GNU Octave  9.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
__glpk__.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 2005-2024 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if defined (HAVE_CONFIG_H)
27 # include "config.h"
28 #endif
29 
30 #include <ctime>
31 
32 #include <limits>
33 
34 #include "Array.h"
35 #include "chMatrix.h"
36 #include "dColVector.h"
37 #include "dMatrix.h"
38 #include "dSparse.h"
39 #include "lo-ieee.h"
40 
41 #include "defun-dld.h"
42 #include "error.h"
43 #include "errwarn.h"
44 #include "oct-map.h"
45 #include "ov.h"
46 #include "ovl.h"
47 
48 #if defined (HAVE_GLPK)
49 
50 extern "C"
51 {
52 #if defined (HAVE_GLPK_GLPK_H)
53 # include <glpk/glpk.h>
54 #else
55 # include <glpk.h>
56 #endif
57 }
58 
59 struct control_params
60 {
61  int msglev;
62  int dual;
63  int price;
64  int itlim;
65  int outfrq;
66  int branch;
67  int btrack;
68  int presol;
69  int rtest;
70  int tmlim;
71  int outdly;
72  double tolbnd;
73  double toldj;
74  double tolpiv;
75  double objll;
76  double objul;
77  double tolint;
78  double tolobj;
79 };
80 
81 static int
82 glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn,
83  double *a, double *b, char *ctype, int *freeLB, double *lb,
84  int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver,
85  int save_pb, int scale, const control_params& par,
86  double *xmin, double& fmin, int& status,
87  double *lambda, double *redcosts, double& time)
88 {
89  int typx = 0;
90  int errnum = 0;
91 
92  time = 0.0;
93  status = -1; // Initialize status to "bad" value
94 
95  clock_t t_start = clock ();
96 
97  glp_prob *lp = glp_create_prob ();
98 
99  // Set the sense of optimization
100  if (sense == 1)
101  glp_set_obj_dir (lp, GLP_MIN);
102  else
103  glp_set_obj_dir (lp, GLP_MAX);
104 
105  glp_add_cols (lp, n);
106  for (int i = 0; i < n; i++)
107  {
108  // Define type of the structural variables
109  if (! freeLB[i] && ! freeUB[i])
110  {
111  if (lb[i] != ub[i])
112  glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]);
113  else
114  glp_set_col_bnds (lp, i+1, GLP_FX, lb[i], ub[i]);
115  }
116  else
117  {
118  if (! freeLB[i] && freeUB[i])
119  glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]);
120  else
121  {
122  if (freeLB[i] && ! freeUB[i])
123  glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]);
124  else
125  glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]);
126  }
127  }
128 
129  // -- Set the objective coefficient of the corresponding
130  // -- structural variable. No constant term is assumed.
131  glp_set_obj_coef(lp, i+1, c[i]);
132 
133  if (isMIP)
134  glp_set_col_kind (lp, i+1, vartype[i]);
135  }
136 
137  glp_add_rows (lp, m);
138 
139  for (int i = 0; i < m; i++)
140  {
141  // If the i-th row has no lower bound (types F,U), the
142  // corrispondent parameter will be ignored. If the i-th row has
143  // no upper bound (types F,L), the corrispondent parameter will be
144  // ignored. If the i-th row is of S type, the i-th LB is used,
145  // but the i-th UB is ignored.
