GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
dot.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 2009-2025 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include "lo-blas-proto.h"
31#include "mx-base.h"
32
33#include "builtin-defun-decls.h"
34#include "defun.h"
35#include "error.h"
36#include "parse.h"
37
39
40// FIXME: input 'y' is no longer necessary (2/5/2022).
41// At some point it would be better to change all occurrences of
42// get_red_dims to eliminate this input parameter.
43static void
44get_red_dims (const dim_vector& x, const dim_vector& /* y */, int dim,
45 dim_vector& z, F77_INT& m, F77_INT& n, F77_INT& k)
46{
47 int nd = x.ndims ();
48 z = dim_vector::alloc (nd);
49 octave_idx_type tmp_m = 1;
50 octave_idx_type tmp_n = 1;
51 octave_idx_type tmp_k = 1;
52 for (int i = 0; i < nd; i++)
53 {
54 if (i < dim)
55 {
56 z(i) = x(i);
57 tmp_m *= x(i);
58 }
59 else if (i > dim)
60 {
61 z(i) = x(i);
62 tmp_n *= x(i);
63 }
64 else
65 {
66 z(i) = 1;
67 tmp_k = x(i);
68 }
69 }
70
71 m = to_f77_int (tmp_m);
72 n = to_f77_int (tmp_n);
73 k = to_f77_int (tmp_k);
74}
75
76DEFUN (dot, args, ,
77 doc: /* -*- texinfo -*-
78@deftypefn {} {@var{z} =} dot (@var{x}, @var{y})
79@deftypefnx {} {@var{z} =} dot (@var{x}, @var{y}, @var{dim})
80Compute the dot product of two vectors.
81
82If @var{x} and @var{y} are matrices, calculate the dot products along the
83first non-singleton dimension.
84
85If the optional argument @var{dim} is given, calculate the dot products
86along this dimension.
87
88Implementation Note: This is equivalent to
89@code{sum (conj (@var{X}) .* @var{Y}, @var{dim})}, but avoids forming a
90temporary array and is faster. When @var{X} and @var{Y} are column vectors,
91the result is equivalent to @code{@var{X}' * @var{Y}}. Although, @code{dot}
92is defined for integer arrays, the output may differ from the expected result
93due to the limited range of integer objects.
94@seealso{cross, divergence, tensorprod}
95@end deftypefn */)
96{
97 int nargin = args.length ();
98
99 if (nargin < 2 || nargin > 3)
100 print_usage ();
101
102 octave_value retval;
103 octave_value argx = args(0);
104 octave_value argy = args(1);
105
106 if (! argx.isnumeric () || ! argy.isnumeric ())
107 error ("dot: X and Y must be numeric");
108
109 dim_vector dimx = argx.dims ();
110 dim_vector dimy = argy.dims ();
111 bool match = dimx == dimy;
112 if (! match && nargin == 2 && dimx.isvector () && dimy.isvector ())
113 {
114 // Change to column vectors.
115 dimx = dimx.redim (1);
116 argx = argx.reshape (dimx);
117 dimy = dimy.redim (1);
118 argy = argy.reshape (dimy);
119 match = dimx == dimy;
120 }
121
122 if (! match)
123 error ("dot: sizes of X and Y must match");
124
125 int dim;
126 if (nargin == 2)
127 dim = dimx.first_non_singleton ();
128 else
129 dim = args(2).int_value (true) - 1;
130
131 if (dim < 0)
132 error ("dot: DIM must be a valid dimension");
133
134 F77_INT m, n, k;
135 dim_vector dimz;
136 if (argx.iscomplex () || argy.iscomplex ())
137 {
138 if (argx.is_single_type () || argy.is_single_type ())
139 {
142 get_red_dims (dimx, dimy, dim, dimz, m, n, k);
143 FloatComplexNDArray z (dimz);
144
145 F77_XFCN (cdotc3, CDOTC3, (m, n, k,
147 F77_CMPLX_ARG (z.rwdata ())));
148 retval = z;
149 }
150 else
151 {
154 get_red_dims (dimx, dimy, dim, dimz, m, n, k);
155 ComplexNDArray z (dimz);
156
157 F77_XFCN (zdotc3, ZDOTC3, (m, n, k,
159 F77_DBLE_CMPLX_ARG (z.rwdata ())));
160 retval = z;
161 }
162 }
163 else if (argx.isfloat () && argy.isfloat ())
164 {
165 if (argx.is_single_type () || argy.is_single_type ())
166 {
169 get_red_dims (dimx, dimy, dim, dimz, m, n, k);
170 FloatNDArray z (dimz);
171
172 F77_XFCN (sdot3, SDOT3, (m, n, k, x.data (), y.data (),
173 z.rwdata ()));
174 retval = z;
175 }
176 else
177 {
178 NDArray x = argx.array_value ();
179 NDArray y = argy.array_value ();
180 get_red_dims (dimx, dimy, dim, dimz, m, n, k);
181 NDArray z (dimz);
182
183 F77_XFCN (ddot3, DDOT3, (m, n, k, x.data (), y.data (),
184 z.rwdata ()));
185 retval = z;
186 }
187 }
188 else
189 {
190 // Non-optimized evaluation.
