GNU Octave 7.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
lo-specfun.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 1996-2022 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include <cmath>
31
32#include <algorithm>
33#include <limits>
34#include <string>
35
36#include "CColVector.h"
37#include "CMatrix.h"
38#include "CNDArray.h"
39#include "Faddeeva.hh"
40#include "dMatrix.h"
41#include "dNDArray.h"
42#include "dRowVector.h"
43#include "f77-fcn.h"
44#include "fCColVector.h"
45#include "fCMatrix.h"
46#include "fCNDArray.h"
47#include "fMatrix.h"
48#include "fNDArray.h"
49#include "fRowVector.h"
50#include "lo-amos-proto.h"
51#include "lo-error.h"
52#include "lo-ieee.h"
53#include "lo-mappers.h"
54#include "lo-slatec-proto.h"
55#include "lo-specfun.h"
56#include "mx-inlines.cc"
57
58namespace octave
59{
60 namespace math
61 {
62 static inline Complex
64 {
65 static const Complex inf_val
68
69 static const Complex nan_val
72
73 Complex retval;
74
75 switch (ierr)
76 {
77 case 0:
78 case 3:
79 case 4:
80 retval = val;
81 break;
82
83 case 2:
84 retval = inf_val;
85 break;
86
87 default:
88 retval = nan_val;
89 break;
90 }
91
92 return retval;
93 }
94
95 static inline FloatComplex
97 {
98 static const FloatComplex inf_val
101
102 static const FloatComplex nan_val
105
106 FloatComplex retval;
107
108 switch (ierr)
109 {
110 case 0:
111 case 3:
112 case 4:
113 retval = val;
114 break;
115
116 case 2:
117 retval = inf_val;
118 break;
119
120 default:
121 retval = nan_val;
122 break;
123 }
124
125 return retval;
126 }
127
128
129
130 Complex
131 airy (const Complex& z, bool deriv, bool scaled, octave_idx_type& ierr)
132 {
133 double ar = 0.0;
134 double ai = 0.0;
135
136 double zr = z.real ();
137 double zi = z.imag ();
138
139 F77_INT id = (deriv ? 1 : 0);
140 F77_INT nz, t_ierr;
141
142 F77_FUNC (zairy, ZAIRY) (zr, zi, id, 2, ar, ai, nz, t_ierr);
143
144 ierr = t_ierr;
145
146 if (! scaled)
147 {
148 Complex expz = exp (- 2.0 / 3.0 * z * sqrt (z));
149
150 double rexpz = expz.real ();
151 double iexpz = expz.imag ();
152
153 double tmp = ar*rexpz - ai*iexpz;
154
155 ai = ar*iexpz + ai*rexpz;
156 ar = tmp;
157 }
158
159 if (zi == 0.0 && (! scaled || zr >= 0.0))
160 ai = 0.0;
161
162 return bessel_return_value (Complex (ar, ai), ierr);
163 }
164
166 airy (const ComplexMatrix& z, bool deriv, bool scaled,
168 {
169 octave_idx_type nr = z.rows ();
170 octave_idx_type nc = z.cols ();
171
172 ComplexMatrix retval (nr, nc);
173
174 ierr.resize (dim_vector (nr, nc));
175
176 for (octave_idx_type j = 0; j < nc; j++)
177 for (octave_idx_type i = 0; i < nr; i++)
178 retval(i, j) = airy (z(i, j), deriv, scaled, ierr(i, j));
179
180 return retval;
181 }
182
184 airy (const ComplexNDArray& z, bool deriv, bool scaled,
186 {
187 dim_vector dv = z.dims ();
188 octave_idx_type nel = dv.numel ();
189 ComplexNDArray retval (dv);
190
191 ierr.resize (dv);
192
193 for (octave_idx_type i = 0; i < nel; i++)
194 retval(i) = airy (z(i), deriv, scaled, ierr(i));
195
196 return retval;
197 }
198
200 airy (const FloatComplex& z, bool deriv, bool scaled,
202 {
203 FloatComplex a;
204
205 F77_INT id = (deriv ? 1 : 0);
206 F77_INT nz, t_ierr;
207
208 F77_FUNC (cairy, CAIRY) (F77_CONST_CMPLX_ARG (&z), id, 2,
209 F77_CMPLX_ARG (&a), nz, t_ierr);
210
211 ierr = t_ierr;
212
213 float ar = a.real ();
214 float ai = a.imag ();
215
216 if (! scaled)
217 {
218 FloatComplex expz = exp (- 2.0f / 3.0f * z * sqrt (z));
219
220 float rexpz = expz.real ();
221 float iexpz = expz.imag ();
222
223 float tmp = ar*rexpz - ai*iexpz;
224
225 ai = ar*iexpz + ai*rexpz;
226 ar = tmp;
227 }
228
229 if (z.imag () == 0.0 && (! scaled || z.real () >= 0.0))
230 ai = 0.0;
231
232 return bessel_return_value (FloatComplex (ar, ai), ierr);
233 }
234
236 airy (const FloatComplexMatrix& z, bool deriv, bool scaled,
238 {
239 octave_idx_type nr = z.rows ();
240 octave_idx_type nc = z.cols ();
241
242 FloatComplexMatrix retval (nr, nc);
243
244 ierr.resize (dim_vector (nr, nc));
245
246 for (octave_idx_type j = 0; j < nc; j++)
247 for (octave_idx_type i = 0; i < nr; i++)
248 retval(i, j) = airy (z(i, j), deriv, scaled, ierr(i, j));
249
250 return retval;
251 }
252
254 airy (const FloatComplexNDArray& z, bool deriv, bool scaled,
256 {
257 dim_vector dv = z.dims ();
258 octave_idx_type nel = dv.numel ();
259 FloatComplexNDArray retval (dv);
260
261 ierr.resize (dv);
262
263 for (octave_idx_type i = 0; i < nel; i++)
264 retval(i) = airy (z(i), deriv, scaled, ierr(i));
265
266 return retval;
267 }
268
269 static inline bool
271 {
272 return x == static_cast<double> (static_cast<long> (x));
273 }
274
275 static inline Complex
276 zbesj (const Complex& z, double alpha, int kode, octave_idx_type& ierr);
277
278 static inline Complex
279 zbesy (const Complex& z, double alpha, int kode, octave_idx_type& ierr);
280
281 static inline Complex
282 zbesi (const Complex& z, double alpha, int kode, octave_idx_type& ierr);
283
284 static inline Complex
285 zbesk (const Complex& z, double alpha, int kode, octave_idx_type& ierr);
286
287 static inline Complex
288 zbesh1 (const Complex& z, double alpha, int kode, octave_idx_type& ierr);
289
290 static inline Complex
291 zbesh2 (const Complex& z, double alpha, int kode, octave_idx_type& ierr);
292
293 static inline Complex
294 zbesj (const Complex& z, double alpha, int kode, octave_idx_type& ierr)
295 {
296 Complex retval;
297
298 if (alpha >= 0.0)
299 {
300 double yr = 0.0;
301 double yi = 0.0;
302
303 F77_INT nz, t_ierr;
304
305 double zr = z.real ();
306 double zi = z.imag ();
307
308 F77_FUNC (zbesj, ZBESJ) (zr, zi, alpha, kode, 1, &yr, &yi, nz, t_ierr);
309
310 ierr = t_ierr;
311
312 if (zi == 0.0 && zr >= 0.0)
313 yi = 0.0;
314
315 retval = bessel_return_value (Complex (yr, yi), ierr);
316 }
317 else if (is_integer_value (alpha))
318 {
319 // zbesy can overflow as z->0, and cause troubles for generic case below
320 alpha = -alpha;
321 Complex tmp = zbesj (z, alpha, kode, ierr);
322 if ((static_cast<long> (alpha)) & 1)
323 tmp = - tmp;
324 retval = bessel_return_value (tmp, ierr);
325 }
326 else
327 {
328 alpha = -alpha;
329
330 Complex tmp = cos (M_PI * alpha) * zbesj (z, alpha, kode, ierr);
331
332 if (ierr == 0 || ierr == 3)
333 {
334 tmp -= sin (M_PI * alpha) * zbesy (z, alpha, kode, ierr);
335
336 retval = bessel_return_value (tmp, ierr);
337 }
338 else
341 }
342
343 return retval;
344 }
345
346 static inline Complex
347 zbesy (const Complex& z, double alpha, int kode, octave_idx_type& ierr)
348 {
349 Complex retval;
350
351 if (alpha >= 0.0)
352 {
353 double yr = 0.0;
354 double yi = 0.0;
355
356 F77_INT nz, t_ierr;
357
358 double wr, wi;
359
360 double zr = z.real ();
361 double zi = z.imag ();
362
363 ierr = 0;
364
365 if (zr == 0.0 && zi == 0.0)
366 {
368 yi = 0.0;
369 }
370 else
371 {
372 F77_FUNC (zbesy, ZBESY) (zr, zi, alpha, kode, 1, &yr, &yi, nz,
373 &wr, &wi, t_ierr);
374
375 ierr = t_ierr;
376
377 if (zi == 0.0 && zr >= 0.0)
378 yi = 0.0;
379 }
380
381 return bessel_return_value (Complex (yr, yi), ierr);
382 }
383 else if (is_integer_value (alpha - 0.5))
384 {
385 // zbesy can overflow as z->0, and cause troubles for generic case below
386 alpha = -alpha;
387 Complex tmp = zbesj (z, alpha, kode, ierr);
388 if ((static_cast<long> (alpha - 0.5)) & 1)
389 tmp = - tmp;
390 retval = bessel_return_value (tmp, ierr);
391 }
392 else
393 {
394 alpha = -alpha;
395
396 Complex tmp = cos (M_PI * alpha) * zbesy (z, alpha, kode, ierr);
397
398 if (ierr == 0 || ierr == 3)
399 {
400 tmp += sin (M_PI * alpha) * zbesj (z, alpha, kode, ierr);
401
402 retval = bessel_return_value (tmp, ierr);
403 }
404 else
407 }
408
409 return retval;
410 }
411
412 static inline Complex
413 zbesi (const Complex& z, double alpha, int kode, octave_idx_type& ierr)
414 {
415 Complex retval;
416
417 if (alpha >= 0.0)
418 {
419 double yr = 0.0;
420 double yi = 0.0;
421
422 F77_INT nz, t_ierr;
423
424 double zr = z.real ();
425 double zi = z.imag ();
426
427 F77_FUNC (zbesi, ZBESI) (zr, zi, alpha, kode, 1, &yr, &yi, nz, t_ierr);
428
429 ierr = t_ierr;
430
431 if (zi == 0.0 && zr >= 0.0)
432 yi = 0.0;
433
434 retval = bessel_return_value (Complex (yr, yi), ierr);
435 }
436 else if (is_integer_value (alpha))
437 {
438 // zbesi can overflow as z->0, and cause troubles for generic case below
439 alpha = -alpha;
440 Complex tmp = zbesi (z, alpha, kode, ierr);
441 retval = bessel_return_value (tmp, ierr);
442 }
443 else
444 {
445 alpha = -alpha;
446
447 Complex tmp = zbesi (z, alpha, kode, ierr);
448
449 if (ierr == 0 || ierr == 3)
450 {
451 Complex tmp2 = (2.0 / M_PI) * sin (M_PI * alpha)
452 * zbesk (z, alpha, kode, ierr);
453
454 if (kode == 2)
455 {
456 // Compensate for different scaling factor of besk.