146 
147  switch (ctype[i])
148  {
149  case 'F':
150  typx = GLP_FR;
151  break;
152 
153  case 'U':
154  typx = GLP_UP;
155  break;
156 
157  case 'L':
158  typx = GLP_LO;
159  break;
160 
161  case 'S':
162  typx = GLP_FX;
163  break;
164 
165  case 'D':
166  typx = GLP_DB;
167  break;
168  }
169 
170  glp_set_row_bnds (lp, i+1, typx, typx == GLP_DB ? -b[i] : b[i], b[i]);
171 
172  }
173 
174  glp_load_matrix (lp, nz, rn, cn, a);
175 
176  if (save_pb)
177  {
178  static char tmp[] = "outpb.lp";
179  if (glp_write_lp (lp, nullptr, tmp) != 0)
180  error ("__glpk__: unable to write problem");
181  }
182 
183  // scale the problem data
184  if (! par.presol || lpsolver != 1)
185  glp_scale_prob (lp, scale);
186 
187  // build advanced initial basis (if required)
188  if (lpsolver == 1 && ! par.presol)
189  glp_adv_basis (lp, 0);
190 
191  // For MIP problems without a presolver, a first pass with glp_simplex
192  // is required
193  if ((! isMIP && lpsolver == 1)
194  || (isMIP && ! par.presol))
195  {
196  glp_smcp smcp;
197  glp_init_smcp (&smcp);
198  smcp.msg_lev = par.msglev;
199  smcp.meth = par.dual;
200  smcp.pricing = par.price;
201  smcp.r_test = par.rtest;
202  smcp.tol_bnd = par.tolbnd;
203  smcp.tol_dj = par.toldj;
204  smcp.tol_piv = par.tolpiv;
205  smcp.obj_ll = par.objll;
206  smcp.obj_ul = par.objul;
207  smcp.it_lim = par.itlim;
208  smcp.tm_lim = par.tmlim;
209  smcp.out_frq = par.outfrq;
210  smcp.out_dly = par.outdly;
211  smcp.presolve = par.presol;
212  errnum = glp_simplex (lp, &smcp);
213  }
214 
215  if (isMIP)
216  {
217  glp_iocp iocp;
218  glp_init_iocp (&iocp);
219  iocp.msg_lev = par.msglev;
220  iocp.br_tech = par.branch;
221  iocp.bt_tech = par.btrack;
222  iocp.tol_int = par.tolint;
223  iocp.tol_obj = par.tolobj;
224  iocp.tm_lim = par.tmlim;
225  iocp.out_frq = par.outfrq;
226  iocp.out_dly = par.outdly;
227  iocp.presolve = par.presol;
228  errnum = glp_intopt (lp, &iocp);
229  }
230 
231  if (! isMIP && lpsolver == 2)
232  {
233  glp_iptcp iptcp;
234  glp_init_iptcp (&iptcp);
235  iptcp.msg_lev = par.msglev;
236  errnum = glp_interior (lp, &iptcp);
237  }
238 
239  if (errnum == 0)
240  {
241  if (isMIP)
242  {
243  status = glp_mip_status (lp);
244  fmin = glp_mip_obj_val (lp);
245  }
246  else
247  {
248  if (lpsolver == 1)
249  {
250  status = glp_get_status (lp);
251  fmin = glp_get_obj_val (lp);
252  }
253  else
254  {
255  status = glp_ipt_status (lp);
256  fmin = glp_ipt_obj_val (lp);
257  }
258  }
259 
260  if (isMIP)
261  {
262  for (int i = 0; i < n; i++)
263  xmin[i] = glp_mip_col_val (lp, i+1);
264  }
265  else
266  {
267  // Primal values
268  for (int i = 0; i < n; i++)
269  {
270  if (lpsolver == 1)
271  xmin[i] = glp_get_col_prim (lp, i+1);
272  else
273  xmin[i] = glp_ipt_col_prim (lp, i+1);
274  }
275 
276  // Dual values
277  for (int i = 0; i < m; i++)
278  {
279  if (lpsolver == 1)
280  lambda[i] = glp_get_row_dual (lp, i+1);
281  else
282  lambda[i] = glp_ipt_row_dual (lp, i+1);
283  }
284 
285  // Reduced costs
286  for (int i = 0; i < glp_get_num_cols (lp); i++)
287  {
288  if (lpsolver == 1)
289  redcosts[i] = glp_get_col_dual (lp, i+1);
290  else
291  redcosts[i] = glp_ipt_col_dual (lp, i+1);
292  }
293  }
294  }
295 
296  time = (clock () - t_start) / CLOCKS_PER_SEC;
297 
298  glp_delete_prob (lp);
299  // Request that GLPK free all memory resources.
