xop::gtval;
273 else if (xx == xxlo)
274 return xop::ltval;
275 else
276 return xop::op (x, static_cast<int64_t> (xx));
277 }
278
279}
280
281// We define double-int operations by reverting the operator
282
283// A trait class reverting the operator
284template <typename xop>
285class rev_op
286{
287public:
288 typedef xop op;
289};
290
291#define DEFINE_REVERTED_OPERATOR(OP1, OP2) \
292 template <> \
293 class rev_op<octave_int_cmp_op::OP1> \
294 { \
295 public: \
296 typedef octave_int_cmp_op::OP2 op; \
297 }
298
303
304template <typename xop>
305bool
307{
308 typedef typename rev_op<xop>::op rop;
309 return mop<rop> (y, x);
310}
311
312template <typename xop>
313bool
315{
316 typedef typename rev_op<xop>::op rop;
317 return mop<rop> (y, x);
318}
319
320// Define handlers for (u)int64 multiplication.
321
322template <>
323uint64_t
325{
326 // Get upper words
327 uint64_t ux = x >> 32;
328 uint64_t uy = y >> 32;
329 uint64_t res;
330 if (ux)
331 {
332 if (uy)
333 goto overflow;
334 else
335 {
336 uint64_t ly = static_cast<uint32_t> (y);
337 uint64_t uxly = ux*ly;
338 if (uxly >> 32)
339 goto overflow;
340 uxly <<= 32; // never overflows
341 uint64_t lx = static_cast<uint32_t> (x);
342 uint64_t lxly = lx*ly;
343 res = add (uxly, lxly);
344 }
345 }
346 else if (uy)
347 {
348 uint64_t lx = static_cast<uint32_t> (x);
349 uint64_t uylx = uy*lx;
350 if (uylx >> 32)
351 goto overflow;
352 uylx <<= 32; // never overflows
353 uint64_t ly = static_cast<uint32_t> (y);
354 uint64_t lylx = ly*lx;
355 res = add (uylx, lylx);
356 }
357 else
358 {
359 uint64_t lx = static_cast<uint32_t> (x);
360 uint64_t ly = static_cast<uint32_t> (y);
361 res = lx*ly;
362 }
363
364 return res;
365
366overflow:
367 return max_val ();
368}
369
370template <>
371int64_t
373{
374 // The signed case is far worse. The problem is that even if neither
375 // integer fits into signed 32-bit range, the result may still be OK.
376 // Uh oh.
377
378 // Essentially, what we do is compute sign, multiply absolute values
379 // (as above) and impose the sign.
380
381 // But first, avoid overflow in computation of abs (min_val ()).
382
383 if (x == min_val ())
384 return y == 0 ? 0 : (y < 0 ? max_val () : min_val ());
385
386 if (y == min_val ())
387 return x == 0 ? 0 : (x < 0 ? max_val () : min_val ());
388
389 uint64_t usx = octave_int_abs (x);
390 uint64_t usy = octave_int_abs (y);
391 bool positive = (x < 0) == (y < 0);
392
393 // Get upper words
394 uint64_t ux = usx >> 32;
395 uint64_t uy = usy >> 32;
396 uint64_t res;
397 if (ux)
398 {
399 if (uy)
400 goto overflow;
401 else
402 {
403 uint64_t ly = static_cast<uint32_t> (usy);
404 uint64_t uxly = ux*ly;
405 if (uxly >> 32)
406 goto overflow;
407 uxly <<= 32; // never overflows
408 uint64_t lx = static_cast<uint32_t> (usx);
409 uint64_t lxly = lx*ly;
410 res = uxly + lxly;
411 if (res < uxly)
412 goto overflow;
413 }
414 }
415 else if (uy)
416 {
417 uint64_t lx = static_cast<uint32_t> (usx);
418 uint64_t uylx = uy*lx;
419 if (uylx >> 32)
420 goto overflow;
421 uylx <<= 32; // never overflows
422 uint64_t ly = static_cast<uint32_t> (usy);
423 uint64_t lylx = ly*lx;
424 res = uylx + lylx;
425 if (res < uylx)
426 goto overflow;
427 }
428 else
429 {
430 uint64_t lx = static_cast<uint32_t> (usx);
431 uint64_t ly = static_cast<uint32_t> (usy);
432 res = lx*ly;
433 }
434
435 if (positive)
436 {
437 if (res > static_cast<uint64_t> (max_val ()))
438 return max_val ();
439 else
440 return static_cast<int64_t> (res);
441 }
442 else
443 {
444 if (res > static_cast<uint64_t> (min_val ()))
445 return min_val ();
446 else
447 return -static_cast<int64_t> (res);
448 }
449
450overflow:
451 return positive ? max_val () : min_val ();
452
453}
454
455template <>
457operator + (const octave_uint64& x, const double& y)
458{
459 return (y < 0) ? x - octave_uint64 (-y) : x + octave_uint64 (y);
460}
461
462template <>
464operator + (const double& x, const octave_uint64& y)
465{
466 return y + x;
467}
468
469template <>
471operator + (const octave_int64& x, const double& y)
472{
473 // The following cast changes the value to 2^63 (which is outside the range
474 // of `int64_t`).