457 tmp2 *= exp (-z - std::abs (z.real ()));
458 }
459
460 tmp += tmp2;
461
462 retval = bessel_return_value (tmp, ierr);
463 }
464 else
467 }
468
469 return retval;
470 }
471
472 static inline Complex
473 zbesk (const Complex& z, double alpha, int kode, octave_idx_type& ierr)
474 {
475 Complex retval;
476
477 if (alpha >= 0.0)
478 {
479 double yr = 0.0;
480 double yi = 0.0;
481
482 F77_INT nz, t_ierr;
483
484 double zr = z.real ();
485 double zi = z.imag ();
486
487 ierr = 0;
488
489 if (zr == 0.0 && zi == 0.0)
490 {
492 yi = 0.0;
493 }
494 else
495 {
496 F77_FUNC (zbesk, ZBESK) (zr, zi, alpha, kode, 1, &yr, &yi, nz,
497 t_ierr);
498
499 ierr = t_ierr;
500
501 if (zi == 0.0 && zr >= 0.0)
502 yi = 0.0;
503 }
504
505 retval = bessel_return_value (Complex (yr, yi), ierr);
506 }
507 else
508 {
509 Complex tmp = zbesk (z, -alpha, kode, ierr);
510
511 retval = bessel_return_value (tmp, ierr);
512 }
513
514 return retval;
515 }
516
517 static inline Complex
518 zbesh1 (const Complex& z, double alpha, int kode, octave_idx_type& ierr)
519 {
520 Complex retval;
521
522 if (alpha >= 0.0)
523 {
524 double yr = 0.0;
525 double yi = 0.0;
526
527 F77_INT nz, t_ierr;
528
529 double zr = z.real ();
530 double zi = z.imag ();
531
532 F77_FUNC (zbesh, ZBESH) (zr, zi, alpha, kode, 1, 1, &yr, &yi, nz,
533 t_ierr);
534
535 ierr = t_ierr;
536
537 retval = bessel_return_value (Complex (yr, yi), ierr);
538 }
539 else
540 {
541 alpha = -alpha;
542
543 static const Complex eye = Complex (0.0, 1.0);
544
545 Complex tmp = exp (M_PI * alpha * eye) * zbesh1 (z, alpha, kode, ierr);
546
547 retval = bessel_return_value (tmp, ierr);
548 }
549
550 return retval;
551 }
552
553 static inline Complex
554 zbesh2 (const Complex& z, double alpha, int kode, octave_idx_type& ierr)
555 {
556 Complex retval;
557
558 if (alpha >= 0.0)
559 {
560 double yr = 0.0;
561 double yi = 0.0;
562
563 F77_INT nz, t_ierr;
564
565 double zr = z.real ();
566 double zi = z.imag ();
567
568 F77_FUNC (zbesh, ZBESH) (zr, zi, alpha, kode, 2, 1, &yr, &yi, nz,
569 t_ierr);
570
571 ierr = t_ierr;
572
573 retval = bessel_return_value (Complex (yr, yi), ierr);
574 }
575 else
576 {
577 alpha = -alpha;
578
579 static const Complex eye = Complex (0.0, 1.0);
580
581 Complex tmp = exp (-M_PI * alpha * eye) * zbesh2 (z, alpha, kode, ierr);
582
583 retval = bessel_return_value (tmp, ierr);
584 }
585
586 return retval;
587 }
588
589 typedef Complex (*dptr) (const Complex&, double, int, octave_idx_type&);
590
591 static inline Complex
592 do_bessel (dptr f, const char *, double alpha, const Complex& x,
593 bool scaled, octave_idx_type& ierr)
594 {
595 Complex retval;
596
597 retval = f (x, alpha, (scaled ? 2 : 1), ierr);
598
599 return retval;
600 }
601
602 static inline ComplexMatrix
603 do_bessel (dptr f, const char *, double alpha, const ComplexMatrix& x,
604 bool scaled, Array<octave_idx_type>& ierr)
605 {
606 octave_idx_type nr = x.rows ();
607 octave_idx_type nc = x.cols ();
608
609 ComplexMatrix retval (nr, nc);
610
611 ierr.resize (dim_vector (nr, nc));
612
613 for (octave_idx_type j = 0; j < nc; j++)
614 for (octave_idx_type i = 0; i < nr; i++)
615 retval(i, j) = f (x(i, j), alpha, (scaled ? 2 : 1), ierr(i, j));
616
617 return retval;
618 }
619
620 static inline ComplexMatrix
621 do_bessel (dptr f, const char *, const Matrix& alpha, const Complex& x,
622 bool scaled, Array<octave_idx_type>& ierr)
623 {
624 octave_idx_type nr = alpha.rows ();
625 octave_idx_type nc = alpha.cols ();
626
627 ComplexMatrix retval (nr, nc);
628
629 ierr.resize (dim_vector (nr, nc));
630
631 for (octave_idx_type j = 0; j < nc; j++)
632 for (octave_idx_type i = 0; i < nr; i++)
633 retval(i, j) = f (x, alpha(i, j), (scaled ? 2 : 1), ierr(i, j));
634
635 return retval;
636 }
637
638 static inline ComplexMatrix
639 do_bessel (dptr f, const char *fn, const Matrix& alpha,
640 const ComplexMatrix& x, bool scaled, Array<octave_idx_type>& ierr)
641 {
642 ComplexMatrix retval;
643
644 octave_idx_type x_nr = x.rows ();
645 octave_idx_type x_nc = x.cols ();
646
647 octave_idx_type alpha_nr = alpha.rows ();
648 octave_idx_type alpha_nc = alpha.cols ();
649
650 if (x_nr != alpha_nr || x_nc != alpha_nc)
651 (*current_liboctave_error_handler)
652 ("%s: the sizes of alpha and x must conform", fn);
653
654 octave_idx_type nr = x_nr;
655 octave_idx_type nc = x_nc;
656
657 retval.resize (nr, nc);
658
659 ierr.resize (dim_vector (nr, nc));
660
661 for (octave_idx_type j = 0; j < nc; j++)
662 for (octave_idx_type i = 0; i < nr; i++)
663 retval(i, j) = f (x(i, j), alpha(i, j), (scaled ? 2 : 1), ierr(i, j));
664
665 return retval;
666 }
667
668 static inline ComplexNDArray
669 do_bessel (dptr f, const char *, double alpha, const ComplexNDArray& x,
670 bool scaled, Array<octave_idx_type>& ierr)
671 {
672 dim_vector dv = x.dims ();
673 octave_idx_type nel = dv.numel ();
674 ComplexNDArray retval (dv);
675
676 ierr.resize (dv);
677
678 for (octave_idx_type i = 0; i < nel; i++)
679 retval(i) = f (x(i), alpha, (scaled ? 2 : 1), ierr(i));
680
681 return retval;
682 }
683
684 static inline ComplexNDArray
685 do_bessel (dptr f, const char *, const NDArray& alpha, const Complex& x,
686 bool scaled, Array<octave_idx_type>& ierr)
687 {
688 dim_vector dv = alpha.dims ();
689 octave_idx_type nel = dv.numel ();
690 ComplexNDArray retval (dv);
691
692 ierr.resize (dv);
693
694 for (octave_idx_type i = 0; i < nel; i++)
695 retval(i) = f (x, alpha(i), (scaled ? 2 : 1), ierr(i));
696
697 return retval;
698 }
699
700 static inline ComplexNDArray
701 do_bessel (dptr f, const char *fn, const NDArray& alpha,
702 const ComplexNDArray& x, bool scaled, Array<octave_idx_type>& ierr)
703 {
704 dim_vector dv = x.dims ();
705 ComplexNDArray retval;
706
707 if (dv != alpha.dims ())
708 (*current_liboctave_error_handler)
709 ("%s: the sizes of alpha and x must conform", fn);
710
711 octave_idx_type nel = dv.numel ();
712
713 retval.resize (dv);
714 ierr.resize (dv);
715
716 for (octave_idx_type i = 0; i < nel; i++)
717 retval(i) = f (x(i), alpha(i), (scaled ? 2 : 1), ierr(i));
718
719 return retval;
720 }
721
722 static inline ComplexMatrix
723 do_bessel (dptr f, const char *, const RowVector& alpha,
724 const ComplexColumnVector& x, bool scaled,
726 {
727 octave_idx_type nr = x.numel ();
728 octave_idx_type nc = alpha.numel ();
729
730 ComplexMatrix retval (nr, nc);
731
732 ierr.resize (dim_vector (nr, nc));
733
734 for (octave_idx_type j = 0; j < nc; j++)
735 for (octave_idx_type i = 0; i < nr; i++)
