Next: Sums and Products, Previous: Complex Arithmetic, Up: Arithmetic [Contents][Index]

Octave provides the following trigonometric functions where angles are
specified in radians. To convert from degrees to radians multiply by
`pi/180`

or use the `deg2rad`

function. For example, `sin (30 * pi/180)`

returns the sine of 30 degrees. As an alternative, Octave provides a number of
trigonometric functions which work directly on an argument specified in
degrees. These functions are named after the base trigonometric function with
a ‘`d`’ suffix. As an example, `sin`

expects an angle in radians while
`sind`

expects an angle in degrees.

Octave uses the C library trigonometric functions. It is expected that these
functions are defined by the ISO/IEC 9899 Standard. This Standard is available
at: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf.
Section F.9.1 deals with the trigonometric functions. The behavior of most of
the functions is relatively straightforward. However, there are some
exceptions to the standard behavior. Many of the exceptions involve the
behavior for -0. The most complex case is atan2. Octave exactly implements
the behavior given in the Standard. Including
`atan2(+- 0, 0)`

returns `+- pi`

.

It should be noted that MATLAB uses different definitions which apparently do not distinguish -0.

- :
`rad`=**deg2rad***(*¶`deg`) -
Convert degrees to radians.

The input

`deg`must be a scalar, vector, or N-dimensional array of double or single floating point values.`deg`may be complex in which case the real and imaginary components are converted separately.The output

`rad`is the same size and shape as`deg`with degrees converted to radians using the conversion constant`pi/180`

.Example:

deg2rad ([0, 90, 180, 270, 360]) ⇒ 0.00000 1.57080 3.14159 4.71239 6.28319

**See also:**rad2deg.

- :
`deg`=**rad2deg***(*¶`rad`) -
Convert radians to degrees.

The input

`rad`must be a scalar, vector, or N-dimensional array of double or single floating point values.`rad`may be complex in which case the real and imaginary components are converted separately.The output

`deg`is the same size and shape as`rad`with radians converted to degrees using the conversion constant`180/pi`

.Example:

rad2deg ([0, pi/2, pi, 3/2*pi, 2*pi]) ⇒ 0 90 180 270 360

**See also:**deg2rad.

- :
**atan2***(*¶`y`,`x`) Compute atan (

`y`/`x`) for corresponding elements of`y`and`x`.`y`and`x`must match in size and orientation. The signs of elements of`y`and`x`are used to determine the quadrants of each resulting value.This function is equivalent to

`arg (complex (`

.`x`,`y`))

Octave provides the following trigonometric functions where angles are specified in degrees. These functions produce true zeros at the appropriate intervals rather than the small round-off error that occurs when using radians. For example:

cosd (90) ⇒ 0 cos (pi/2) ⇒ 6.1230e-17

- :
**sind***(*¶`x`) Compute the sine for each element of

`x`in degrees.The function is more accurate than

`sin`

for large values of`x`and for multiples of 180 degrees (

is an integer) where`x`/180`sind`

returns 0 rather than a small value on the order of eps.

- :
**cosd***(*¶`x`) Compute the cosine for each element of

`x`in degrees.The function is more accurate than

`cos`

for large values of`x`and for multiples of 90 degrees (

with n an integer) where`x`= 90 + 180*n`cosd`

returns 0 rather than a small value on the order of eps.

- :
**tand***(*¶`x`) Compute the tangent for each element of

`x`in degrees.Returns zero for elements where

is an integer and`x`/180`Inf`

for elements where`(`

is an integer.`x`-90)/180

- :
**atan2d***(*¶`y`,`x`) Compute atan (

`y`/`x`) in degrees for corresponding elements from`y`and`x`.

Finally, there are two trigonometric functions that calculate special arguments with increased accuracy.

- :
`y`=**sinpi***(*¶`x`) Compute sine (

`x`* pi) for each element of`x`accurately.The ordinary

`sin`

function uses IEEE floating point numbers and may produce results that are very close (within a few eps) of the correct value, but which are not exact. The`sinpi`

function is more accurate and returns 0 exactly for integer values of`x`and +1/-1 for half-integer values (e.g., …, -3/2, -1/2, 1/2, 3/2, …).Example

comparison of`sin`

and`sinpi`

for integer values of`x`sin ([0, 1, 2, 3] * pi) ⇒ 0 1.2246e-16 -2.4493e-16 3.6739e-16 sinpi ([0, 1, 2, 3]) ⇒ 0 0 0 0

- :
`y`=**cospi***(*¶`x`) Compute cosine (

`x`* pi) for each element of`x`accurately.The ordinary

`cos`

function uses IEEE floating point numbers and may produce results that are very close (within a few eps) of the correct value, but which are not exact. The`cospi`

function is more accurate and returns 0 exactly for half-integer values of`x`(e.g., …, -3/2, -1/2, 1/2, 3/2, …), and +1/-1 for integer values.Example

comparison of`cos`

and`cospi`

for half-integer values of`x`cos ([-3/2, -1/2, 1/2, 3/2] * pi) ⇒ -1.8370e-16 6.1232e-17 6.1232e-17 -1.8370e-16 cospi ([-3/2, -1/2, 1/2, 3/2]) ⇒ 0 0 0 0

Next: Sums and Products, Previous: Complex Arithmetic, Up: Arithmetic [Contents][Index]