475 if (fabs (y) < static_cast<double> (octave_int64::max ()))
476 return x + octave_int64 (y);
477 else
478 {
479 // If the number is within the int64 range (the most common case,
480 // probably), the above will work as expected. If not, it's more
481 // complicated - as long as y is within _twice_ the signed range, the
482 // result may still be an integer. An instance of such an operation is
483 // 3*2^62 + (1+intmin ('int64')) that should yield int64 (2^62) + 1.
484 // So what we do is to try to convert y/2 and add it twice. Note that
485 // if y/2 overflows, the result must overflow as well, and that y/2
486 // cannot be a fractional number.
487 octave_int64 y2 (y / 2);
488 return (x + y2) + y2;
489 }
490}
491
492template <>
494operator + (const double& x, const octave_int64& y)
495{
496 return y + x;
497}
498
499template <>
501operator - (const octave_uint64& x, const double& y)
502{
503 return x + (-y);
504}
505
506template <>
508operator - (const double& x, const octave_uint64& y)
509{
510 // The following cast changes the value to 2^64 (which is outside the range
511 // of `uint64_t`).
512 if (x < static_cast<double> (octave_uint64::max ()))
513 return octave_uint64 (x) - y;
514 else
515 {
516 // Again a trick to get the corner cases right. Things like
517 // 3^2^63 - intmax ('uint64') should produce the correct result, i.e.
518 // int64 (2^63) + 1.
519 const double p2_64 = std::pow (2.0, 64);
520 if (y.bool_value ())
521 {
522 const uint64_t p2_64my = (~y.value ()) + 1; // Equals 2^64 - y
523 return octave_uint64 (x - p2_64) + octave_uint64 (p2_64my);
524 }
525 else
526 return octave_uint64 (p2_64);
527 }
528}
529
530template <>
532operator - (const octave_int64& x, const double& y)
533{
534 return x + (-y);
535}
536
537template <>
539operator - (const double& x, const octave_int64& y)
540{
541 static constexpr bool twosc = (std::numeric_limits<int64_t>::min ()
542 < -std::numeric_limits<int64_t>::max ());
543 // In case of symmetric integers (not two's complement), this will probably
544 // be eliminated at compile time.
545 if (twosc && y.value () == std::numeric_limits<int64_t>::min ())
546 return octave_int64 (x + std::pow (2.0, 63));
547 else
548 return x + (-y);
549}
550
551// NOTE:
552// Emulated mixed multiplications are tricky due to possible precision loss.
553// Here, after sorting out common cases for speed, we follow the strategy
554// of converting the double number into the form sign * 64-bit integer *
555// 2^exponent, multiply the 64-bit integers to get a 128-bit number, split that
556// number into 32-bit words and form 4 double-valued summands (none of which
557// loses precision), then convert these into integers and sum them. Though it
558// is not immediately obvious, this should work even w.r.t. rounding (none of
559// the summands lose precision).
560
561// Multiplies two unsigned 64-bit ints to get a 128-bit number represented
562// as four 32-bit words.