736 retval(i, j) = f (x(i), alpha(j), (scaled ? 2 : 1), ierr(i, j));
737
738 return retval;
739 }
740
741#define SS_BESSEL(name, fcn) \
742 Complex \
743 name (double alpha, const Complex& x, bool scaled, octave_idx_type& ierr) \
744 { \
745 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
746 }
747
748#define SM_BESSEL(name, fcn) \
749 ComplexMatrix \
750 name (double alpha, const ComplexMatrix& x, bool scaled, \
751 Array<octave_idx_type>& ierr) \
752 { \
753 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
754 }
755
756#define MS_BESSEL(name, fcn) \
757 ComplexMatrix \
758 name (const Matrix& alpha, const Complex& x, bool scaled, \
759 Array<octave_idx_type>& ierr) \
760 { \
761 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
762 }
763
764#define MM_BESSEL(name, fcn) \
765 ComplexMatrix \
766 name (const Matrix& alpha, const ComplexMatrix& x, bool scaled, \
767 Array<octave_idx_type>& ierr) \
768 { \
769 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
770 }
771
772#define SN_BESSEL(name, fcn) \
773 ComplexNDArray \
774 name (double alpha, const ComplexNDArray& x, bool scaled, \
775 Array<octave_idx_type>& ierr) \
776 { \
777 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
778 }
779
780#define NS_BESSEL(name, fcn) \
781 ComplexNDArray \
782 name (const NDArray& alpha, const Complex& x, bool scaled, \
783 Array<octave_idx_type>& ierr) \
784 { \
785 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
786 }
787
788#define NN_BESSEL(name, fcn) \
789 ComplexNDArray \
790 name (const NDArray& alpha, const ComplexNDArray& x, bool scaled, \
791 Array<octave_idx_type>& ierr) \
792 { \
793 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
794 }
795
796#define RC_BESSEL(name, fcn) \
797 ComplexMatrix \
798 name (const RowVector& alpha, const ComplexColumnVector& x, bool scaled, \
799 Array<octave_idx_type>& ierr) \
800 { \
801 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
802 }
803
804#define ALL_BESSEL(name, fcn) \
805 SS_BESSEL (name, fcn) \
806 SM_BESSEL (name, fcn) \
807 MS_BESSEL (name, fcn) \
808 MM_BESSEL (name, fcn) \
809 SN_BESSEL (name, fcn) \
810 NS_BESSEL (name, fcn) \
811 NN_BESSEL (name, fcn) \
812 RC_BESSEL (name, fcn)
813
820
821#undef ALL_BESSEL
822#undef SS_BESSEL
823#undef SM_BESSEL
824#undef MS_BESSEL
825#undef MM_BESSEL
826#undef SN_BESSEL
827#undef NS_BESSEL
828#undef NN_BESSEL
829#undef RC_BESSEL
830
831 static inline FloatComplex
832 cbesj (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr);
833
834 static inline FloatComplex
835 cbesy (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr);
836
837 static inline FloatComplex
838 cbesi (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr);
839
840 static inline FloatComplex
841 cbesk (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr);
842
843 static inline FloatComplex
844 cbesh1 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr);
845
846 static inline FloatComplex
847 cbesh2 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr);
848
849 static inline bool
851 {
852 return x == static_cast<float> (static_cast<long> (x));
853 }
854
855 static inline FloatComplex
856 cbesj (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr)
857 {
858 FloatComplex retval;
859
860 if (alpha >= 0.0)
861 {
862 FloatComplex y = 0.0;
863
864 F77_INT nz, t_ierr;
865
866 F77_FUNC (cbesj, CBESJ) (F77_CONST_CMPLX_ARG (&z), alpha, kode, 1,
867 F77_CMPLX_ARG (&y), nz, t_ierr);
868
869 ierr = t_ierr;
870
871 if (z.imag () == 0.0 && z.real () >= 0.0)
872 y = FloatComplex (y.real (), 0.0);
873
874 retval = bessel_return_value (y, ierr);
875 }
876 else if (is_integer_value (alpha))
877 {
878 // zbesy can overflow as z->0, and cause troubles for generic case below
879 alpha = -alpha;
880 FloatComplex tmp = cbesj (z, alpha, kode, ierr);
881 if ((static_cast<long> (alpha)) & 1)
882 tmp = - tmp;
883 retval = bessel_return_value (tmp, ierr);
884 }
885 else
886 {
887 alpha = -alpha;
888
889 FloatComplex tmp = cosf (static_cast<float> (M_PI) * alpha)
890 * cbesj (z, alpha, kode, ierr);
891
892 if (ierr == 0 || ierr == 3)
893 {
894 tmp -= sinf (static_cast<float> (M_PI) * alpha)
895 * cbesy (z, alpha, kode, ierr);
896
897 retval = bessel_return_value (tmp, ierr);
898 }
899 else
902 }
903
904 return retval;
905 }
906
907 static inline FloatComplex
908 cbesy (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr)
909 {
910 FloatComplex retval;
911
912 if (alpha >= 0.0)
913 {
914 FloatComplex y = 0.0;
915
916 F77_INT nz, t_ierr;
917
919
920 ierr = 0;
921
922 if (z.real () == 0.0 && z.imag () == 0.0)
923 {
925 }
926 else
927 {
928 F77_FUNC (cbesy, CBESY) (F77_CONST_CMPLX_ARG (&z), alpha, kode, 1,
929 F77_CMPLX_ARG (&y), nz,
930 F77_CMPLX_ARG (&w), t_ierr);
931
932 ierr = t_ierr;
933
934 if (z.imag () == 0.0 && z.real () >= 0.0)
935 y = FloatComplex (y.real (), 0.0);
936 }
937
938 return bessel_return_value (y, ierr);
939 }
940 else if (is_integer_value (alpha - 0.5))
941 {
942 // zbesy can overflow as z->0, and cause troubles for generic case below
943 alpha = -alpha;
944 FloatComplex tmp = cbesj (z, alpha, kode, ierr);
945 if ((static_cast<long> (alpha - 0.5)) & 1)
946 tmp = - tmp;
947 retval = bessel_return_value (tmp, ierr);
948 }
949 else
950 {
951 alpha = -alpha;
952
953 FloatComplex tmp = cosf (static_cast<float> (M_PI) * alpha)
954 * cbesy (z, alpha, kode, ierr);
955
956 if (ierr == 0 || ierr == 3)
957 {
958 tmp += sinf (static_cast<float> (M_PI) * alpha)
959 * cbesj (z, alpha, kode, ierr);
960
961 retval = bessel_return_value (tmp, ierr);
962 }
963 else
966 }
967
968 return retval;
969 }
970
971 static inline FloatComplex
972 cbesi (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr)
973 {
974 FloatComplex retval;
975
976 if (alpha >= 0.0)
977 {
978 FloatComplex y = 0.0;
979
980 F77_INT nz, t_ierr;
981
982 F77_FUNC (cbesi, CBESI) (F77_CONST_CMPLX_ARG (&z), alpha, kode, 1,
983 F77_CMPLX_ARG (&y), nz, t_ierr);
984
985 ierr = t_ierr;
986
987 if (z.imag () == 0.0 && z.real () >= 0.0)
988 y = FloatComplex (y.real (), 0.0);
989
990 retval = bessel_return_value (y, ierr);
991 }
992 else
993 {
994 alpha = -alpha;
995
996 FloatComplex tmp = cbesi (z, alpha, kode, ierr);
997
998 if (ierr == 0 || ierr == 3)
999 {
1000 FloatComplex tmp2 = static_cast<float> (2.0 / M_PI)
1001 * sinf (static_cast<float> (M_PI) * alpha)
1002 * cbesk (z, alpha, kode, ierr);
1003
1004 if (kode == 2)
1005 {
1006 // Compensate for different scaling factor of besk.