191 // FIXME: This may *not* do what the user expects.
192 // It might be more useful to issue a warning, or even an error, instead
193 // of calculating possibly garbage results.
194 // Think of the dot product of two int8 vectors where the multiplications
195 // exceed intmax.
196 octave_value_list tmp (2);
197 tmp(0) = binary_op (octave_value::op_el_mul, argx, argy);
198 tmp(1) = dim + 1;
199
200 tmp = Fsum (tmp, 1);
201 if (! tmp.empty ())
202 retval = tmp(0);
203 }
204
205 return retval;
206}
207
208/*
209%!assert (dot ([1, 2], [2, 3]), 8)
210
211%!test
212%! x = [2, 1; 2, 1];
213%! y = [-0.5, 2; 0.5, -2];
214%! assert (dot (x, y), [0 0]);
215%! assert (dot (single (x), single (y)), single ([0 0]));
216
217%!test
218%! x = [1+i, 3-i; 1-i, 3-i];
219%! assert (dot (x, x), [4, 20]);
220%! assert (dot (single (x), single (x)), single ([4, 20]));
221
222%!test
223%! x = int8 ([1, 2]);
224%! y = int8 ([2, 3]);
225%! assert (dot (x, y), 8);
226
227%!test
228%! x = int8 ([1, 2; 3, 4]);
229%! y = int8 ([5, 6; 7, 8]);
230%! assert (dot (x, y), [26 44]);
231%! assert (dot (x, y, 2), [17; 53]);
232%! assert (dot (x, y, 3), [5 12; 21 32]);
233
234## This is, perhaps, surprising. Integer maximums and saturation mechanics
235## prevent accurate value from being calculated.
236%!test
237%! x = int8 ([127]);
238%! assert (dot (x, x), 127);
239
240## Test input validation
241%!error dot ()
242%!error dot (1)
243%!error dot (1,2,3,4)
244%!error <X and Y must be numeric> dot ({1,2}, [3,4])
245%!error <X and Y must be numeric> dot ([1,2], {3,4})
246%!error <sizes of X and Y must match> dot ([1 2], [1 2 3])
247%!error <sizes of X and Y must match> dot ([1 2]', [1 2 3]')
248%!error <sizes of X and Y must match> dot (ones (2,2), ones (2,3))
249%!error <DIM must be a valid dimension> dot ([1 2], [1 2], 0)
250*/
251
252template <typename T>
253static void
254blkmm_internal (const T& x, const T& y, T& z,
255 F77_INT m, F77_INT n, F77_INT k, F77_INT np);
256
257template <>
258void
259blkmm_internal (const FloatComplexNDArray& x, const FloatComplexNDArray& y,
261 F77_INT m, F77_INT n, F77_INT k, F77_INT np)
262{
263 F77_XFCN (cmatm3, CMATM3, (m, n, k, np,
264 F77_CONST_CMPLX_ARG (x.data ()),
266 F77_CMPLX_ARG (z.rwdata ())));
267}
268
269template <>
270void
271blkmm_internal (const ComplexNDArray& x, const ComplexNDArray& y,
273 F77_INT m, F77_INT n, F77_INT k, F77_INT np)
274{
275 F77_XFCN (zmatm3, ZMATM3, (m, n, k, np,
276 F77_CONST_DBLE_CMPLX_ARG (x.data ()),
278 F77_DBLE_CMPLX_ARG (z.rwdata ())));
279}
280
281template <>
282void
283blkmm_internal (const FloatNDArray& x, const FloatNDArray& y, FloatNDArray& z,
284 F77_INT m, F77_INT n, F77_INT k, F77_INT np)
285{
286 F77_XFCN (smatm3, SMATM3, (m, n, k, np,
287 x.data (), y.data (),
288 z.rwdata ()));
289}
290
291template <>
292void
293blkmm_internal (const NDArray& x, const NDArray& y, NDArray& z,
294 F77_INT m, F77_INT n, F77_INT k, F77_INT np)
295{
296 F77_XFCN (dmatm3, DMATM3, (m, n, k, np,
297 x.data (), y.data (),
298 z.rwdata ()));
299}
300
301static void
302get_blkmm_dims (const dim_vector& dimx, const dim_vector& dimy,
303 F77_INT& m, F77_INT& n, F77_INT& k, F77_INT& np,
304 dim_vector& dimz)
305{
306 int nd = dimx.ndims ();
307
308 m = to_f77_int (dimx(0));
309 k = to_f77_int (dimx(1));
310 n = to_f77_int (dimy(1));
311
312 octave_idx_type tmp_np = 1;
313
314 bool match = ((dimy(0) == k) && (nd == dimy.ndims ()));