563static void
564umul128 (uint64_t x, uint64_t y, uint32_t w[4])
565{
566 uint64_t lx = static_cast<uint32_t> (x);
567 uint64_t ux = x >> 32;
568 uint64_t ly = static_cast<uint32_t> (y);
569 uint64_t uy = y >> 32;
570 uint64_t a = lx * ly;
571 w[0] = a; a >>= 32;
572 uint64_t uxly = ux*ly;
573 uint64_t uylx = uy*lx;
574 a += static_cast<uint32_t> (uxly); uxly >>= 32;
575 a += static_cast<uint32_t> (uylx); uylx >>= 32;
576 w[1] = a; a >>= 32;
577 uint64_t uxuy = ux * uy;
578 a += uxly; a += uylx; a += uxuy;
579 w[2] = a; a >>= 32;
580 w[3] = a;
581}
582
583// Splits a double into bool sign, unsigned 64-bit mantissa and int exponent
584static void
585dblesplit (double x, bool& sign, uint64_t& mtis, int& exp)
586{
587 sign = x < 0; x = fabs (x);
588 x = octave::math::frexp (x, &exp);
589 exp -= 52;
590 mtis = static_cast<uint64_t> (ldexp (x, 52));
591}
592
593// Gets a double number from a
594// 32-bit unsigned integer mantissa, exponent, and sign.
595static double
596dbleget (bool sign, uint32_t mtis, int exp)
597{
598 double x = ldexp (static_cast<double> (mtis), exp);
599 return sign ? -x : x;
600}
601
602template <>
604operator * (const octave_uint64& x, const double& y)
605{
606 // The following cast changes the value to 2^64 (which is outside the range
607 // of `uint64_t`).
608 if (y >= 0 && y < static_cast<double> (octave_uint64::max ())
609 && y == octave::math::fix (y))
610 return x * octave_uint64 (static_cast<uint64_t> (y));
611 else if (y == 0.5)
612 return x / octave_uint64 (static_cast<uint64_t> (2));
613 else if (y < 0 || octave::math::isnan (y) || octave::math::isinf (y))
614 return octave_uint64 (x.value () * y);
615 else
616 {
617 bool sign;
618 uint64_t my;
619 int e;
620 dblesplit (y, sign, my, e);
621 uint32_t w[4];
622 umul128 (x.value (), my, w);
624 for (short i = 0; i < 4; i++)
625 {
626 res += octave_uint64 (dbleget (sign, w[i], e));
627 e += 32;
628 }
629 return res;
630 }
631}
632
633template <>
635operator * (const double& x, const octave_uint64& y)
636{
637 return y * x;
638}
639
640template <>
642operator * (const octave_int64& x, const double& y)
643{
644 // The following cast changes the value to 2^63 (which is outside the range
645 // of `int64_t`).
646 if (fabs (y) < static_cast<double> (octave_int64::max ())
647 && y == octave::math::fix (y))
648 return x * octave_int64 (static_cast<int64_t> (y));
649 else if (fabs (y) == 0.5)
650 return x / octave_int64 (static_cast<uint64_t> (4*y));
651 else if (octave::math::isnan (y) || octave::math::isinf (y))
652 return octave_int64 (x.value () * y);
653 else
654 {
655 bool sign;
656 uint64_t my;
657 int e;
658 dblesplit (y, sign, my, e);
659 uint32_t w[4];
660 sign = (sign != (x.value () < 0));
661 umul128 (octave_int_abs (x.value ()), my, w);
663 for (short i = 0; i < 4; i++)
664 {
665 res += octave_int64 (dbleget (sign, w[i], e));
666 e += 32;
667 }
668 return res;
669 }
670}
671
672template <>
674operator * (const double& x, const octave_int64& y)
675{
676 return y * x;
677}
678
679template <>
681operator / (const double& x, const octave_uint64& y)
682{
683 return octave_uint64 (x / static_cast<double> (y));
684}
685
686template <>
688operator / (const double& x, const octave_int64& y)
689{
690 return octave_int64 (x / static_cast<double> (y));
691}
692
693template <>
695operator / (const octave_uint64& x, const double& y)
696{
697 // The following cast changes the value to 2^64 (which is outside the range
698 // of `uint64_t`).