300  // This prevents reported memory leaks, but isn't strictly necessary.
301  // The memory blocks used are allocated once and don't grow with further
302  // calls to glpk so they would be reclaimed anyways when Octave exits.
303  glp_free_env ();
304 
305  return errnum;
306 }
307 
308 #endif
309 
311 
312 #define OCTAVE_GLPK_GET_REAL_PARAM(NAME, VAL) \
313  do \
314  { \
315  octave_value tmp = PARAM.getfield (NAME); \
316  \
317  if (tmp.is_defined ()) \
318  { \
319  if (! tmp.isempty ()) \
320  VAL = tmp.xscalar_value ("glpk: invalid value in PARAM" NAME); \
321  else \
322  error ("glpk: invalid value in PARAM" NAME); \
323  } \
324  } \
325  while (0)
326 
327 #define OCTAVE_GLPK_GET_INT_PARAM(NAME, VAL) \
328  do \
329  { \
330  octave_value tmp = PARAM.getfield (NAME); \
331  \
332  if (tmp.is_defined ()) \
333  { \
334  if (! tmp.isempty ()) \
335  VAL = tmp.xint_value ("glpk: invalid value in PARAM" NAME); \
336  else \
337  error ("glpk: invalid value in PARAM" NAME); \
338  } \
339  } \
340  while (0)
341 
342 DEFUN_DLD (__glpk__, args, ,
343  doc: /* -*- texinfo -*-
344 @deftypefn {} {[@var{values}] =} __glpk__ (@var{args})
345 Undocumented internal function.
346 @end deftypefn */)
347 {
348 #if defined (HAVE_GLPK)
349 
350  // FIXME: Should we even need checking for an internal function?
351  if (args.length () != 9)
352  print_usage ();
353 
354  // 1st Input. A column array containing the objective function coefficients.
355  int mrowsc = args(0).rows ();
356 
357  Matrix C = args(0).xmatrix_value ("__glpk__: invalid value of C");
358 
359  double *c = C.fortran_vec ();
360  Array<int> rn;
361  Array<int> cn;
362  ColumnVector a;
363  int mrowsA;
364  int nz = 0;
365 
366  // 2nd Input. A matrix containing the constraints coefficients.
367  // If matrix A is NOT a sparse matrix
368  if (args(1).issparse ())
369  {
370  SparseMatrix A = args(1).xsparse_matrix_value ("__glpk__: invalid value of A");
371 
372  mrowsA = A.rows ();
373  octave_idx_type Anc = A.cols ();
374  octave_idx_type Anz = A.nnz ();
375  rn.resize (dim_vector (Anz+1, 1));
376  cn.resize (dim_vector (Anz+1, 1));
377  a.resize (Anz+1, 0.0);
378 
379  if (Anc != mrowsc)
380  error ("__glpk__: invalid value of A");
381 
382  for (octave_idx_type j = 0; j < Anc; j++)
383  for (octave_idx_type i = A.cidx (j); i < A.cidx (j+1); i++)
384  {
385  nz++;
386  rn(nz) = A.ridx (i) + 1;
387  cn(nz) = j + 1;
388  a(nz) = A.data(i);
389  }
390  }
391  else
392  {
393  Matrix A = args(1).xmatrix_value ("__glpk__: invalid value of A");
394 
395  mrowsA = A.rows ();
396  rn.resize (dim_vector (mrowsA*mrowsc+1, 1));
397  cn.resize (dim_vector (mrowsA*mrowsc+1, 1));
398  a.resize (mrowsA*mrowsc+1, 0.0);
399 
400  for (int i = 0; i < mrowsA; i++)
401  {
402  for (int j = 0; j < mrowsc; j++)
403  {
404  if (A(i, j) != 0)
405  {
406  nz++;
407  rn(nz) = i + 1;
408  cn(nz) = j + 1;
409  a(nz) = A(i, j);
410  }
411  }
412  }
413 
414  }
415 
416  // 3rd Input. A column array containing the right-hand side value
417  // for each constraint in the constraint matrix.
