GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
__ichol__.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 2013-2025 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include <limits>
31
32#include "oct-locbuf.h"
33#include "oct-norm.h"
34
35#include "defun.h"
36#include "error.h"
37
38#include "builtin-defun-decls.h"
39
41
42// Secondary functions for complex and real case used in ichol algorithms.
44{
45#if defined (HAVE_CXX_COMPLEX_SETTERS)
46 b.imag (-b.imag ());
47#elif defined (HAVE_CXX_COMPLEX_REFERENCE_ACCESSORS)
48 b.imag () = -b.imag ();
49#else
50 b = b.conj ();
51#endif
52 return a * b;
53}
54
55double
56ichol_mult_real (double a, double b)
57{
58 return a * b;
59}
60
61bool
63{
64 if (fabs (pivot.imag ()) > std::numeric_limits<double>::epsilon())
65 error ("ichol: non-real pivot encountered. The matrix must be Hermitian.");
66 else if (pivot.real () < 0)
67 error ("ichol: negative pivot encountered");
68
69 return true;
70}
71
72bool
74{
75 if (pivot < 0)
76 error ("ichol: negative pivot encountered");
77
78 return true;
79}
80
81template <typename octave_matrix_t, typename T, T (*ichol_mult) (T, T),
82 bool (*ichol_checkpivot) (T)>
83void
84ichol_0 (octave_matrix_t& sm, const std::string michol = "off")
85{
86 const octave_idx_type n = sm.cols ();
87 octave_idx_type j1, jend, j2, jrow, jjrow, j, jw, i, k, jj, r;
88 T tl;
89
90 char opt;
91 enum {OFF, ON};
92 if (michol == "on")
93 opt = ON;
94 else
95 opt = OFF;
96
97 // Input matrix pointers
98 octave_idx_type *cidx = sm.cidx ();
99 octave_idx_type *ridx = sm.ridx ();
100 T *data = sm.data ();
101
102 // Working arrays
106 OCTAVE_LOCAL_BUFFER (T, dropsums, n);
107
108 // Initialize working arrays
109 for (i = 0; i < n; i++)
110 {
111 iw[i] = -1;
112 Llist[i] = -1;
113 Lfirst[i] = -1;
114 dropsums[i] = 0;
115 }
116
117 // Loop over all columns
118 for (k = 0; k < n; k++)
119 {
120 j1 = cidx[k];
121 j2 = cidx[k+1];
122 for (j = j1; j < j2; j++)
123 iw[ridx[j]] = j;
124
125 jrow = Llist[k];
126 // Iterate over each nonzero element in the actual row.
127 while (jrow != -1)
128 {
129 jjrow = Lfirst[jrow];
130 jend = cidx[jrow+1];
131 for (jj = jjrow; jj < jend; jj++)
132 {
133 r = ridx[jj];
134 jw = iw[r];
135 tl = ichol_mult (data[jj], data[jjrow]);
136 if (jw != -1)
137 data[jw] -= tl;
138 else
139 // Because of the symmetry of the matrix, we know
140 // the drops in the column r are also in the column k.
141 if (opt == ON)
142 {
143 dropsums[r] -= tl;
144 dropsums[k] -= tl;
145 }
146 }
147 // Update the linked list and the first entry of the actual column.
148 if ((jjrow + 1) < jend)
149 {
150 Lfirst[jrow]++;
151 j = jrow;
152 jrow = Llist[jrow];
153 Llist[j] = Llist[ridx[Lfirst[j]]];
154 Llist[ridx[Lfirst[j]]] = j;
155 }
156 else
157 jrow = Llist[jrow];
158 }
159
160 if (opt == ON)
161 data[j1] += dropsums[k];
162
163 // Test for j1 == j2 must be first to avoid invalid ridx[j1] access
164 if (j1 == j2 || ridx[j1] != k)
165 error ("ichol: encountered a pivot equal to 0");
166
167 if (! ichol_checkpivot (data[j1]))
168 break;
169
170 data[cidx[k]] = std::sqrt (data[j1]);
171
172 // Update Llist and Lfirst with the k-column information. Also,
173 // scale the column elements by the pivot and reset the working array iw.
