GNU Octave 7.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
randpoisson.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 2006-2022 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26/* Original version written by Paul Kienzle distributed as free
27 software in the in the public domain. */
28
29#if defined (HAVE_CONFIG_H)
30# include "config.h"
31#endif
32
33#include <cmath>
34#include <cstddef>
35
36#include "f77-fcn.h"
37#include "lo-error.h"
38#include "lo-ieee.h"
39#include "randmtzig.h"
40#include "randpoisson.h"
41
42namespace octave
43{
44 static double xlgamma (double x)
45 {
46 return std::lgamma (x);
47 }
48
49 /* ---- pprsc.c from Stadloeber's winrand --- */
50
51 /* flogfak(k) = ln(k!) */
52 static double flogfak (double k)
53 {
54#define C0 9.18938533204672742e-01
55#define C1 8.33333333333333333e-02
56#define C3 -2.77777777777777778e-03
57#define C5 7.93650793650793651e-04
58#define C7 -5.95238095238095238e-04
59
60 static double logfak[30L] =
61 {
62 0.00000000000000000, 0.00000000000000000, 0.69314718055994531,
63 1.79175946922805500, 3.17805383034794562, 4.78749174278204599,
64 6.57925121201010100, 8.52516136106541430, 10.60460290274525023,
65 12.80182748008146961, 15.10441257307551530, 17.50230784587388584,
66 19.98721449566188615, 22.55216385312342289, 25.19122118273868150,
67 27.89927138384089157, 30.67186010608067280, 33.50507345013688888,
68 36.39544520803305358, 39.33988418719949404, 42.33561646075348503,
69 45.38013889847690803, 48.47118135183522388, 51.60667556776437357,
70 54.78472939811231919, 58.00360522298051994, 61.26170176100200198,
71 64.55753862700633106, 67.88974313718153498, 71.25703896716800901
72 };
73
74 double r, rr;
75
76 if (k >= 30.0)
77 {
78 r = 1.0 / k;
79 rr = r * r;
80 return ((k + 0.5)*std::log (k) - k + C0
81 + r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
82 }
83 else
84 return (logfak[static_cast<int> (k)]);
85 }
86
87 /******************************************************************
88 * *
89 * Poisson Distribution - Patchwork Rejection/Inversion *
90 * *
91 ******************************************************************
92 * *
93 * For parameter my < 10, Tabulated Inversion is applied. *
94 * For my >= 10, Patchwork Rejection is employed: *
95 * The area below the histogram function f(x) is rearranged in *
96 * its body by certain point reflections. Within a large center *
97 * interval variates are sampled efficiently by rejection from *
98 * uniform hats. Rectangular immediate acceptance regions speed *
99 * up the generation. The remaining tails are covered by *
100 * exponential functions. *
101 * *
102 ******************************************************************
103 * *
104 * FUNCTION : - pprsc samples a random number from the Poisson *
105 * distribution with parameter my > 0. *
106 * REFERENCE : - H. Zechner (1994): Efficient sampling from *
107 * continuous and discrete unimodal distributions, *
108 * Doctoral Dissertation, 156 pp., Technical *
109 * University Graz, Austria. *
110 * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with *
111 * unsigned long integer *seed. *
112 * *
113 * Implemented by H. Zechner, January 1994 *
114 * Revised by F. Niederl, July 1994 *
115 * *
116 ******************************************************************/
117
118 static double f (double k, double l_nu, double c_pm)
119 {
120 return exp (k * l_nu - flogfak (k) - c_pm);
121 }
122
123 static double pprsc (double my)
124 {
125 static double my_last = -1.0;
126 static double m, k2, k4, k1, k5;
127 static double dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
128 f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;
129 double Dk, X, Y;
130 double Ds, U, V, W;
131
132 if (my != my_last)
133 { /* set-up */
134 my_last = my;
135 /* approximate deviation of reflection points k2, k4 from my - 1/2 */
136 Ds = std::sqrt (my + 0.25);
137
138 /* mode m, reflection points k2 and k4, and points k1 and k5, */
139 /* which delimit the centre region of h(x) */
140 m = std::floor (my);
141 k2 = ceil (my - 0.5 - Ds);
142 k4 = std::floor (my - 0.5 + Ds);
143 k1 = k2 + k2 - m + 1L;
144 k5 = k4 + k4 - m;
145
146 /* range width of the critical left and right centre region */
147 dl = (k2 - k1);
