26#if defined (HAVE_CONFIG_H)
53solve_singularity_warning (
double rcond)
55 octave::warn_singular_matrix (rcond);
58template <
typename T1,
typename T2>
71 octave::err_nonconformant (R
"(operator \)", a_nr, a_nc, b_nr, b_nc);
77#define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \
78 template bool mx_leftdiv_conform (const T1&, const T2&, blas_trans_type)
85template <
typename T1,
typename T2>
97 octave::err_nonconformant (
"operator /", a_nr, a_nc, b_nr, b_nc);
103#define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \
104 template bool mx_div_conform (const T1&, const T2&)
209 result (i, j) = a / b (i, j);
227 result (i, j) = a / b (i, j);
245 result (i, j) = a / b (i, j);
263 result (i, j) = a / b (i, j);
286 result (i) = a / b (i);
300 result (i) = a / b (i);
314 result (i) = a / b (i);
328 result (i) = a / b (i);
353 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
367 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
380 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
393 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
397solve_singularity_warning (
float rcond)
399 octave::warn_singular_matrix (rcond);
510 result (i, j) = a / b (i, j);
528 result (i, j) = a / b (i, j);
546 result (i, j) = a / b (i, j);
564 result (i, j) = a / b (i, j);
587 result (i) = a / b (i);
601 result (i) = a / b (i);
615 result (i) = a / b (i);
629 result (i) = a / b (i);
654 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
668 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
681 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
694 return a.
solve (typ, b, info, rcond, solve_singularity_warning,
true, transt);
699template <
typename MT,
typename DMT>
710 typedef typename DMT::element_type S;
711 typedef typename MT::element_type T;
712 const T *aa = a.data ();
713 const S *dd =
d.data ();
782template <
typename MT,
typename DMT>
794 typedef typename DMT::element_type S;
795 typedef typename MT::element_type T;
796 const T *aa = a.data ();
797 const S *dd =
d.data ();
803 xx[i] = (dd[i] != S () ? aa[i] / dd[i] : T ());
862template <
typename MT,
typename DMT>
875 typedef typename DMT::element_type S;
876 typedef typename MT::element_type T;
877 const T *aa = a.data ();
878 const S *dd =
d.data ();
882 xx[i] = (dd[i] != S () ? aa[i] / dd[i] : T ());
937template <
typename MT,
typename DMT>
950 typedef typename DMT::element_type S;
951 typedef typename MT::element_type T;
952 const T *aa = a.data ();
953 const S *dd =
d.data ();
957 xx[i] = (dd[i] != S () ? aa[i] / dd[i] : T ());
1012OCTAVE_END_NAMESPACE(octave)
const dim_vector & dims() const
Return a const-reference so that dims ()(i) works efficiently.
octave_idx_type rows() const
octave_idx_type columns() const
octave_idx_type numel() const
Number of elements in the array.
ComplexMatrix solve(MatrixType &mattype, const Matrix &b) const
ComplexMatrix transpose() const
FloatComplexMatrix transpose() const
FloatComplexMatrix solve(MatrixType &mattype, const FloatMatrix &b) const
FloatMatrix solve(MatrixType &mattype, const FloatMatrix &b) const
FloatMatrix transpose() const
Matrix solve(MatrixType &mattype, const Matrix &b) const
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
F77_RET_T const F77_DBLE * x
std::complex< double > Complex
std::complex< float > FloatComplex
Matrix elem_xdiv(double a, const Matrix &b)
Matrix xleftdiv(const Matrix &a, const Matrix &b, MatrixType &typ, blas_trans_type transt)
MT dmm_leftdiv_impl(const DMT &d, const MT &a)
bool mx_leftdiv_conform(const T1 &a, const T2 &b, blas_trans_type blas_trans)
bool mx_div_conform(const T1 &a, const T2 &b)
#define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2)
#define INSTANTIATE_MX_DIV_CONFORM(T1, T2)
MT dmdm_leftdiv_impl(const DMT &d, const MT &a)
MT mdm_div_impl(const MT &a, const DMT &d)
Matrix xdiv(const Matrix &a, const Matrix &b, MatrixType &typ)
MT dmdm_div_impl(const MT &a, const DMT &d)