315
316 dimz = dim_vector::alloc (nd);
317
318 dimz(0) = m;
319 dimz(1) = n;
320 for (int i = 2; match && i < nd; i++)
321 {
322 match = (dimx(i) == dimy(i));
323 dimz(i) = dimx(i);
324 tmp_np *= dimz(i);
325 }
326
327 np = to_f77_int (tmp_np);
328
329 if (! match)
330 error ("blkmm: A and B dimensions don't match: (%s) and (%s)",
331 dimx.str ().c_str (), dimy.str ().c_str ());
332}
333
334template <typename T>
335T
336do_blkmm (const octave_value& xov, const octave_value& yov)
337{
338 const T x = octave_value_extract<T> (xov);
339 const T y = octave_value_extract<T> (yov);
340 F77_INT m, n, k, np;
341 dim_vector dimz;
342
343 get_blkmm_dims (x.dims (), y.dims (), m, n, k, np, dimz);
344
345 T z (dimz);
346
347 if (n != 0 && m != 0)
348 blkmm_internal<T> (x, y, z, m, n, k, np);
349
350 return z;
351}
352
353DEFUN (blkmm, args, ,
354 doc: /* -*- texinfo -*-
355@deftypefn {} {@var{C} =} blkmm (@var{A}, @var{B})
356Compute products of matrix blocks.
357
358The blocks are given as 2-dimensional subarrays of the arrays @var{A},
359@var{B}. The size of @var{A} must have the form @code{[m,k,@dots{}]} and
360size of @var{B} must be @code{[k,n,@dots{}]}. The result is then of size
361@code{[m,n,@dots{}]} and is computed as follows:
362
363@example
364@group
365for i = 1:prod (size (@var{A})(3:end))
366 @var{C}(:,:,i) = @var{A}(:,:,i) * @var{B}(:,:,i)
367endfor
368@end group
369@end example
370@end deftypefn */)
371{
372 if (args.length () != 2)
373 print_usage ();
374
375 octave_value retval;
376
377 octave_value argx = args(0);
378 octave_value argy = args(1);
379
380 if (! argx.isnumeric () || ! argy.isnumeric ())
381 error ("blkmm: A and B must be numeric");
382
383 if (argx.iscomplex () || argy.iscomplex ())
384 {
385 if (argx.is_single_type () || argy.is_single_type ())
386 retval = do_blkmm<FloatComplexNDArray> (argx, argy);
387 else
388 retval = do_blkmm<ComplexNDArray> (argx, argy);
389 }
390 else
391 {
392 if (argx.is_single_type () || argy.is_single_type ())
393 retval = do_blkmm<FloatNDArray> (argx, argy);
394 else
395 retval = do_blkmm<NDArray> (argx, argy);
396 }
397
398 return retval;
399}
400
401/*
402%!test
403%! x(:,:,1) = [1 2; 3 4];
404%! x(:,:,2) = [1 1; 1 1];
405%! z(:,:,1) = [7 10; 15 22];
406%! z(:,:,2) = [2 2; 2 2];
407%! assert (blkmm (x,x), z);
408%! assert (blkmm (single (x), single (x)), single (z));
409%! assert (blkmm (x, single (x)), single (z));
410
411%!test
412%! x(:,:,1) = [1 2; 3 4];
413%! x(:,:,2) = [1i 1i; 1i 1i];
414%! z(:,:,1) = [7 10; 15 22];
415%! z(:,:,2) = [-2 -2; -2 -2];
416%! assert (blkmm (x,x), z);
417%! assert (blkmm (single (x), single (x)), single (z));
418%! assert (blkmm (x, single (x)), single (z));
419
420%!test <*54261>
421%! x = ones (0, 3, 3);
422%! y = ones (3, 5, 3);
423%! z = blkmm (x,y);
424%! assert (size (z), [0, 5, 3]);
425%! x = ones (1, 3, 3);
426%! y = ones (3, 0, 3);
427%! z = blkmm (x,y);
428%! assert (size (z), [1, 0, 3]);
429
430## Test input validation
431%!error blkmm ()
432%!error blkmm (1)
433%!error blkmm (1,2,3)
434%!error <A and B must be numeric> blkmm ({1,2}, [3,4])
435%!error <A and B must be numeric> blkmm ([3,4], {1,2})
436%!error <A and B dimensions don't match> blkmm (ones (2,2), ones (3,3))
437*/
438
439OCTAVE_END_NAMESPACE(octave)
subroutine cdotc3(m, n, k, a, b, c)
Definition cdotc3.f:23
const T * data() const
Size of the specified dimension.