148 dr = (k5 - k4);
149
150 /* recurrence constants r(k)=p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 */
151 r1 = my / k1;
152 r2 = my / k2;
153 r4 = my / (k4 + 1.0);
154 r5 = my / (k5 + 1.0);
155
156 /* reciprocal values of the scale parameters of exp. tail envelope */
157 ll = std::log (r1); /* expon. tail left */
158 lr = -std::log (r5); /* expon. tail right*/
159
160 /* Poisson constants, necessary for computing function values f(k) */
161 l_my = std::log (my);
162 c_pm = m * l_my - flogfak (m);
163
164 /* function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5 */
165 f2 = f (k2, l_my, c_pm);
166 f4 = f (k4, l_my, c_pm);
167 f1 = f (k1, l_my, c_pm);
168 f5 = f (k5, l_my, c_pm);
169
170 /* area of the two centre and the two exponential tail regions */
171 /* area of the two immediate acceptance regions between k2, k4 */
172 p1 = f2 * (dl + 1.0); /* immed. left */
173 p2 = f2 * dl + p1; /* centre left */
174 p3 = f4 * (dr + 1.0) + p2; /* immed. right */
175 p4 = f4 * dr + p3; /* centre right */
176 p5 = f1 / ll + p4; /* exp. tail left */
177 p6 = f5 / lr + p5; /* exp. tail right*/
178 }
179
180 for (;;)
181 {
182 /* generate uniform number U -- U(0, p6) */
183 /* case distinction corresponding to U */
184 if ((U = rand_uniform<double> () * p6) < p2)
185 { /* centre left */
186
187 /* immediate acceptance region
188 R2 = [k2, m) *[0, f2), X = k2, ... m -1 */
189 if ((V = U - p1) < 0.0) return (k2 + std::floor (U/f2));
190 /* immediate acceptance region
191 R1 = [k1, k2)*[0, f1), X = k1, ... k2-1 */
192 if ((W = V / dl) < f1 ) return (k1 + std::floor (V/f1));
193
194 /* computation of candidate X < k2, and its counterpart Y > k2 */
195 /* either squeeze-acceptance of X or acceptance-rejection of Y */
196 Dk = std::floor (dl * rand_uniform<double> ()) + 1.0;
197 if (W <= f2 - Dk * (f2 - f2/r2))
198 { /* quick accept of */
199 return (k2 - Dk); /* X = k2 - Dk */
200 }
201 if ((V = f2 + f2 - W) < 1.0)
202 { /* quick reject of Y*/
203 Y = k2 + Dk;
204 if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0))
205 { /* quick accept of */
206 return (Y); /* Y = k2 + Dk */
207 }
208 if (V <= f (Y, l_my, c_pm)) return (Y); /* final accept of Y*/
209 }
210 X = k2 - Dk;
211 }
212 else if (U < p4)
213 { /* centre right */
214 /* immediate acceptance region
215 R3 = [m, k4+1)*[0, f4), X = m, ... k4 */
216 if ((V = U - p3) < 0.0) return (k4 - std::floor ((U - p2)/f4));
217 /* immediate acceptance region
218 R4 = [k4+1, k5+1)*[0, f5) */
219 if ((W = V / dr) < f5 ) return (k5 - std::floor (V/f5));
220
221 /* computation of candidate X > k4, and its counterpart Y < k4 */
222 /* either squeeze-acceptance of X or acceptance-rejection of Y */
223 Dk = std::floor (dr * rand_uniform<double> ()) + 1.0;
224 if (W <= f4 - Dk * (f4 - f4*r4))
225 { /* quick accept of */
226 return (k4 + Dk); /* X = k4 + Dk */
227 }
228 if ((V = f4 + f4 - W) < 1.0)
229 { /* quick reject of Y*/
230 Y = k4 - Dk;
231 if (V <= f4 + Dk * (1.0 - f4)/ dr)
232 { /* quick accept of */
233 return (Y); /* Y = k4 - Dk */
234 }
235 if (V <= f (Y, l_my, c_pm)) return (Y); /* final accept of Y*/
236 }
237 X = k4 + Dk;
238 }
239 else
240 {
242 if (U < p5)
243 { /* expon. tail left */
244 Dk = std::floor (1.0 - std::log (W)/ll);
245 if ((X = k1 - Dk) < 0L) continue; /* 0 <= X <= k1 - 1 */
246 W *= (U - p4) * ll; /* W -- U(0, h(x)) */
247 if (W <= f1 - Dk * (f1 - f1/r1))
248 return (X); /* quick accept of X*/
249 }
250 else
251 { /* expon. tail right*/
252 Dk = std::floor (1.0 - std::log (W)/lr);
253 X = k5 + Dk; /* X >= k5 + 1 */
254 W *= (U - p5) * lr; /* W -- U(0, h(x)) */
255 if (W <= f5 - Dk * (f5 - f5*r5))
256 return (X); /* quick accept of X*/
257 }
258 }
259
260 /* acceptance-rejection test of candidate X from the original area */
261 /* test, whether W <= f(k), with W = U*h(x) and U -- U(0, 1)*/
262 /* log f(X) = (X - m)*log(my) - log X! + log m! */
263 if (std::log (W) <= X * l_my - flogfak (X) - c_pm) return (X);
264 }
265 }
266 /* ---- pprsc.c end ------ */
267
268 /* The remainder of the file is by Paul Kienzle */
269
270 /* Table size is predicated on the maximum value of lambda
271 * we want to store in the table, and the maximum value of
272 * returned by the uniform random number generator on [0,1).