699 if (y >= 0 && y < static_cast<double> (octave_uint64::max ())
700 && y == octave::math::fix (y))
701 return x / octave_uint64 (y);
702 else
703 return x * (1.0/y);
704}
705
706template <>
708operator / (const octave_int64& x, const double& y)
709{
710 // The following cast changes the value to 2^63 (which is outside the range
711 // of `int64_t`).
712 if (fabs (y) < static_cast<double> (octave_int64::max ())
713 && y == octave::math::fix (y))
714 return x / octave_int64 (y);
715 else
716 return x * (1.0/y);
717}
718
719#define INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, T1, T2) \
720 template OCTAVE_API bool \
721 octave_int_cmp_op::emulate_mop<octave_int_cmp_op::OP> (T1 x, T2 y)
722
723#define INSTANTIATE_INT64_DOUBLE_CMP_OP(OP) \
724 INSTANTIATE_INT64_DOUBLE_CMP_OP0 (OP, double, int64_t); \
725 INSTANTIATE_INT64_DOUBLE_CMP_OP0 (OP, double, uint64_t); \
726 INSTANTIATE_INT64_DOUBLE_CMP_OP0 (OP, int64_t, double); \
727 INSTANTIATE_INT64_DOUBLE_CMP_OP0 (OP, uint64_t, double)
728
735
736#endif
737
738template <typename T>
740pow (const octave_int<T>& a, const octave_int<T>& b)
741{
742 octave_int<T> retval;
743
746
747 if (b == zero || a == one)
748 retval = one;
749 else if (b < zero)
750 {
751 if (a == -one)
752 retval = (b.value () % 2) ? a : one;
753 else
754 retval = zero;
755 }
756 else
757 {
758 octave_int<T> a_val = a;
759 T b_val = b; // no need to do saturation on b
760
761 retval = a;
762
763 b_val -= 1;
764
765 while (b_val != 0)
766 {
767 if (b_val & 1)
768 retval = retval * a_val;
769
770 b_val = b_val >> 1;
771
772 if (b_val)
773 a_val = a_val * a_val;
774 }
775 }
776
777 return retval;
778}
779
780template <typename T>
782pow (const double& a, const octave_int<T>& b)
783{ return octave_int<T> (std::pow (a, b.double_value ())); }
784
785template <typename T>
787pow (const octave_int<T>& a, const double& b)
788{
789 return ((b >= 0 && b < std::numeric_limits<T>::digits
790 && b == octave::math::fix (b))
791 ? pow (a, octave_int<T> (static_cast<T> (b)))
792 : octave_int<T> (std::pow (a.double_value (), b)));
793}
794
795template <typename T>
797pow (const float& a, const octave_int<T>& b)
798{ return octave_int<T> (std::pow (a, b.float_value ())); }
799
800template <typename T>
802pow (const octave_int<T>& a, const float& b)
803{
804 return ((b >= 0 && b < std::numeric_limits<T>::digits
805 && b == octave::math::fix (b))
806 ? pow (a, octave_int<T> (static_cast<T> (b)))
807 : octave_int<T> (std::pow (a.double_value (),
808 static_cast<double> (b))));
809}
810
811// FIXME: Do we really need a differently named single-precision function
812// integer power function here instead of an overloaded one?