418  Matrix B = args(2).xmatrix_value ("__glpk__: invalid value of B");
419 
420  double *b = B.fortran_vec ();
421 
422  // 4th Input. An array of length mrowsc containing the lower
423  // bound on each of the variables.
424  Matrix LB = args(3).xmatrix_value ("__glpk__: invalid value of LB");
425 
426  if (LB.numel () < mrowsc)
427  error ("__glpk__: invalid dimensions for LB");
428 
429  double *lb = LB.fortran_vec ();
430 
431  // LB argument, default: Free
432  Array<int> freeLB (dim_vector (mrowsc, 1));
433  for (int i = 0; i < mrowsc; i++)
434  {
435  if (math::isinf (lb[i]))
436  {
437  freeLB(i) = 1;
438  lb[i] = -numeric_limits<double>::Inf ();
439  }
440  else
441  freeLB(i) = 0;
442  }
443 
444  // 5th Input. An array of at least length numcols containing the upper
445  // bound on each of the variables.
446  Matrix UB = args(4).xmatrix_value ("__glpk__: invalid value of UB");
447 
448  if (UB.numel () < mrowsc)
449  error ("__glpk__: invalid dimensions for UB");
450 
451  double *ub = UB.fortran_vec ();
452 
453  Array<int> freeUB (dim_vector (mrowsc, 1));
454  for (int i = 0; i < mrowsc; i++)
455  {
456  if (math::isinf (ub[i]))
457  {
458  freeUB(i) = 1;
459  ub[i] = numeric_limits<double>::Inf ();
460  }
461  else
462  freeUB(i) = 0;
463  }
464 
465  // 6th Input. A column array containing the sense of each constraint
466  // in the constraint matrix.
467  charMatrix CTYPE = args(5).xchar_matrix_value ("__glpk__: invalid value of CTYPE");
468 
469  char *ctype = CTYPE.fortran_vec ();
470 
471  // 7th Input. A column array containing the types of the variables.
472  charMatrix VTYPE = args(6).xchar_matrix_value ("__glpk__: invalid value of VARTYPE");
473 
474  Array<int> vartype (dim_vector (mrowsc, 1));
475  int isMIP = 0;
476  for (int i = 0; i < mrowsc ; i++)
477  {
478  if (VTYPE(i, 0) == 'I')
479  {
480  isMIP = 1;
481  vartype(i) = GLP_IV;
482  }
483  else
484  vartype(i) = GLP_CV;
485  }
486 
487  // 8th Input. Sense of optimization.
488  int sense;
489  double SENSE = args(7).xscalar_value ("__glpk__: invalid value of SENSE");
490 
491  if (SENSE >= 0)
492  sense = 1;
493  else
494  sense = -1;
495 
496  // 9th Input. A structure containing the control parameters.
497  octave_scalar_map PARAM = args(8).xscalar_map_value ("__glpk__: invalid value of PARAM");
498 
499  control_params par;
500 
501  // Integer parameters
502 
503  // Level of messages output by the solver
504  par.msglev = 1;
505  OCTAVE_GLPK_GET_INT_PARAM ("msglev", par.msglev);
506  if (par.msglev < 0 || par.msglev > 3)
507  error ("__glpk__: PARAM.msglev must be 0 (no output) or 1 (error and warning messages only [default]) or 2 (normal output) or 3 (full output)");
508 
509  // scaling option
510  int scale = 16;
511  OCTAVE_GLPK_GET_INT_PARAM ("scale", scale);
512  if (scale < 0 || scale > 128)
513  error ("__glpk__: PARAM.scale must either be 128 (automatic selection of scaling options), or a bitwise or of: 1 (geometric mean scaling), 16 (equilibration scaling), 32 (round scale factors to power of two), 64 (skip if problem is well scaled");
514 
515  // Dual simplex option
516  par.dual = 1;
517  OCTAVE_GLPK_GET_INT_PARAM ("dual", par.dual);
518  if (par.dual < 1 || par.dual > 3)