273 * With lambda==10 and u_max = 1 - 1/(2^32+1), we
274 * have poisson_pdf(lambda,36) < 1-u_max. If instead our
275 * generator uses more bits of mantissa or returns a value
276 * in the range [0,1], then for lambda==10 we need a table
277 * size of 46 instead. For long doubles, the table size
278 * will need to be longer still. */
279#define TABLESIZE 46
280
281 /* Given uniform u, find x such that CDF(L,x)==u. Return x. */
282
283 template <typename T>
284 static void
285 poisson_cdf_lookup (double lambda, T *p, std::size_t n)
286 {
287 double t[TABLESIZE];
288
289 /* Precompute the table for the u up to and including 0.458.
290 * We will almost certainly need it. */
291 int intlambda = static_cast<int> (std::floor (lambda));
292 double P;
293 int tableidx;
294 std::size_t i = n;
295
296 t[0] = P = exp (-lambda);
297 for (tableidx = 1; tableidx <= intlambda; tableidx++)
298 {
299 P = P*lambda/static_cast<double> (tableidx);
300 t[tableidx] = t[tableidx-1] + P;
301 }
302
303 while (i-- > 0)
304 {
305 double u = rand_uniform<double> ();
306
307 /* If u > 0.458 we know we can jump to floor(lambda) before
308 * comparing (this observation is based on Stadlober's winrand
309 * code). For lambda >= 1, this will be a win. Lambda < 1
310 * is already fast, so adding an extra comparison is not a
311 * problem. */
312 int k = (u > 0.458 ? intlambda : 0);
313
314 /* We aren't using a for loop here because when we find the
315 * right k we want to jump to the next iteration of the
316 * outer loop, and the continue statement will only work for
317 * the inner loop. */
318 nextk:
319 if (u <= t[k])
320 {
321 p[i] = static_cast<T> (k);
322 continue;
323 }
324 if (++k < tableidx)
325 goto nextk;
326
327 /* We only need high values of the table very rarely so we
328 * don't automatically compute the entire table. */
329 while (tableidx < TABLESIZE)
330 {
331 P = P*lambda/static_cast<double> (tableidx);
332 t[tableidx] = t[tableidx-1] + P;
333 /* Make sure we converge to 1.0 just in case u is uniform
334 * on [0,1] rather than [0,1). */
335 if (t[tableidx] == t[tableidx-1]) t[tableidx] = 1.0;
336 tableidx++;
337 if (u <= t[tableidx-1]) break;
338 }
339
340 /* We are assuming that the table size is big enough here.