1007 tmp2 *= exp (-z - std::abs (z.real ()));
1008 }
1009
1010 tmp += tmp2;
1011
1012 retval = bessel_return_value (tmp, ierr);
1013 }
1014 else
1017 }
1018
1019 return retval;
1020 }
1021
1022 static inline FloatComplex
1023 cbesk (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr)
1024 {
1025 FloatComplex retval;
1026
1027 if (alpha >= 0.0)
1028 {
1029 FloatComplex y = 0.0;
1030
1031 F77_INT nz, t_ierr;
1032
1033 ierr = 0;
1034
1035 if (z.real () == 0.0 && z.imag () == 0.0)
1036 {
1038 }
1039 else
1040 {
1041 F77_FUNC (cbesk, CBESK) (F77_CONST_CMPLX_ARG (&z), alpha, kode, 1,
1042 F77_CMPLX_ARG (&y), nz, t_ierr);
1043
1044 ierr = t_ierr;
1045
1046 if (z.imag () == 0.0 && z.real () >= 0.0)
1047 y = FloatComplex (y.real (), 0.0);
1048 }
1049
1050 retval = bessel_return_value (y, ierr);
1051 }
1052 else
1053 {
1054 FloatComplex tmp = cbesk (z, -alpha, kode, ierr);
1055
1056 retval = bessel_return_value (tmp, ierr);
1057 }
1058
1059 return retval;
1060 }
1061
1062 static inline FloatComplex
1063 cbesh1 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr)
1064 {
1065 FloatComplex retval;
1066
1067 if (alpha >= 0.0)
1068 {
1069 FloatComplex y = 0.0;
1070
1071 F77_INT nz, t_ierr;
1072
1073 F77_FUNC (cbesh, CBESH) (F77_CONST_CMPLX_ARG (&z), alpha, kode, 1, 1,
1074 F77_CMPLX_ARG (&y), nz, t_ierr);
1075
1076 ierr = t_ierr;
1077
1078 retval = bessel_return_value (y, ierr);
1079 }
1080 else
1081 {
1082 alpha = -alpha;
1083
1084 static const FloatComplex eye = FloatComplex (0.0, 1.0);
1085
1086 FloatComplex tmp = exp (static_cast<float> (M_PI) * alpha * eye)
1087 * cbesh1 (z, alpha, kode, ierr);
1088
1089 retval = bessel_return_value (tmp, ierr);
1090 }
1091
1092 return retval;
1093 }
1094
1095 static inline FloatComplex
1096 cbesh2 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr)
1097 {
1098 FloatComplex retval;
1099
1100 if (alpha >= 0.0)
1101 {
1102 FloatComplex y = 0.0;;
1103
1104 F77_INT nz, t_ierr;
1105
1106 F77_FUNC (cbesh, CBESH) (F77_CONST_CMPLX_ARG (&z), alpha, kode, 2, 1,
1107 F77_CMPLX_ARG (&y), nz, t_ierr);
1108
1109 ierr = t_ierr;
1110
1111 retval = bessel_return_value (y, ierr);
1112 }
1113 else
1114 {
1115 alpha = -alpha;
1116
1117 static const FloatComplex eye = FloatComplex (0.0, 1.0);
1118
1119 FloatComplex tmp = exp (-static_cast<float> (M_PI) * alpha * eye)
1120 * cbesh2 (z, alpha, kode, ierr);
1121
1122 retval = bessel_return_value (tmp, ierr);
1123 }
1124
1125 return retval;
1126 }
1127
1130
1131 static inline FloatComplex
1132 do_bessel (fptr f, const char *, float alpha, const FloatComplex& x,
1133 bool scaled, octave_idx_type& ierr)
1134 {
1135 FloatComplex retval;
1136
1137 retval = f (x, alpha, (scaled ? 2 : 1), ierr);
1138
1139 return retval;
1140 }
1141
1142 static inline FloatComplexMatrix
1143 do_bessel (fptr f, const char *, float alpha, const FloatComplexMatrix& x,
1144 bool scaled, Array<octave_idx_type>& ierr)
1145 {
1146 octave_idx_type nr = x.rows ();
1147 octave_idx_type nc = x.cols ();
1148
1149 FloatComplexMatrix retval (nr, nc);
1150
1151 ierr.resize (dim_vector (nr, nc));
1152
1153 for (octave_idx_type j = 0; j < nc; j++)
1154 for (octave_idx_type i = 0; i < nr; i++)
1155 retval(i, j) = f (x(i, j), alpha, (scaled ? 2 : 1), ierr(i, j));
1156
1157 return retval;
1158 }
1159
1160 static inline FloatComplexMatrix
1161 do_bessel (fptr f, const char *, const FloatMatrix& alpha,
1162 const FloatComplex& x,
1163 bool scaled, Array<octave_idx_type>& ierr)
1164 {
1165 octave_idx_type nr = alpha.rows ();
1166 octave_idx_type nc = alpha.cols ();
1167
1168 FloatComplexMatrix retval (nr, nc);
1169
1170 ierr.resize (dim_vector (nr, nc));
1171
1172 for (octave_idx_type j = 0; j < nc; j++)
1173 for (octave_idx_type i = 0; i < nr; i++)
1174 retval(i, j) = f (x, alpha(i, j), (scaled ? 2 : 1), ierr(i, j));
1175
1176 return retval;
1177 }
1178
1179 static inline FloatComplexMatrix
1180 do_bessel (fptr f, const char *fn, const FloatMatrix& alpha,
1181 const FloatComplexMatrix& x, bool scaled,
1183 {
1184 FloatComplexMatrix retval;
1185
1186 octave_idx_type x_nr = x.rows ();
1187 octave_idx_type x_nc = x.cols ();
1188
1189 octave_idx_type alpha_nr = alpha.rows ();
1190 octave_idx_type alpha_nc = alpha.cols ();
1191
1192 if (x_nr != alpha_nr || x_nc != alpha_nc)
1193 (*current_liboctave_error_handler)
1194 ("%s: the sizes of alpha and x must conform", fn);
1195
1196 octave_idx_type nr = x_nr;
1197 octave_idx_type nc = x_nc;
1198
1199 retval.resize (nr, nc);
1200
1201 ierr.resize (dim_vector (nr, nc));
1202
1203 for (octave_idx_type j = 0; j < nc; j++)
1204 for (octave_idx_type i = 0; i < nr; i++)
1205 retval(i, j) = f (x(i, j), alpha(i, j), (scaled ? 2 : 1), ierr(i, j));
1206
1207 return retval;
1208 }
1209
1210 static inline FloatComplexNDArray
1211 do_bessel (fptr f, const char *, float alpha, const FloatComplexNDArray& x,
1212 bool scaled, Array<octave_idx_type>& ierr)
1213 {
1214 dim_vector dv = x.dims ();
1215 octave_idx_type nel = dv.numel ();
1216 FloatComplexNDArray retval (dv);
1217
1218 ierr.resize (dv);
1219
1220 for (octave_idx_type i = 0; i < nel; i++)
1221 retval(i) = f (x(i), alpha, (scaled ? 2 : 1), ierr(i));
1222
1223 return retval;
1224 }
1225
1226 static inline FloatComplexNDArray
1227 do_bessel (fptr f, const char *, const FloatNDArray& alpha,
1228 const FloatComplex& x, bool scaled, Array<octave_idx_type>& ierr)
1229 {
1230 dim_vector dv = alpha.dims ();
1231 octave_idx_type nel = dv.numel ();
1232 FloatComplexNDArray retval (dv);
1233
1234 ierr.resize (dv);
1235
1236 for (octave_idx_type i = 0; i < nel; i++)
1237 retval(i) = f (x, alpha(i), (scaled ? 2 : 1), ierr(i));
1238
1239 return retval;
1240 }
1241
1242 static inline FloatComplexNDArray
1243 do_bessel (fptr f, const char *fn, const FloatNDArray& alpha,
1244 const FloatComplexNDArray& x, bool scaled,
1246 {
1247 dim_vector dv = x.dims ();
1248 FloatComplexNDArray retval;
1249
1250 if (dv != alpha.dims ())
1251 (*current_liboctave_error_handler)
1252 ("%s: the sizes of alpha and x must conform", fn);
1253
1254 octave_idx_type nel = dv.numel ();
1255
1256 retval.resize (dv);
1257 ierr.resize (dv);
1258
1259 for (octave_idx_type i = 0; i < nel; i++)
1260 retval(i) = f (x(i), alpha(i), (scaled ? 2 : 1), ierr(i));
1261
1262 return retval;
1263 }
1264
1265 static inline FloatComplexMatrix
1266 do_bessel (fptr f, const char *, const FloatRowVector& alpha,
1267 const FloatComplexColumnVector& x, bool scaled,
1269 {
1270 octave_idx_type nr = x.numel ();
1271 octave_idx_type nc = alpha.numel ();
1272
1273 FloatComplexMatrix retval (nr, nc);
1274
1275 ierr.resize (dim_vector (nr, nc));
1276
1277 for (octave_idx_type j = 0; j < nc; j++)
1278 for (octave_idx_type i = 0; i < nr; i++)
1279 retval(i, j) = f (x(i), alpha(j), (scaled ? 2 : 1), ierr(i, j));
1280
1281 return retval;
1282 }
1283
1284#define SS_BESSEL(name, fcn) \
1285 FloatComplex \
1286 name (float alpha, const FloatComplex& x, bool scaled, \
1287 octave_idx_type& ierr) \
1288 { \
1289 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1290 }
1291
1292#define SM_BESSEL(name, fcn) \
1293 FloatComplexMatrix \
1294 name (float alpha, const FloatComplexMatrix& x, bool scaled, \
1295 Array<octave_idx_type>& ierr) \
1296 { \
1297 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1298 }
1299
1300#define MS_BESSEL(name, fcn) \
1301 FloatComplexMatrix \
1302 name (const FloatMatrix& alpha, const FloatComplex& x, bool scaled, \
1303 Array<octave_idx_type>& ierr) \
1304 { \
1305 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1306 }
1307
1308#define MM_BESSEL(name, fcn) \
