- :
`y`=**exp**`(`

¶`x`) Compute

`e^x`

for each element of`x`.To compute the matrix exponential, see Linear Algebra.

**See also:**log.

- :
`y`=**log**`(`

¶`x`) Compute the natural logarithm,

`ln (`

, for each element of`x`)`x`.To compute the matrix logarithm, see Linear Algebra.

- :
`y`=**reallog**`(`

¶`x`) Return the real-valued natural logarithm of each element of

`x`.If any element results in a complex return value

`reallog`

aborts and issues an error.

- :
`y`=**log1p**`(`

¶`x`) Compute

`log (1 +`

accurately in the neighborhood of zero.`x`)

- :
`y`=**log10**`(`

¶`x`) Compute the base-10 logarithm of each element of

`x`.

- :
`y`=**log2**`(`

¶`x`) - :
`[`

`f`,`e`] =**log2**`(`

¶`x`) Compute the base-2 logarithm of each element of

`x`.If called with one output, compute the base-2 logarithm such that

`2^`

.`y`=`x`If called with two output arguments, split

`x`into binary mantissa (`f`) and exponent (`e`) such that

where`x`=`f`* 2^`e``1/2 <= abs (`

and`f`) < 1`e`is an integer. If`x = 0`

,`f = e = 0`

.

- :
`y`=**pow2**`(`

¶`x`) - :
`y`=**pow2**`(`

¶`f`,`e`) With one input argument, compute y = 2 .^ x for each element of

`x`.With two input arguments, return y = f .* (2 .^ e). where for complex inputs only the real part of both inputs is regarded and from

`e`only the real integer part. This calling form corresponds to C/C++ standard function`ldexp()`

.

- :
`n`=**nextpow2**`(`

¶`x`) Compute the exponent for the smallest power of two larger than the input.

For each element in the input array

`x`, return the first integer`n`such that 2^n ≥ abs (x).

- :
`z`=**realpow**`(`

¶`x`,`y`) Compute the real-valued, element-by-element power operator.

This is equivalent to

, except that`x`.^`y``realpow`

reports an error if any return value is complex.

- :
`y`=**sqrt**`(`

¶`x`) Compute the square root of each element of

`x`.If

`x`is negative, a complex result is returned.To compute the matrix square root, see Linear Algebra.

- :
`y`=**realsqrt**`(`

¶`x`) Return the real-valued square root of each element of

`x`.If any element results in a complex return value

`realsqrt`

aborts and issues an error.

- :
`y`=**cbrt**`(`

¶`x`) Compute the real-valued cube root of each element of

`x`.Unlike

, the result will be negative if`x`^(1/3)`x`is negative.If any element of

`x`is complex,`cbrt`

aborts with an error.**See also:**nthroot.

- :
`y`=**nthroot**`(`

¶`x`,`n`) -
Compute the real (non-complex)

`n`-th root of`x`.`x`must have all real entries and`n`must be a scalar. If`n`is an even integer and`x`has negative entries then`nthroot`

aborts and issues an error.Example:

nthroot (-1, 3) ⇒ -1 (-1) ^ (1 / 3) ⇒ 0.50000 - 0.86603i