813template <typename T>
815powf (const float& a, const octave_int<T>& b)
816{ return octave_int<T> (pow (a, b.float_value ())); }
817
818template <typename T>
820powf (const octave_int<T>& a, const float& b)
821{
822 return ((b >= 0 && b < std::numeric_limits<T>::digits
823 && b == octave::math::fix (b))
824 ? pow (a, octave_int<T> (static_cast<T> (b)))
825 : octave_int<T> (std::pow (a.double_value (),
826 static_cast<double> (b))));
827}
828
829#define INSTANTIATE_INTTYPE(T) \
830 template class OCTAVE_CLASS_TEMPLATE_INSTANTIATION_API octave_int<T>; \
831 \
832 template OCTAVE_API octave_int<T> \
833 pow (const octave_int<T>&, const octave_int<T>&); \
834 \
835 template OCTAVE_API octave_int<T> \
836 pow (const double&, const octave_int<T>&); \
837 \
838 template OCTAVE_API octave_int<T> \
839 pow (const octave_int<T>&, const double&); \
840 \
841 template OCTAVE_API octave_int<T> \
842 pow (const float&, const octave_int<T>&); \
843 \
844 template OCTAVE_API octave_int<T> \
845 pow (const octave_int<T>&, const float&); \
846 \
847 template OCTAVE_API octave_int<T> \
848 powf (const float&, const octave_int<T>&); \
849 \
850 template OCTAVE_API octave_int<T> \
851 powf (const octave_int<T>&, const float&); \
852 \
853 template OCTAVE_API octave_int<T> \
854 bitshift (const octave_int<T>&, int, const octave_int<T>&);
855
860
865
866/*
867
868%!assert (intmax ("int64") / intmin ("int64"), int64 (-1))
869%!assert (intmin ("int64") / int64 (-1), intmax ("int64"))
870%!assert (int64 (2^63), intmax ("int64"))
871%!assert (uint64 (2^64), intmax ("uint64"))
872%!test
873%! a = 1.9*2^61; b = uint64 (a); b++; assert (b > a);
874%!test
875%! a = -1.9*2^61; b = int64 (a); b++; assert (b > a);
876%!test
877%! a = int64 (-2^60) + 2; assert (1.25*a == (5*a)/4);
878%!test
879%! a = uint64 (2^61) + 2; assert (1.25*a == (5*a)/4);
880%!assert (int32 (2^31+0.5), intmax ("int32"))
881%!assert (int32 (-2^31-0.5), intmin ("int32"))
882%!assert ((int64 (2^62)+1)^1, int64 (2^62)+1)
883%!assert ((int64 (2^30)+1)^2, int64 (2^60+2^31) + 1)
884
885%!assert <54382> (uint8 (char (128)), uint8 (128))
886%!assert <54382> (uint8 (char (255)), uint8 (255))
887%!assert <54382> (int8 (char (128)), int8 (128))
888%!assert <54382> (int8 (char (255)), int8 (255))
889
890%!assert <54382> (uint16 (char (128)), uint16 (128))
891%!assert <54382> (uint16 (char (255)), uint16 (255))
892%!assert <54382> (int16 (char (128)), int16 (128))
893%!assert <54382> (int16 (char (255)), int16 (255))
894
895%!assert <54382> (uint32 (char (128)), uint32 (128))
896%!assert <54382> (uint32 (char (255)), uint32 (255))
897%!assert <54382> (int32 (char (128)), int32 (128))
898%!assert <54382> (int32 (char (255)), int32 (255))
899
900%!assert <54382> (uint64 (char (128)), uint64 (128))
901%!assert <54382> (uint64 (char (255)), uint64 (255))
902%!assert <54382> (int64 (char (128)), int64 (128))
903%!assert <54382> (int64 (char (255)), int64 (255))
904*/
uint64_t mul_internal(uint64_t x, uint64_t y)
static bool emulate_mop(double, int64_t)
T value() const
double double_value() const
bool bool_value() const
static const octave_int s_zero
static const octave_int s_one
static octave_int< T > max()
float float_value() const
unsigned int octave_begin_long_double_rounding(void)
void octave_end_long_double_rounding(unsigned int oldcw)
F77_RET_T const F77_DBLE * x
#define OCTAVE_API
Definition main.in.cc:55
std::complex< double > w(std::complex< double > z, double relerr=0)
octave_int< int64_t > octave_int64
octave_int< uint64_t > octave_uint64
octave_uint64 operator*(const octave_uint64 &x, const double &y)
#define INSTANTIATE_INTTYPE(T)
octave_int< T > pow(const octave_int< T > &a, const octave_int< T > &b)
octave_uint64 operator/(const double &x, const octave_uint64 &y)
#define INSTANTIATE_INT64_DOUBLE_CMP_OP(OP)
octave_uint64 operator+(const octave_uint64 &x, const double &y)
octave_uint64 operator-(const octave_uint64 &x, const double &y)
#define DEFINE_OCTAVE_INT_TYPENAME(TYPE, TYPENAME)
#define DEFINE_REVERTED_OPERATOR(OP1, OP2)
#define INSTANTIATE_CONVERT_REAL(S)
octave_int< T > powf(const float &a, const octave_int< T > &b)
T octave_int_abs(T x)