1309 FloatComplexMatrix \
1310 name (const FloatMatrix& alpha, const FloatComplexMatrix& x, \
1311 bool scaled, Array<octave_idx_type>& ierr) \
1312 { \
1313 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1314 }
1315
1316#define SN_BESSEL(name, fcn) \
1317 FloatComplexNDArray \
1318 name (float alpha, const FloatComplexNDArray& x, bool scaled, \
1319 Array<octave_idx_type>& ierr) \
1320 { \
1321 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1322 }
1323
1324#define NS_BESSEL(name, fcn) \
1325 FloatComplexNDArray \
1326 name (const FloatNDArray& alpha, const FloatComplex& x, \
1327 bool scaled, Array<octave_idx_type>& ierr) \
1328 { \
1329 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1330 }
1331
1332#define NN_BESSEL(name, fcn) \
1333 FloatComplexNDArray \
1334 name (const FloatNDArray& alpha, const FloatComplexNDArray& x, \
1335 bool scaled, Array<octave_idx_type>& ierr) \
1336 { \
1337 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1338 }
1339
1340#define RC_BESSEL(name, fcn) \
1341 FloatComplexMatrix \
1342 name (const FloatRowVector& alpha, \
1343 const FloatComplexColumnVector& x, bool scaled, \
1344 Array<octave_idx_type>& ierr) \
1345 { \
1346 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1347 }
1348
1349#define ALL_BESSEL(name, fcn) \
1350 SS_BESSEL (name, fcn) \
1351 SM_BESSEL (name, fcn) \
1352 MS_BESSEL (name, fcn) \
1353 MM_BESSEL (name, fcn) \
1354 SN_BESSEL (name, fcn) \
1355 NS_BESSEL (name, fcn) \
1356 NN_BESSEL (name, fcn) \
1357 RC_BESSEL (name, fcn)
1358
1365
1366#undef ALL_BESSEL
1367#undef SS_BESSEL
1368#undef SM_BESSEL
1369#undef MS_BESSEL
1370#undef MM_BESSEL
1371#undef SN_BESSEL
1372#undef NS_BESSEL
1373#undef NN_BESSEL
1374#undef RC_BESSEL
1375
1376 Complex
1377 biry (const Complex& z, bool deriv, bool scaled, octave_idx_type& ierr)
1378 {
1379 double ar = 0.0;
1380 double ai = 0.0;
1381
1382 double zr = z.real ();
1383 double zi = z.imag ();
1384
1385 F77_INT id = (deriv ? 1 : 0);
1386 F77_INT t_ierr;
1387
1388 F77_FUNC (zbiry, ZBIRY) (zr, zi, id, 2, ar, ai, t_ierr);
1389
1390 ierr = t_ierr;
1391
1392 if (! scaled)
1393 {
1394 Complex expz = exp (std::abs (std::real (2.0 / 3.0 * z * sqrt (z))));
1395
1396 double rexpz = expz.real ();
1397 double iexpz = expz.imag ();
1398
1399 double tmp = ar*rexpz - ai*iexpz;
1400
1401 ai = ar*iexpz + ai*rexpz;
1402 ar = tmp;
1403 }
1404
1405 if (zi == 0.0 && (! scaled || zr >= 0.0))
1406 ai = 0.0;
1407
1408 return bessel_return_value (Complex (ar, ai), ierr);
1409 }
1410
1412 biry (const ComplexMatrix& z, bool deriv, bool scaled,
1414 {
1415 octave_idx_type nr = z.rows ();
1416 octave_idx_type nc = z.cols ();
1417
1418 ComplexMatrix retval (nr, nc);
1419
1420 ierr.resize (dim_vector (nr, nc));
1421
1422 for (octave_idx_type j = 0; j < nc; j++)
1423 for (octave_idx_type i = 0; i < nr; i++)
1424 retval(i, j) = biry (z(i, j), deriv, scaled, ierr(i, j));
1425
1426 return retval;
1427 }
1428
1430 biry (const ComplexNDArray& z, bool deriv, bool scaled,
1432 {
1433 dim_vector dv = z.dims ();
1434 octave_idx_type nel = dv.numel ();
1435 ComplexNDArray retval (dv);
1436
1437 ierr.resize (dv);
1438
1439 for (octave_idx_type i = 0; i < nel; i++)
1440 retval(i) = biry (z(i), deriv, scaled, ierr(i));
1441
1442 return retval;
1443 }
1444
1446 biry (const FloatComplex& z, bool deriv, bool scaled,
1448 {
1449 FloatComplex a;
1450
1451 F77_INT id = (deriv ? 1 : 0);
1452 F77_INT t_ierr;
1453
1454 F77_FUNC (cbiry, CBIRY) (F77_CONST_CMPLX_ARG (&z), id, 2,
1455 F77_CMPLX_ARG (&a), t_ierr);
1456
1457 ierr = t_ierr;
1458
1459 float ar = a.real ();
1460 float ai = a.imag ();
1461
1462 if (! scaled)
1463 {
1464 FloatComplex expz
1465 = exp (std::abs (std::real (2.0f / 3.0f * z * sqrt (z))));
1466
1467 float rexpz = expz.real ();
1468 float iexpz = expz.imag ();
1469
1470 float tmp = ar*rexpz - ai*iexpz;
1471
1472 ai = ar*iexpz + ai*rexpz;
1473 ar = tmp;
1474 }
1475
1476 if (z.imag () == 0.0 && (! scaled || z.real () >= 0.0))
1477 ai = 0.0;
1478
1479 return bessel_return_value (FloatComplex (ar, ai), ierr);
1480 }
1481
1483 biry (const FloatComplexMatrix& z, bool deriv, bool scaled,
1485 {
1486 octave_idx_type nr = z.rows ();
1487 octave_idx_type nc = z.cols ();
1488
1489 FloatComplexMatrix retval (nr, nc);
1490
1491 ierr.resize (dim_vector (nr, nc));
1492
1493 for (octave_idx_type j = 0; j < nc; j++)
1494 for (octave_idx_type i = 0; i < nr; i++)
1495 retval(i, j) = biry (z(i, j), deriv, scaled, ierr(i, j));
1496
1497 return retval;
1498 }
1499
1501 biry (const FloatComplexNDArray& z, bool deriv, bool scaled,
1503 {
1504 dim_vector dv = z.dims ();
1505 octave_idx_type nel = dv.numel ();
1506 FloatComplexNDArray retval (dv);
1507
1508 ierr.resize (dv);
1509
1510 for (octave_idx_type i = 0; i < nel; i++)
1511 retval(i) = biry (z(i), deriv, scaled, ierr(i));
1512
1513 return retval;
1514 }
1515
1516 // Real and complex Dawson function (= scaled erfi) from Faddeeva package
1517 double dawson (double x) { return Faddeeva::Dawson (x); }
1518 float dawson (float x) { return Faddeeva::Dawson (x); }
1519
1520 Complex
1522 {
1523 return Faddeeva::Dawson (x);
1524 }
1525
1528 {
1529 Complex xd (x.real (), x.imag ());
1530 Complex ret;
1531 ret = Faddeeva::Dawson (xd, std::numeric_limits<float>::epsilon ());
1532 return FloatComplex (ret.real (), ret.imag ());
1533 }
1534
1535 void
1536 ellipj (double u, double m, double& sn, double& cn, double& dn, double& err)
1537 {
1538 static const int Nmax = 16;
1539 double m1, t=0, si_u, co_u, se_u, ta_u, b, c[Nmax], a[Nmax], phi;
1540 int n, Nn, ii;
1541
1542 if (m < 0 || m > 1)
1543 {
1544 (*current_liboctave_warning_with_id_handler)
1545 ("Octave:ellipj-invalid-m",
1546 "ellipj: invalid M value, required value 0 <= M <= 1");
1547
1548 sn = cn = dn = lo_ieee_nan_value ();
1549
1550 return;
1551 }
1552
1553 double sqrt_eps = std::sqrt (std::numeric_limits<double>::epsilon ());
1554 if (m < sqrt_eps)
1555 {
1556 // For small m, (Abramowitz and Stegun, Section 16.13)
1557 si_u = sin (u);
1558 co_u = cos (u);
1559 t = 0.25*m*(u - si_u*co_u);
1560 sn = si_u - t * co_u;
1561 cn = co_u + t * si_u;
1562 dn = 1 - 0.5*m*si_u*si_u;
1563 }
1564 else if ((1 - m) < sqrt_eps)
1565 {
1566 // For m1 = (1-m) small (Abramowitz and Stegun, Section 16.15)
1567 m1 = 1 - m;
1568 si_u = sinh (u);
1569 co_u = cosh (u);
1570 ta_u = tanh (u);
1571 se_u = 1/co_u;
1572 sn = ta_u + 0.25*m1*(si_u*co_u - u)*se_u*se_u;
1573 cn = se_u - 0.25*m1*(si_u*co_u - u)*ta_u*se_u;
1574 dn = se_u + 0.25*m1*(si_u*co_u + u)*ta_u*se_u;
1575 }
1576 else
1577 {
1578 // Arithmetic-Geometric Mean (AGM) algorithm
1579 // (Abramowitz and Stegun, Section 16.4)
1580 a[0] = 1;
1581 b = std::sqrt (1 - m);
1582 c[0] = std::sqrt (m);
1583 for (n = 1; n < Nmax; ++n)
1584 {
1585 a[n] = (a[n - 1] + b)/2;
1586 c[n] = (a[n - 1] - b)/2;
1587 b = std::sqrt (a[n - 1]*b);
1588 if (c[n]/a[n] < std::numeric_limits<double>::epsilon ()) break;
1589 }
1590 if (n >= Nmax - 1)
1591 {
1592 err = 1;
1593 return;
1594 }
1595 Nn = n;
1596 for (ii = 1; n > 0; ii *= 2, --n) {} // ii = pow(2,Nn)
1597 phi = ii*a[Nn]*u;
1598 for (n = Nn; n > 0; --n)
1599 {
1600 phi = (std::asin ((c[n]/a[n])* sin (phi)) + phi)/2;
1601 }
1602 sn = sin (phi);
1603 cn = cos (phi);
1604 dn = std::sqrt (1 - m*sn*sn);
1605 }
1606 }
1607
1608 void
1609 ellipj (const Complex& u, double m, Complex& sn, Complex& cn, Complex& dn,
1610 double& err)
1611 {
1612 double m1 = 1 - m, ss1, cc1, dd1;
1613
1614 ellipj (u.imag (), m1, ss1, cc1, dd1, err);
1615 if (u.real () == 0)
1616 {
1617 // u is pure imag: Jacoby imag. transf.