174 if (k < (n - 1))
175 {
176 iw[ridx[j1]] = -1;
177 for (i = j1 + 1; i < j2; i++)
178 {
179 iw[ridx[i]] = -1;
180 data[i] /= data[j1];
181 }
182 Lfirst[k] = j1;
183 if ((Lfirst[k] + 1) < j2)
184 {
185 Lfirst[k]++;
186 jjrow = ridx[Lfirst[k]];
187 Llist[k] = Llist[jjrow];
188 Llist[jjrow] = k;
189 }
190 }
191 }
192}
193
194DEFUN (__ichol0__, args, ,
195 doc: /* -*- texinfo -*-
196@deftypefn {} {@var{L} =} __ichol0__ (@var{A}, @var{michol})
197Undocumented internal function.
198@end deftypefn */)
199{
200 if (args.length () != 2)
201 print_usage ();
202
203 std::string michol = args(1).string_value ();
204
205 // In ICHOL0 algorithm the zero-pattern of the input matrix is preserved
206 // so its structure does not change during the algorithm. The same input
207 // matrix is used to build the output matrix due to that fact.
208 if (! args(0).iscomplex ())
209 {
210 SparseMatrix sm = Ftril (ovl (args(0)))(0).sparse_matrix_value ();
212 ichol_checkpivot_real> (sm, michol);
213 return ovl (sm);
214 }
215 else
216 {
218 = Ftril (ovl (args(0)))(0).sparse_complex_matrix_value ();
220 ichol_checkpivot_complex> (sm, michol);
221 return ovl (sm);
222 }
223}
224
225template <typename octave_matrix_t, typename T, T (*ichol_mult) (T, T),
226 bool (*ichol_checkpivot) (T)>
227void
228ichol_t (const octave_matrix_t& sm, octave_matrix_t& L, const T *cols_norm,
229 const T droptol, const std::string michol = "off")
230{
231
232 const octave_idx_type n = sm.cols ();
233 octave_idx_type j, jrow, jend, jjrow, i, k, jj, total_len,
234 w_len, max_len, ind;
235 char opt;
236 enum {OFF, ON};
237 if (michol == "on")
238 opt = ON;
239 else
240 opt = OFF;
241
242 // Input matrix pointers
243 octave_idx_type *cidx = sm.cidx ();
244 octave_idx_type *ridx = sm.ridx ();
245 T *data = sm.data ();
246
247 // Output matrix data structures. Because the final zero pattern pattern of
248 // the output matrix is not known due to fill-in elements, a heuristic
249 // approach has been adopted for memory allocation. The size of ridx_out_l
250 // and data_out_l is incremented 10% of their actual size (nnz (A) in the
251 // beginning). If that amount is less than n, their size is just incremented
252 // in n elements. This way the number of reallocations decreases throughout
253 // the process, obtaining a good performance.
254 max_len = sm.nnz ();
255 max_len += (0.1 * max_len) > n ? 0.1 * max_len : n;
256 Array <octave_idx_type> cidx_out_l (dim_vector (n + 1, 1));
257 octave_idx_type *cidx_l = cidx_out_l.rwdata ();
258 Array <octave_idx_type> ridx_out_l (dim_vector (max_len, 1));
259 octave_idx_type *ridx_l = ridx_out_l.rwdata ();
260 Array <T> data_out_l (dim_vector (max_len, 1));
261 T *data_l = data_out_l.rwdata ();
262
263 // Working arrays
264 OCTAVE_LOCAL_BUFFER (T, w_data, n);
267 OCTAVE_LOCAL_BUFFER (T, col_drops, n);
268 std::vector<octave_idx_type> vec (n, 0);
269 std::vector<bool> mark (n, false);
270
271 T zero = T (0);
272 cidx_l[0] = cidx[0];
273 for (i = 0; i < n; i++)
274 {
275 Llist[i] = -1;
276 Lfirst[i] = -1;
277 w_data[i] = 0;
278 col_drops[i] = zero;
279 }
280
281 total_len = 0;
282 for (k = 0; k < n; k++)
283 {
284 ind = 0;
285 for (j = cidx[k]; j < cidx[k+1]; j++)
286 {
287 w_data[ridx[j]] = data[j];
288 // Mark column index, intentionally outside the if-clause to ensure
289 // that mark[k] will be set to true as well.