519  error ("__glpk__: PARAM.dual must be 1 (use two-phase primal simplex [default]) or 2 (use two-phase dual simplex) or 3 (use two-phase dual simplex, and if it fails, switch to the primal simplex)");
520 
521  // Pricing option
522  par.price = 34;
523  OCTAVE_GLPK_GET_INT_PARAM ("price", par.price);
524  if (par.price != 17 && par.price != 34)
525  error ("__glpk__: PARAM.price must be 17 (textbook pricing) or 34 (steepest edge pricing [default])");
526 
527  // Simplex iterations limit
528  par.itlim = std::numeric_limits<int>::max ();
529  OCTAVE_GLPK_GET_INT_PARAM ("itlim", par.itlim);
530 
531  // Output frequency, in iterations
532  par.outfrq = 200;
533  OCTAVE_GLPK_GET_INT_PARAM ("outfrq", par.outfrq);
534 
535  // Branching heuristic option
536  par.branch = 4;
537  OCTAVE_GLPK_GET_INT_PARAM ("branch", par.branch);
538  if (par.branch < 1 || par.branch > 5)
539  error ("__glpk__: PARAM.branch must be 1 (first fractional variable) or 2 (last fractional variable) or 3 (most fractional variable) or 4 (heuristic by Driebeck and Tomlin [default]) or 5 (hybrid pseudocost heuristic)");
540 
541  // Backtracking heuristic option
542  par.btrack = 4;
543  OCTAVE_GLPK_GET_INT_PARAM ("btrack", par.btrack);
544  if (par.btrack < 1 || par.btrack > 4)
545  error ("__glpk__: PARAM.btrack must be 1 (depth first search) or 2 (breadth first search) or 3 (best local bound) or 4 (best projection heuristic [default]");
546 
547  // Presolver option
548  par.presol = 1;
549  OCTAVE_GLPK_GET_INT_PARAM ("presol", par.presol);
550  if (par.presol < 0 || par.presol > 1)
551  error ("__glpk__: PARAM.presol must be 0 (do NOT use LP presolver) or 1 (use LP presolver [default])");
552 
553  // LPsolver option
554  int lpsolver = 1;
555  OCTAVE_GLPK_GET_INT_PARAM ("lpsolver", lpsolver);
556  if (lpsolver < 1 || lpsolver > 2)
557  error ("__glpk__: PARAM.lpsolver must be 1 (simplex method) or 2 (interior point method)");
558 
559  // Ratio test option
560  par.rtest = 34;
561  OCTAVE_GLPK_GET_INT_PARAM ("rtest", par.rtest);
562  if (par.rtest != 17 && par.rtest != 34)
563  error ("__glpk__: PARAM.rtest must be 17 (standard ratio test) or 34 (Harris' two-pass ratio test [default])");
564 
565  par.tmlim = std::numeric_limits<int>::max ();
566  OCTAVE_GLPK_GET_INT_PARAM ("tmlim", par.tmlim);
567 
568  par.outdly = 0;
569  OCTAVE_GLPK_GET_INT_PARAM ("outdly", par.outdly);
570 
571  // Save option
572  int save_pb = 0;
573  OCTAVE_GLPK_GET_INT_PARAM ("save", save_pb);
574  save_pb = save_pb != 0;
575 
576  // Real parameters
577 
578  // Relative tolerance used to check if the current basic solution
579  // is primal feasible
580  par.tolbnd = 1e-7;
581  OCTAVE_GLPK_GET_REAL_PARAM ("tolbnd", par.tolbnd);
582 
583  // Absolute tolerance used to check if the current basic solution
584  // is dual feasible
585  par.toldj = 1e-7;
586  OCTAVE_GLPK_GET_REAL_PARAM ("toldj", par.toldj);
587 
588  // Relative tolerance used to choose eligible pivotal elements of
589  // the simplex table in the ratio test
590  par.tolpiv = 1e-10;
591  OCTAVE_GLPK_GET_REAL_PARAM ("tolpiv", par.tolpiv);
592 
593  par.objll = -std::numeric_limits<double>::max ();
594  OCTAVE_GLPK_GET_REAL_PARAM ("objll", par.objll);
595 
596  par.objul = std::numeric_limits<double>::max ();