341 * This should be true even if rand_uniform is returning values in
342 * the range [0,1] rather than [0,1). */
343 p[i] = static_cast<T> (tableidx-1);
344 }
345 }
346
347 /* From Press, et al., Numerical Recipes */
348 template <typename T>
349 static void
350 poisson_rejection (double lambda, T *p, std::size_t n)
351 {
352 double sq = std::sqrt (2.0*lambda);
353 double alxm = std::log (lambda);
354 double g = lambda*alxm - xlgamma (lambda+1.0);
355 std::size_t i;
356
357 for (i = 0; i < n; i++)
358 {
359 double y, em, t;
360 do
361 {
362 do
363 {
364 y = tan (M_PI*rand_uniform<double> ());
365 em = sq * y + lambda;
366 } while (em < 0.0);
367 em = std::floor (em);
368 t = 0.9*(1.0+y*y)*exp (em*alxm-flogfak (em)-g);
369 } while (rand_uniform<double> () > t);
370 p[i] = em;
371 }
372 }
373
374 /* The cutoff of L <= 1e8 in the following two functions before using
375 * the normal approximation is based on:
376 * > L=1e8; x=floor(linspace(0,2*L,1000));
377 * > max(abs(normal_pdf(x,L,L)-poisson_pdf(x,L)))
378 * ans = 1.1376e-28
379 * For L=1e7, the max is around 1e-9, which is within the step size of
380 * rand_uniform. For L>1e10 the pprsc function breaks down, as I saw
381 * from the histogram of a large sample, so 1e8 is both small enough
382 * and large enough. */
383
384 /* Generate a set of poisson numbers with the same distribution */
385 template <typename T> void rand_poisson (T L_arg, octave_idx_type n, T *p)
386 {
387 double L = L_arg;
389 if (L < 0.0 || lo_ieee_isinf (L))
390 {
391 for (i=0; i<n; i++)
392 p[i] = numeric_limits<T>::NaN ();
393 }
394 else if (L <= 10.0)
395 {
396 poisson_cdf_lookup<T> (L, p, n);
397 }
398 else if (L <= 1e8)
399 {
400 for (i=0; i<n; i++)
401 p[i] = pprsc (L);
402 }
403 else
404 {
405 /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
406 const double sqrtL = std::sqrt (L);
407 for (i = 0; i < n; i++)
408 {
409 p[i] = std::floor (rand_normal<T> () * sqrtL + L + 0.5);
410 if (p[i] < 0.0)
411 p[i] = 0.0; /* will probably never happen */
412 }
413 }
414 }
415
416 template void rand_poisson<double> (double, octave_idx_type, double *);
417 template void rand_poisson<float> (float, octave_idx_type, float *);
418
419 /* Generate one poisson variate */
420 template <typename T> T rand_poisson (T L_arg)
421 {
422 double L = L_arg;
423 T ret;
424 if (L < 0.0) ret = numeric_limits<T>::NaN ();
425 else if (L <= 12.0)
426 {
427 /* From Press, et al. Numerical recipes */
428 double g = exp (-L);
429 int em = -1;
430 double t = 1.0;
431 do
432 {
433 ++em;
434 t *= rand_uniform<T> ();
435 } while (t > g);
436 ret = em;
437 }
438 else if (L <= 1e8)
439 {
440 /* numerical recipes */
441 poisson_rejection<T> (L, &ret, 1);
442 }
443 else if (lo_ieee_isinf (L))
444 {
445 /* FIXME: R uses NaN, but the normal approximation suggests that
446 * limit should be Inf. Which is correct? */
447 ret = numeric_limits<T>::NaN ();
448 }
449 else
450 {
451 /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
452 ret = std::floor (rand_normal<T> () * std::sqrt (L) + L + 0.5);
453 if (ret < 0.0) ret = 0.0; /* will probably never happen */
454 }
455 return ret;
456 }
457
458 template OCTAVE_API double rand_poisson<double> (double);
459 template OCTAVE_API float rand_poisson<float> (float);
460}
#define NaN
Definition: Faddeeva.cc:261
#define lo_ieee_isinf(x)
Definition: lo-ieee.h:108
F77_RET_T const F77_INT const F77_INT const F77_INT const F77_DBLE const F77_DBLE F77_INT F77_DBLE * V
F77_RET_T const F77_DBLE * x
#define OCTAVE_API
Definition: main.in.cc:55
double lgamma(double x)
Definition: lo-specfun.h:336
std::complex< T > ceil(const std::complex< T > &x)
Definition: lo-mappers.h:103
std::complex< T > floor(const std::complex< T > &x)
Definition: lo-mappers.h:130
static void poisson_rejection(double lambda, T *p, std::size_t n)
Definition: randpoisson.cc:350
static double pprsc(double my)
Definition: randpoisson.cc:123
static double f(double k, double l_nu, double c_pm)
Definition: randpoisson.cc:118
template void rand_poisson< float >(float, octave_idx_type, float *)
template void rand_poisson< double >(double, octave_idx_type, double *)
OCTAVE_API double rand_uniform< double >(void)
Definition: randmtzig.cc:430
static double flogfak(double k)
Definition: randpoisson.cc:52
static double xlgamma(double x)
Definition: randpoisson.cc:44
void rand_poisson(T L_arg, octave_idx_type n, T *p)
Definition: randpoisson.cc:385
static void poisson_cdf_lookup(double lambda, T *p, std::size_t n)
Definition: randpoisson.cc:285
#define TABLESIZE
Definition: randpoisson.cc:279
#define C5
#define C1
#define C3
#define C0
#define C7