Definition Array.h:665
T * rwdata()
Size of the specified dimension.
Vector representing the dimensions (size) of an Array.
Definition dim-vector.h:90
std::string str(char sep='x') const
Definition dim-vector.cc:68
static dim_vector alloc(int n)
Definition dim-vector.h:198
octave_idx_type ndims() const
Number of dimensions.
Definition dim-vector.h:253
bool isvector() const
Definition dim-vector.h:391
int first_non_singleton(int def=0) const
Definition dim-vector.h:440
dim_vector redim(int n) const
Force certain dimensionality, preserving numel ().
bool empty() const
Definition ovl.h:113
bool isfloat() const
Definition ov.h:701
bool isnumeric() const
Definition ov.h:750
ComplexNDArray complex_array_value(bool frc_str_conv=false) const
Definition ov.h:884
bool is_single_type() const
Definition ov.h:698
octave_value reshape(const dim_vector &dv) const
Definition ov.h:571
bool iscomplex() const
Definition ov.h:741
@ op_el_mul
Definition ov.h:105
NDArray array_value(bool frc_str_conv=false) const
Definition ov.h:865
FloatComplexNDArray float_complex_array_value(bool frc_str_conv=false) const
Definition ov.h:888
FloatNDArray float_array_value(bool frc_str_conv=false) const
Definition ov.h:868
dim_vector dims() const
Definition ov.h:541
subroutine cmatm3(m, n, k, np, a, b, c)
Definition cmatm3.f:21
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
octave_value_list Fsum(const octave_value_list &args, int)
Definition data.cc:3148
subroutine ddot3(m, n, k, a, b, c)
Definition ddot3.f:23
void print_usage()
Definition defun-int.h:72
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition defun.h:56
subroutine dmatm3(m, n, k, np, a, b, c)
Definition dmatm3.f:23
T do_blkmm(const octave_value &xov, const octave_value &yov)
Definition dot.cc:336
void error(const char *fmt,...)
Definition error.cc:1003
#define F77_CONST_CMPLX_ARG(x)
Definition f77-fcn.h:313
#define F77_DBLE_CMPLX_ARG(x)
Definition f77-fcn.h:316
#define F77_CMPLX_ARG(x)
Definition f77-fcn.h:310
#define F77_XFCN(f, F, args)
Definition f77-fcn.h:45
octave_f77_int_type F77_INT
Definition f77-fcn.h:306
#define F77_CONST_DBLE_CMPLX_ARG(x)
Definition f77-fcn.h:319
double dot(const ColumnVector &v1, const ColumnVector &v2)
Definition graphics.cc:5772
F77_RET_T const F77_DBLE * x
octave_value binary_op(type_info &ti, octave_value::binary_op op, const octave_value &a, const octave_value &b)
subroutine sdot3(m, n, k, a, b, c)
Definition sdot3.f:23
subroutine smatm3(m, n, k, np, a, b, c)
Definition smatm3.f:23
subroutine zdotc3(m, n, k, a, b, c)
Definition zdotc3.f:23
subroutine zmatm3(m, n, k, np, a, b, c)
Definition zmatm3.f:23