1618 sn = Complex (0, ss1/cc1);
1619 cn = 1/cc1; // cn.imag = 0;
1620 dn = dd1/cc1; // dn.imag = 0;
1621 }
1622 else
1623 {
1624 // u is generic complex
1625 double ss, cc, dd, ddd;
1626
1627 ellipj (u.real (), m, ss, cc, dd, err);
1628 ddd = cc1*cc1 + m*ss*ss*ss1*ss1;
1629 sn = Complex (ss*dd1/ddd, cc*dd*ss1*cc1/ddd);
1630 cn = Complex (cc*cc1/ddd, -ss*dd*ss1*dd1/ddd);
1631 dn = Complex (dd*cc1*dd1/ddd, -m*ss*cc*ss1/ddd);
1632 }
1633 }
1634
1635 // Complex error function from the Faddeeva package
1636 Complex
1637 erf (const Complex& x)
1638 {
1639 return Faddeeva::erf (x);
1640 }
1641
1644 {
1645 Complex xd (x.real (), x.imag ());
1646 Complex ret = Faddeeva::erf (xd, std::numeric_limits<float>::epsilon ());
1647 return FloatComplex (ret.real (), ret.imag ());
1648 }
1649
1650 // Complex complementary error function from the Faddeeva package
1651 Complex
1652 erfc (const Complex& x)
1653 {
1654 return Faddeeva::erfc (x);
1655 }
1656
1659 {
1660 Complex xd (x.real (), x.imag ());
1661 Complex ret = Faddeeva::erfc (xd, std::numeric_limits<float>::epsilon ());
1662 return FloatComplex (ret.real (), ret.imag ());
1663 }
1664
1665 // The algorithm for erfcinv is an adaptation of the erfinv algorithm
1666 // above from P. J. Acklam. It has been modified to run over the
1667 // different input domain of erfcinv. See the notes for erfinv for an
1668 // explanation.
1669
1670 static double do_erfcinv (double x, bool refine)
1671 {
1672 // Coefficients of rational approximation.
1673 static const double a[] =
1674 {
1675 -2.806989788730439e+01, 1.562324844726888e+02,
1676 -1.951109208597547e+02, 9.783370457507161e+01,
1677 -2.168328665628878e+01, 1.772453852905383e+00
1678 };
1679 static const double b[] =
1680 {
1681 -5.447609879822406e+01, 1.615858368580409e+02,
1682 -1.556989798598866e+02, 6.680131188771972e+01,
1683 -1.328068155288572e+01
1684 };
1685 static const double c[] =
1686 {
1687 -5.504751339936943e-03, -2.279687217114118e-01,
1688 -1.697592457770869e+00, -1.802933168781950e+00,
1689 3.093354679843505e+00, 2.077595676404383e+00
1690 };
1691 static const double d[] =
1692 {
1693 7.784695709041462e-03, 3.224671290700398e-01,
1694 2.445134137142996e+00, 3.754408661907416e+00
1695 };
1696
1697 static const double spi2 = 8.862269254527579e-01; // sqrt(pi)/2.
1698 static const double pbreak_lo = 0.04850; // 1-pbreak
1699 static const double pbreak_hi = 1.95150; // 1+pbreak
1700 double y;
1701
1702 // Select case.
1703 if (x >= pbreak_lo && x <= pbreak_hi)
1704 {
1705 // Middle region.
1706 const double q = 0.5*(1-x), r = q*q;
1707 const double yn = (((((a[0]*r + a[1])*r + a[2])*r + a[3])*r + a[4])*r + a[5])*q;
1708 const double yd = ((((b[0]*r + b[1])*r + b[2])*r + b[3])*r + b[4])*r + 1.0;
1709 y = yn / yd;
1710 }
1711 else if (x > 0.0 && x < 2.0)
1712 {
1713 // Tail region.
1714 const double q = (x < 1
1715 ? std::sqrt (-2*std::log (0.5*x))
1716 : std::sqrt (-2*std::log (0.5*(2-x))));
1717
1718 const double yn = ((((c[0]*q + c[1])*q + c[2])*q + c[3])*q + c[4])*q + c[5];
1719
1720 const double yd = (((d[0]*q + d[1])*q + d[2])*q + d[3])*q + 1.0;
1721
1722 y = yn / yd;
1723
1724 if (x < pbreak_lo)
1725 y = -y;
1726 }
1727 else if (x == 0.0)
1729 else if (x == 2.0)
1730 return -numeric_limits<double>::Inf ();
1731 else
1733
1734 if (refine)
1735 {
1736 // One iteration of Halley's method gives full precision.
1737 double u = (erf (y) - (1-x)) * spi2 * exp (y*y);
1738 y -= u / (1 + y*u);
1739 }
1740
1741 return y;
1742 }
1743
1744 double erfcinv (double x)
1745 {
1746 return do_erfcinv (x, true);
1747 }
1748
1749 float erfcinv (float x)
1750 {
1751 return do_erfcinv (x, false);
1752 }
1753
1754 // Real and complex scaled complementary error function from Faddeeva pkg.
1755 double erfcx (double x) { return Faddeeva::erfcx (x); }
1756 float erfcx (float x) { return Faddeeva::erfcx (x); }
1757
1758 Complex
1759 erfcx (const Complex& x)
1760 {
1761 return Faddeeva::erfcx (x);
1762 }
1763
1766 {
1767 Complex xd (x.real (), x.imag ());
1768 Complex ret;
1769 ret = Faddeeva::erfcx (xd, std::numeric_limits<float>::epsilon ());
1770 return FloatComplex (ret.real (), ret.imag ());
1771 }
1772
1773 // Real and complex imaginary error function from Faddeeva package
1774 double erfi (double x) { return Faddeeva::erfi (x); }
1775 float erfi (float x) { return Faddeeva::erfi (x); }
1776
1777 Complex
1778 erfi (const Complex& x)
1779 {
1780 return Faddeeva::erfi (x);
1781 }
1782
1785 {
1786 Complex xd (x.real (), x.imag ());
1787 Complex ret = Faddeeva::erfi (xd, std::numeric_limits<float>::epsilon ());
1788 return FloatComplex (ret.real (), ret.imag ());
1789 }
1790
1791 // This algorithm is due to P. J. Acklam.
1792 //
1793 // See http://home.online.no/~pjacklam/notes/invnorm/
1794 //
1795 // The rational approximation has relative accuracy 1.15e-9 in the whole
1796 // region. For doubles, it is refined by a single step of Halley's 3rd
1797 // order method. For single precision, the accuracy is already OK, so
1798 // we skip it to get faster evaluation.
1799
1800 static double do_erfinv (double x, bool refine)
1801 {
1802 // Coefficients of rational approximation.
1803 static const double a[] =
1804 {
1805 -2.806989788730439e+01, 1.562324844726888e+02,
1806 -1.951109208597547e+02, 9.783370457507161e+01,
1807 -2.168328665628878e+01, 1.772453852905383e+00
1808 };
1809 static const double b[] =
1810 {
1811 -5.447609879822406e+01, 1.615858368580409e+02,
1812 -1.556989798598866e+02, 6.680131188771972e+01,
1813 -1.328068155288572e+01
1814 };
1815 static const double c[] =
1816 {
1817 -5.504751339936943e-03, -2.279687217114118e-01,
1818 -1.697592457770869e+00, -1.802933168781950e+00,
1819 3.093354679843505e+00, 2.077595676404383e+00
1820 };
1821 static const double d[] =
1822 {
1823 7.784695709041462e-03, 3.224671290700398e-01,
1824 2.445134137142996e+00, 3.754408661907416e+00
1825 };
1826
1827 static const double spi2 = 8.862269254527579e-01; // sqrt(pi)/2.
1828 static const double pbreak = 0.95150;
1829 double ax = fabs (x), y;
1830
1831 // Select case.
1832 if (ax <= pbreak)
1833 {
1834 // Middle region.
1835 const double q = 0.5 * x, r = q*q;
1836 const double yn = (((((a[0]*r + a[1])*r + a[2])*r + a[3])*r + a[4])*r + a[5])*q;
1837 const double yd = ((((b[0]*r + b[1])*r + b[2])*r + b[3])*r + b[4])*r + 1.0;
1838 y = yn / yd;
1839 }
1840 else if (ax < 1.0)
1841 {
1842 // Tail region.
1843 const double q = std::sqrt (-2*std::log (0.5*(1-ax)));
1844 const double yn = ((((c[0]*q + c[1])*q + c[2])*q + c[3])*q + c[4])*q + c[5];
1845 const double yd = (((d[0]*q + d[1])*q + d[2])*q + d[3])*q + 1.0;
1846 y = yn / yd * math::signum (-x);
1847 }
1848 else if (ax == 1.0)
1850 else
1852
1853 if (refine)
1854 {
1855 // One iteration of Halley's method gives full precision.