290 mark[ridx[j]] = true;
291 if (ridx[j] != k)
292 {
293 vec[ind] = ridx[j];
294 ind++;
295 }
296 }
297 jrow = Llist[k];
298 while (jrow != -1)
299 {
300 jjrow = Lfirst[jrow];
301 jend = cidx_l[jrow+1];
302 for (jj = jjrow; jj < jend; jj++)
303 {
304 j = ridx_l[jj];
305 // If the element in the j position of the row is zero,
306 // then it will become nonzero, so we add it to the
307 // vector that tracks nonzero elements in the working row.
308 if (! mark[j])
309 {
310 mark[j] = true;
311 vec[ind] = j;
312 ind++;
313 }
314 w_data[j] -= ichol_mult (data_l[jj], data_l[jjrow]);
315 }
316 // Update the actual column first element and
317 // update the linked list of the jrow row.
318 if ((jjrow + 1) < jend)
319 {
320 Lfirst[jrow]++;
321 j = jrow;
322 jrow = Llist[jrow];
323 Llist[j] = Llist[ridx_l[Lfirst[j]]];
324 Llist[ridx_l[Lfirst[j]]] = j;
325 }
326 else
327 jrow = Llist[jrow];
328 }
329
330 // Resizing output arrays
331 if ((max_len - total_len) < n)
332 {
333 max_len += (0.1 * max_len) > n ? 0.1 * max_len : n;
334 data_out_l.resize (dim_vector (max_len, 1));
335 data_l = data_out_l.rwdata ();
336 ridx_out_l.resize (dim_vector (max_len, 1));
337 ridx_l = ridx_out_l.rwdata ();
338 }
339
340 // The sorting of the nonzero elements of the working column can be
341 // handled in a couple of ways. The most efficient two I found, are
342 // keeping the elements in an ordered binary search tree dynamically or
343 // keep them unsorted in a vector and at the end of the outer iteration
344 // order them. The last approach exhibits lower execution times.
345 std::sort (vec.begin (), vec.begin () + ind);
346
347 data_l[total_len] = w_data[k];
348 ridx_l[total_len] = k;
349 w_len = 1;
350
351 // Extract the nonzero elements of working column and
352 // drop the elements that are lower than droptol * cols_norm[k].
353 for (i = 0; i < ind ; i++)
354 {
355 jrow = vec[i];
356 if (w_data[jrow] != zero)
357 {
358 if (std::abs (w_data[jrow]) < (droptol * cols_norm[k]))
359 {
360 if (opt == ON)
361 {
362 col_drops[k] += w_data[jrow];
363 col_drops[jrow] += w_data[jrow];
364 }
365 }
366 else
367 {
368 data_l[total_len + w_len] = w_data[jrow];
369 ridx_l[total_len + w_len] = jrow;
370 w_len++;
371 }
372 }
373 // Clear mark, vec, and w_data. However, mark[k] is not set to zero.
374 mark[jrow] = false;
375 vec[i] = 0;
376 w_data[jrow] = zero;
377 }
378
379 // Compensate column sums --> michol option
380 if (opt == ON)
381 data_l[total_len] += col_drops[k];
382
383 if (data_l[total_len] == zero)
384 error ("ichol: encountered a pivot equal to 0");
385
386 if (! ichol_checkpivot (data_l[total_len]))
387 break;
388
389 // Once elements are dropped and compensation of column sums are done,
390 // scale the elements by the pivot.
391 data_l[total_len] = std::sqrt (data_l[total_len]);
392 for (jj = total_len + 1; jj < (total_len + w_len); jj++)
393 data_l[jj] /= data_l[total_len];
394 total_len += w_len;
395 // Check if there are too many elements to be indexed with
396 // octave_idx_type type due to fill-in during the process.