597  OCTAVE_GLPK_GET_REAL_PARAM ("objul", par.objul);
598 
599  par.tolint = 1e-5;
600  OCTAVE_GLPK_GET_REAL_PARAM ("tolint", par.tolint);
601 
602  par.tolobj = 1e-7;
603  OCTAVE_GLPK_GET_REAL_PARAM ("tolobj", par.tolobj);
604 
605  // Assign pointers to the output parameters
606  ColumnVector xmin (mrowsc, octave_NA);
607  double fmin = octave_NA;
608  ColumnVector lambda (mrowsA, octave_NA);
609  ColumnVector redcosts (mrowsc, octave_NA);
610 
611  double time = 0.0;
612  int status = -1;
613 
614  int errnum = glpk (sense, mrowsc, mrowsA, c, nz, rn.fortran_vec (),
615  cn.fortran_vec (), a.fortran_vec (), b, ctype,
616  freeLB.fortran_vec (), lb, freeUB.fortran_vec (),
617  ub, vartype.fortran_vec (), isMIP, lpsolver,
618  save_pb, scale, par, xmin.fortran_vec (), fmin,
619  status, lambda.fortran_vec (),
620  redcosts.fortran_vec (), time);
621 
622  octave_scalar_map extra;
623 
624  if (! isMIP)
625  {
626  extra.assign ("lambda", lambda);
627  extra.assign ("redcosts", redcosts);
628  }
629 
630  extra.assign ("time", time);
631  extra.assign ("status", status);
632 
633  return ovl (xmin, fmin, errnum, extra);
634 
635 #else
636 
637  octave_unused_parameter (args);
638 
639  err_disabled_feature ("glpk", "GNU Linear Programming Kit");
640 
641 #endif
642 }
643 
644 /*
645 ## No test needed for internal helper function.
646 %!assert (1)
647 */
648 
649 OCTAVE_END_NAMESPACE(octave)
#define Inf
Definition: Faddeeva.cc:260
#define C(a, b)
Definition: Faddeeva.cc:259
#define OCTAVE_GLPK_GET_INT_PARAM(NAME, VAL)
Definition: __glpk__.cc:327
#define OCTAVE_GLPK_GET_REAL_PARAM(NAME, VAL)
Definition: __glpk__.cc:312
charNDArray max(char d, const charNDArray &m)
Definition: chNDArray.cc:230
T * fortran_vec()
Size of the specified dimension.
Definition: Array-base.cc:1764
void resize(const dim_vector &dv, const T &rfv)
Size of the specified dimension.
Definition: Array-base.cc:1023
octave_idx_type numel() const
Number of elements in the array.
Definition: Array.h:414
void resize(octave_idx_type n, const double &rfv=0)
Definition: dColVector.h:114
Definition: dMatrix.h:42
Vector representing the dimensions (size) of an Array.
Definition: dim-vector.h:94
void assign(const std::string &k, const octave_value &val)
Definition: oct-map.h:230
Definition: oct-time.h:64
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
#define DEFUN_DLD(name, args_name, nargout_name, doc)
Macro to define an at run time dynamically loadable builtin function.
Definition: defun-dld.h:61
void print_usage(void)
Definition: defun-int.h:72
void() error(const char *fmt,...)
Definition: error.cc:988
void err_disabled_feature(const std::string &fcn, const std::string &feature, const std::string &pkg)
Definition: errwarn.cc:53
void scale(Matrix &m, double x, double y, double z)
Definition: graphics.cc:5500
#define octave_NA
Definition: lo-ieee.h:43
F77_RET_T const F77_INT F77_CMPLX const F77_INT F77_CMPLX * B
F77_RET_T const F77_INT F77_CMPLX * A
bool isinf(double x)
Definition: lo-mappers.h:203
T octave_idx_type m
Definition: mx-inlines.cc:781
octave_idx_type n
Definition: mx-inlines.cc:761
octave_int< T > xmin(const octave_int< T > &x, const octave_int< T > &y)
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition: ovl.h:219