1856 double u = (erf (y) - x) * spi2 * exp (y*y);
1857 y -= u / (1 + y*u);
1858 }
1859
1860 return y;
1861 }
1862
1863 double erfinv (double x)
1864 {
1865 return do_erfinv (x, true);
1866 }
1867
1868 float erfinv (float x)
1869 {
1870 return do_erfinv (x, false);
1871 }
1872
1873 Complex
1874 expm1 (const Complex& x)
1875 {
1876 Complex retval;
1877
1878 if (std::abs (x) < 1)
1879 {
1880 double im = x.imag ();
1881 double u = expm1 (x.real ());
1882 double v = sin (im/2);
1883 v = -2*v*v;
1884 retval = Complex (u*v + u + v, (u+1) * sin (im));
1885 }
1886 else
1887 retval = std::exp (x) - Complex (1);
1888
1889 return retval;
1890 }
1891
1894 {
1895 FloatComplex retval;
1896
1897 if (std::abs (x) < 1)
1898 {
1899 float im = x.imag ();
1900 float u = expm1 (x.real ());
1901 float v = sin (im/2);
1902 v = -2*v*v;
1903 retval = FloatComplex (u*v + u + v, (u+1) * sin (im));
1904 }
1905 else
1906 retval = std::exp (x) - FloatComplex (1);
1907
1908 return retval;
1909 }
1910
1911 double
1912 gamma (double x)
1913 {
1914 double result;
1915
1916 // Special cases for (near) compatibility with Matlab instead of tgamma.
1917 // Matlab does not have -0.
1918
1919 if (x == 0)
1920 result = (math::negative_sign (x)
1923 else if ((x < 0 && math::x_nint (x) == x)
1924 || math::isinf (x))
1925 result = numeric_limits<double>::Inf ();
1926 else if (math::isnan (x))
1927 result = numeric_limits<double>::NaN ();
1928 else
1929 result = std::tgamma (x);
1930
1931 return result;
1932 }
1933
1934 float
1935 gamma (float x)
1936 {
1937 float result;
1938
1939 // Special cases for (near) compatibility with Matlab instead of tgamma.
1940 // Matlab does not have -0.
1941
1942 if (x == 0)
1943 result = (math::negative_sign (x)
1946 else if ((x < 0 && math::x_nint (x) == x)
1947 || math::isinf (x))
1948 result = numeric_limits<float>::Inf ();
1949 else if (math::isnan (x))
1950 result = numeric_limits<float>::NaN ();
1951 else
1952 result = std::tgammaf (x);
1953
1954 return result;
1955 }
1956
1957 Complex
1958 log1p (const Complex& x)
1959 {
1960 Complex retval;
1961
1962 double r = x.real (), i = x.imag ();
1963
1964 if (fabs (r) < 0.5 && fabs (i) < 0.5)
1965 {
1966 double u = 2*r + r*r + i*i;
1967 retval = Complex (log1p (u / (1+std::sqrt (u+1))),
1968 atan2 (i, 1 + r));
1969 }
1970 else
1971 retval = std::log (Complex (1) + x);
1972
1973 return retval;
1974 }
1975
1978 {
1979 FloatComplex retval;
1980
1981 float r = x.real (), i = x.imag ();
1982
1983 if (fabs (r) < 0.5 && fabs (i) < 0.5)
1984 {
1985 float u = 2*r + r*r + i*i;
1986 retval = FloatComplex (log1p (u / (1+std::sqrt (u+1))),
1987 atan2 (i, 1 + r));
1988 }
1989 else
1990 retval = std::log (FloatComplex (1) + x);
1991
1992 return retval;
1993 }
1994
1995 static const double pi = 3.14159265358979323846;
1996
1997 template <typename T>
1998 static inline T
1999 xlog (const T& x)
2000 {
2001 return log (x);
2002 }
2003
2004 template <>
2005 inline double
2006 xlog (const double& x)
2007 {
2008 return std::log (x);
2009 }
2010
2011 template <>
2012 inline float
2013 xlog (const float& x)
2014 {
2015 return std::log (x);
2016 }
2017
2018 template <typename T>
2019 static T
2021 {
2022 // Coefficients for C.Lanczos expansion of psi function from XLiFE++
2023 // gammaFunctions psi_coef[k] = - (2k+1) * lg_coef[k] (see melina++
2024 // gamma functions -1/12, 3/360,-5/1260, 7/1680,-9/1188,
2025 // 11*691/360360,-13/156, 15*3617/122400, ? , ?
2026 static const T dg_coeff[10] =
2027 {
2028 -0.83333333333333333e-1, 0.83333333333333333e-2,
2029 -0.39682539682539683e-2, 0.41666666666666667e-2,
2030 -0.75757575757575758e-2, 0.21092796092796093e-1,
2031 -0.83333333333333333e-1, 0.4432598039215686,
2032 -0.3053954330270122e+1, 0.125318899521531e+2
2033 };
2034
2035 T overz2 = T (1.0) / (zc * zc);
2036 T overz2k = overz2;
2037
2038 T p = 0;
2039 for (octave_idx_type k = 0; k < 10; k++, overz2k *= overz2)
2040 p += dg_coeff[k] * overz2k;
2041 p += xlog (zc) - T (0.5) / zc;
2042 return p;
2043 }
2044
2045 template <typename T>
2046 T
2047 xpsi (T z)
2048 {
2049 static const double euler_mascheroni
2050 = 0.577215664901532860606512090082402431042;
2051
2052 const bool is_int = (std::floor (z) == z);
2053
2054 T p = 0;
2055 if (z <= 0)
2056 {
2057 // limits - zeros of the gamma function
2058 if (is_int)
2059 p = -numeric_limits<T>::Inf (); // Matlab returns -Inf for psi (0)
2060 else
2061 // Abramowitz and Stegun, page 259, eq 6.3.7
2062 p = psi (1 - z) - (pi / tan (pi * z));
2063 }
2064 else if (is_int)
2065 {
2066 // Abramowitz and Stegun, page 258, eq 6.3.2
2067 p = - euler_mascheroni;
2068 for (octave_idx_type k = z - 1; k > 0; k--)
2069 p += 1.0 / k;
2070 }
2071 else if (std::floor (z + 0.5) == z + 0.5)
2072 {
2073 // Abramowitz and Stegun, page 258, eq 6.3.3 and 6.3.4
2074 for (octave_idx_type k = z; k > 0; k--)
2075 p += 1.0 / (2 * k - 1);
2076
2077 p = - euler_mascheroni - 2 * std::log (2) + 2 * (p);
2078 }
2079 else
2080 {
2081 // adapted from XLiFE++ gammaFunctions
2082
2083 T zc = z;
2084 // Use formula for derivative of LogGamma(z)
2085 if (z < 10)
2086 {
2087 const signed char n = 10 - z;
2088 for (signed char k = n - 1; k >= 0; k--)
2089 p -= 1.0 / (k + z);
2090 zc += n;
2091 }
2092 p += lanczos_approximation_psi (zc);
2093 }
2094
2095 return p;
2096 }
2097
2098 // explicit instantiations
2099 double psi (double z) { return xpsi (z); }
2100 float psi (float z) { return xpsi (z); }
2101
2102 template <typename T>
2103 std::complex<T>
2104 xpsi (const std::complex<T>& z)
2105 {
2106 // adapted from XLiFE++ gammaFunctions
2107
2108 typedef typename std::complex<T>::value_type P;
2109
2110 P z_r = z.real ();
2111 P z_ra = z_r;
2112
2113 std::complex<T> dgam (0.0, 0.0);
2114 if (z.imag () == 0)
2115 dgam = std::complex<T> (psi (z_r), 0.0);
2116 else if (z_r < 0)
2117 dgam = psi (P (1.0) - z)- (P (pi) / tan (P (pi) * z));
2118 else
2119 {
2120 // Use formula for derivative of LogGamma(z)
2121 std::complex<T> z_m = z;
2122 if (z_ra < 8)
2123 {
2124 unsigned char n = 8 - z_ra;
2125 z_m = z + std::complex<T> (n, 0.0);
2126
2127 // Recurrence formula. For | Re(z) | < 8, use recursively
2128 //
2129 // DiGamma(z) = DiGamma(z+1) - 1/z
2130 std::complex<T> z_p = z + P (n - 1);
2131 for (unsigned char k = n; k > 0; k--, z_p -= 1.0)
2132 dgam -= P (1.0) / z_p;
2133 }
2134
2135 // for | Re(z) | > 8, use derivative of C.Lanczos expansion for
2136 // LogGamma
2137 //
2138 // psi(z) = log(z) - 1/(2z) - 1/12z^2 + 3/360z^4 - 5/1260z^6
2139 // + 7/1680z^8 - 9/1188z^10 + ...
2140 //
2141 // (Abramowitz&Stegun, page 259, formula 6.3.18
2142 dgam += lanczos_approximation_psi (z_m);
2143 }
2144 return dgam;
2145 }
2146
2147 // explicit instantiations
2148 Complex psi (const Complex& z) { return xpsi (z); }
2149 FloatComplex psi (const FloatComplex& z) { return xpsi (z); }
2150
2151 template <typename T>
2152 static inline void
2154
2155 template <>
2156 inline void
2157 fortran_psifn<double> (double z, octave_idx_type n_arg,
2158 double& ans, octave_idx_type& ierr)
2159 {
2160 F77_INT n = to_f77_int (n_arg);
2161 F77_INT flag = 0;
2162 F77_INT t_ierr;
2163 F77_XFCN (dpsifn, DPSIFN, (z, n, 1, 1, ans, flag, t_ierr));
2164 ierr = t_ierr;
2165 }
2166
2167 template <>
2168 inline void
2169 fortran_psifn<float> (float z, octave_idx_type n_arg,
2170 float& ans, octave_idx_type& ierr)
2171 {
2172 F77_INT n = to_f77_int (n_arg);
2173 F77_INT flag = 0;
2174 F77_INT t_ierr;
2175 F77_XFCN (psifn, PSIFN, (z, n, 1, 1, ans, flag, t_ierr));
2176 ierr = t_ierr;
2177 }
2178
2179 template <typename T>
2180 T
2182 {
2183 T ans;
2185 fortran_psifn<T> (z, n, ans, ierr);
2186 if (ierr == 0)
2187 {
2188 // Remember that psifn and dpsifn return scales values
2189 // When n is 1: do nothing since ((-1)**(n+1)/gamma(n+1)) == 1
2190 // When n is 0: change sign since ((-1)**(n+1)/gamma(n+1)) == -1
2191 if (n > 1)
2192 // FIXME: xgamma here is a killer for our precision since it grows
2193 // way too fast.