397 if (total_len < 0)
398 error ("ichol: integer overflow. Too many fill-in elements in L");
399
400 cidx_l[k+1] = cidx_l[k] - cidx_l[0] + w_len;
401
402 // Update Llist and Lfirst with the k-column information.
403 if (k < (n - 1))
404 {
405 Lfirst[k] = cidx_l[k];
406 if ((Lfirst[k] + 1) < cidx_l[k+1])
407 {
408 Lfirst[k]++;
409 jjrow = ridx_l[Lfirst[k]];
410 Llist[k] = Llist[jjrow];
411 Llist[jjrow] = k;
412 }
413 }
414 }
415
416 // Build the output matrices
417 L = octave_matrix_t (n, n, total_len);
418
419 for (i = 0; i <= n; i++)
420 L.cidx (i) = cidx_l[i];
421
422 for (i = 0; i < total_len; i++)
423 {
424 L.ridx (i) = ridx_l[i];
425 L.data (i) = data_l[i];
426 }
427}
428
429DEFUN (__icholt__, args, ,
430 doc: /* -*- texinfo -*-
431@deftypefn {} {@var{L} =} __icholt__ (@var{A}, @var{droptol}, @var{michol})
432Undocumented internal function.
433@end deftypefn */)
434{
435 if (args.length () != 3)
436 print_usage ();
437
438 double droptol = args(1).double_value ();
439 std::string michol = args(2).string_value ();
440
441 if (! args(0).iscomplex ())
442 {
443 SparseMatrix L;
444 SparseMatrix sm_l = Ftril (ovl (args(0)))(0).sparse_matrix_value ();
445 RowVector sm_col_norms = xcolnorms (sm_l, 1);
448 (sm_l, L, sm_col_norms.rwdata (), droptol, michol);
449
450 return ovl (L);
451 }
452 else
453 {
456 = Ftril (ovl (args(0)))(0).sparse_complex_matrix_value ();
457 Array <Complex> cols_norm = xcolnorms (sm_l, 1);
460 (sm_l, L, cols_norm.rwdata (),
461 Complex (droptol), michol);
462
463 return ovl (L);
464 }
465}
466
467/*
468%!test <*51736>
469%! k = 4;
470%! n = 2^k;
471%! Afull = diag (ones (n,1)) / ...
472%! 2+triu ([zeros(n,2), [n.^-[1;1;2]*ones(1,n-2);zeros(n-3,n-2)]], 1);
473%! A = sparse (Afull + Afull.');
474%! opts.type = "ict";
475%! opts.droptol = 0;
476%! L = ichol (A, opts);
477%! assert (norm (A - L*L.'), 0, 2*eps);
478*/
479
480OCTAVE_END_NAMESPACE(octave)
bool ichol_checkpivot_complex(Complex pivot)
Definition __ichol__.cc:62
bool ichol_checkpivot_real(double pivot)
Definition __ichol__.cc:73
double ichol_mult_real(double a, double b)
Definition __ichol__.cc:56
void ichol_t(const octave_matrix_t &sm, octave_matrix_t &L, const T *cols_norm, const T droptol, const std::string michol="off")
Definition __ichol__.cc:228
void ichol_0(octave_matrix_t &sm, const std::string michol="off")
Definition __ichol__.cc:84
Complex ichol_mult_complex(Complex a, Complex b)
Definition __ichol__.cc:43
void resize(const dim_vector &dv, const T &rfv)
Size of the specified dimension.
T * rwdata()
Size of the specified dimension.
Vector representing the dimensions (size) of an Array.
Definition dim-vector.h:90
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
void print_usage()
Definition defun-int.h:72
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition defun.h:56
void error(const char *fmt,...)
Definition error.cc:1003
std::complex< double > Complex
Definition oct-cmplx.h:33
#define OCTAVE_LOCAL_BUFFER(T, buf, size)
Definition oct-locbuf.h:44
RowVector xcolnorms(const Matrix &m, double p)
Definition oct-norm.cc:653
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition ovl.h:217
octave_value_list Ftril(const octave_value_list &args, int)
Definition tril.cc:382