2194 ans = ans / (std::pow (-1.0, n + 1) / gamma (double (n+1)));
2195 else if (n == 0)
2196 ans = -ans;
2197 }
2198 else if (ierr == 2)
2199 ans = - numeric_limits<T>::Inf ();
2200 else // we probably never get here
2201 ans = numeric_limits<T>::NaN ();
2202
2203 return ans;
2204 }
2205
2206 double psi (octave_idx_type n, double z) { return xpsi (n, z); }
2207 float psi (octave_idx_type n, float z) { return xpsi (n, z); }
2208
2209 Complex
2210 rc_lgamma (double x)
2211 {
2212 double result;
2213
2214#if defined (HAVE_LGAMMA_R)
2215 int sgngam;
2216 result = lgamma_r (x, &sgngam);
2217#else
2218 result = std::lgamma (x);
2219 int sgngam = signgam;
2220#endif
2221
2222 if (sgngam < 0)
2223 return result + Complex (0., M_PI);
2224 else
2225 return result;
2226 }
2227
2229 rc_lgamma (float x)
2230 {
2231 float result;
2232
2233#if defined (HAVE_LGAMMAF_R)
2234 int sgngam;
2235 result = lgammaf_r (x, &sgngam);
2236#else
2237 result = std::lgammaf (x);
2238 int sgngam = signgam;
2239#endif
2240
2241 if (sgngam < 0)
2242 return result + FloatComplex (0., M_PI);
2243 else
2244 return result;
2245 }
2246
2248 {
2249 return (x < -1.0
2250 ? Complex (std::log (-(1.0 + x)), M_PI)
2251 : Complex (log1p (x)));
2252 }
2253
2255 {
2256 return (x < -1.0f
2257 ? FloatComplex (std::log (-(1.0f + x)), M_PI)
2258 : FloatComplex (log1p (x)));
2259 }
2260 }
2261}
#define Inf
Definition: Faddeeva.cc:260
#define NaN
Definition: Faddeeva.cc:261
subroutine cairy(Z, ID, KODE, AI, NZ, IERR)
Definition: cairy.f:2
subroutine cbesh(Z, FNU, KODE, M, N, CY, NZ, IERR)
Definition: cbesh.f:2
subroutine cbiry(Z, ID, KODE, BI, IERR)
Definition: cbiry.f:2
octave_idx_type numel(void) const
Number of elements in the array.
Definition: Array.h:411
octave_idx_type cols(void) const
Definition: Array.h:457
const dim_vector & dims(void) const
Return a const-reference so that dims ()(i) works efficiently.
Definition: Array.h:487
octave_idx_type rows(void) const
Definition: Array.h:449
OCTARRAY_API void resize(const dim_vector &dv, const T &rfv)
Size of the specified dimension.
Definition: Array.cc:1010
void resize(octave_idx_type nr, octave_idx_type nc, const Complex &rfv=Complex(0))
Definition: CMatrix.h:193
void resize(octave_idx_type nr, octave_idx_type nc, const FloatComplex &rfv=FloatComplex(0))
Definition: fCMatrix.h:201
Definition: dMatrix.h:42
Vector representing the dimensions (size) of an Array.
Definition: dim-vector.h:94
octave_idx_type numel(int n=0) const
Number of elements that a matrix with this dimensions would have.
Definition: dim-vector.h:335
ColumnVector real(const ComplexColumnVector &a)
Definition: dColVector.cc:137
subroutine dpsifn(X, N, KODE, M, ANS, NZ, IERR)
Definition: dpsifn.f:3
#define F77_CONST_CMPLX_ARG(x)
Definition: f77-fcn.h:313
#define F77_CMPLX_ARG(x)
Definition: f77-fcn.h:310
#define F77_XFCN(f, F, args)
Definition: f77-fcn.h:45
octave_f77_int_type F77_INT
Definition: f77-fcn.h:306
double lo_ieee_nan_value(void)
Definition: lo-ieee.cc:84
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE const F77_INT F77_INT & ierr
F77_RET_T const F77_DBLE * x
#define ALL_BESSEL(name, fcn)
Definition: lo-specfun.cc:1349
std::complex< double > Dawson(std::complex< double > z, double relerr=0)
std::complex< double > w(std::complex< double > z, double relerr=0)
std::complex< double > erfi(std::complex< double > z, double relerr=0)
std::complex< double > erfc(std::complex< double > z, double relerr=0)
std::complex< double > erfcx(std::complex< double > z, double relerr=0)
std::complex< double > erf(std::complex< double > z, double relerr=0)
static bool is_integer_value(double x)
Definition: lo-specfun.cc:270
static Complex zbesh1(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:518
double signum(double x)
Definition: lo-mappers.h:229
static Complex zbesj(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:294
static T xlog(const T &x)
Definition: lo-specfun.cc:1999
Complex besselj(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:814
static Complex zbesy(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:347
static double do_erfinv(double x, bool refine)
Definition: lo-specfun.cc:1800
T x_nint(T x)
Definition: lo-mappers.h:269
static FloatComplex cbesh2(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:1096
static double do_erfcinv(double x, bool refine)
Definition: lo-specfun.cc:1670
double gamma(double x)
Definition: lo-specfun.cc:1912
Complex besselh2(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:819
static Complex zbesk(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:473
static FloatComplex cbesi(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:972
static T lanczos_approximation_psi(const T zc)
Definition: lo-specfun.cc:2020
Complex bessely(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:815
static const double pi
Definition: lo-specfun.cc:1995
static FloatComplex cbesh1(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:1063
void ellipj(double u, double m, double &sn, double &cn, double &dn, double &err)
Definition: lo-specfun.cc:1536
static Complex do_bessel(dptr f, const char *, double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:592
Complex besselh1(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:818
void fortran_psifn< float >(float z, octave_idx_type n_arg, float &ans, octave_idx_type &ierr)
Definition: lo-specfun.cc:2169
FloatComplex(* fptr)(const FloatComplex &, float, int, octave_idx_type &)
Definition: lo-specfun.cc:1128
bool isnan(bool)
Definition: lo-mappers.h:178
static Complex zbesi(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:413
static Complex zbesh2(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:554
Complex log1p(const Complex &x)
Definition: lo-specfun.cc:1958
bool isinf(double x)
Definition: lo-mappers.h:203
Complex besseli(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:816
static Complex bessel_return_value(const Complex &val, octave_idx_type ierr)
Definition: lo-specfun.cc:63
Complex asin(const Complex &x)
Definition: lo-mappers.cc:107
static FloatComplex cbesy(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:908
Complex airy(const Complex &z, bool deriv, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:131
double erfcx(double x)
Definition: lo-specfun.cc:1755
static FloatComplex cbesj(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:856
Complex erfc(const Complex &x)
Definition: lo-specfun.cc:1652
void fortran_psifn< double >(double z, octave_idx_type n_arg, double &ans, octave_idx_type &ierr)
Definition: lo-specfun.cc:2157
double erfcinv(double x)
Definition: lo-specfun.cc:1744
Complex(* dptr)(const Complex &, double, int, octave_idx_type &)
Definition: lo-specfun.cc:589
static FloatComplex cbesk(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Definition: lo-specfun.cc:1023
bool negative_sign(double x)
Definition: lo-mappers.cc:178
double psi(double z)
Definition: lo-specfun.cc:2099
double erfi(double x)
Definition: lo-specfun.cc:1774
Complex rc_log1p(double x)
Definition: lo-specfun.cc:2247
double lgamma(double x)
Definition: lo-specfun.h:336
double erfinv(double x)
Definition: lo-specfun.cc:1863
Complex rc_lgamma(double x)
Definition: lo-specfun.cc:2210
std::complex< T > floor(const std::complex< T > &x)
Definition: lo-mappers.h:130
Complex besselk(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:817
double dawson(double x)
Definition: lo-specfun.cc:1517
Complex biry(const Complex &z, bool deriv, bool scaled, octave_idx_type &ierr)
Definition: lo-specfun.cc:1377
static void fortran_psifn(T z, octave_idx_type n, T &ans, octave_idx_type &ierr)
Complex erf(const Complex &x)
Definition: lo-specfun.cc:1637
Complex expm1(const Complex &x)
Definition: lo-specfun.cc:1874
F77_RET_T F77_FUNC(dconv2o, DCONV2O)(const F77_INT &
static double f(double k, double l_nu, double c_pm)
Definition: randpoisson.cc:118
static double wi[256]
Definition: randmtzig.cc:463
std::complex< double > Complex
Definition: oct-cmplx.h:33
std::complex< float > FloatComplex
Definition: oct-cmplx.h:34
octave_int< T > pow(const octave_int< T > &a, const octave_int< T > &b)
static T abs(T x)
Definition: pr-output.cc:1678
subroutine psifn(X, N, KODE, M, ANS, NZ, IERR)
Definition: psifn.f:3
subroutine zairy(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
Definition: zairy.f:2
subroutine zbesh(ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR)
Definition: zbesh.f:2
subroutine zbiry(ZR, ZI, ID, KODE, BIR, BII, IERR)
Definition: zbiry.f:2