GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
dqk21.f
Go to the documentation of this file.
1 SUBROUTINE dqk21(F,A,B,RESULT,ABSERR,RESABS,RESASC,IERR)
2C***BEGIN PROLOGUE DQK21
3C***DATE WRITTEN 800101 (YYMMDD)
4C***REVISION DATE 830518 (YYMMDD)
5C***CATEGORY NO. H2A1A2
6C***KEYWORDS 21-POINT GAUSS-KRONROD RULES
7C***AUTHOR PIESSENS,ROBERT,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN
8C DE DONCKER,ELISE,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN
9C***PURPOSE TO COMPUTE I = INTEGRAL OF F OVER (A,B), WITH ERROR
10C ESTIMATE
11C J = INTEGRAL OF ABS(F) OVER (A,B)
12C***DESCRIPTION
13C
14C INTEGRATION RULES
15C STANDARD FORTRAN SUBROUTINE
16C DOUBLE PRECISION VERSION
17C
18C PARAMETERS
19C ON ENTRY
20C F - SUBROUTINE F(X,IERR,RESULT) DEFINING THE INTEGRAND
21C FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS TO BE
22C DECLARED E X T E R N A L IN THE DRIVER PROGRAM.
23C
24C A - DOUBLE PRECISION
25C LOWER LIMIT OF INTEGRATION
26C
27C B - DOUBLE PRECISION
28C UPPER LIMIT OF INTEGRATION
29C
30C ON RETURN
31C RESULT - DOUBLE PRECISION
32C APPROXIMATION TO THE INTEGRAL I
33C RESULT IS COMPUTED BY APPLYING THE 21-POINT
34C KRONROD RULE (RESK) OBTAINED BY OPTIMAL ADDITION
35C OF ABSCISSAE TO THE 10-POINT GAUSS RULE (RESG).
36C
37C ABSERR - DOUBLE PRECISION
38C ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR,
39C WHICH SHOULD NOT EXCEED ABS(I-RESULT)
40C
41C RESABS - DOUBLE PRECISION
42C APPROXIMATION TO THE INTEGRAL J
43C
44C RESASC - DOUBLE PRECISION
45C APPROXIMATION TO THE INTEGRAL OF ABS(F-I/(B-A))
46C OVER (A,B)
47C
48C***REFERENCES (NONE)
49C***ROUTINES CALLED D1MACH
50C***END PROLOGUE DQK21
51C
52 DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DABS,DHLGTH,DMAX1,DMIN1,
53 * D1MACH,EPMACH,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
54 * RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
55 INTEGER J,JTW,JTWM1
56 EXTERNAL f
57C
58 dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11)
59C
60C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
61C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
62C CORRESPONDING WEIGHTS ARE GIVEN.
63C
64C XGK - ABSCISSAE OF THE 21-POINT KRONROD RULE
65C XGK(2), XGK(4), ... ABSCISSAE OF THE 10-POINT
66C GAUSS RULE
67C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
68C ADDED TO THE 10-POINT GAUSS RULE
69C
70C WGK - WEIGHTS OF THE 21-POINT KRONROD RULE
71C
72C WG - WEIGHTS OF THE 10-POINT GAUSS RULE
73C
74C
75C GAUSS QUADRATURE WEIGHTS AND KRONRON QUADRATURE ABSCISSAE AND WEIGHTS
76C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
77C BELL LABS, NOV. 1981.
78C
79 DATA wg( 1) / 0.0666713443 0868813759 3568809893 332 d0 /
80 DATA wg( 2) / 0.1494513491 5058059314 5776339657 697 d0 /
81 DATA wg( 3) / 0.2190863625 1598204399 5534934228 163 d0 /
82 DATA wg( 4) / 0.2692667193 0999635509 1226921569 469 d0 /
83 DATA wg( 5) / 0.2955242247 1475287017 3892994651 338 d0 /
84C
85 DATA xgk( 1) / 0.9956571630 2580808073 5527280689 003 d0 /
86 DATA xgk( 2) / 0.9739065285 1717172007 7964012084 452 d0 /
87 DATA xgk( 3) / 0.9301574913 5570822600 1207180059 508 d0 /
88 DATA xgk( 4) / 0.8650633666 8898451073 2096688423 493 d0 /
89 DATA xgk( 5) / 0.7808177265 8641689706 3717578345 042 d0 /
90 DATA xgk( 6) / 0.6794095682 9902440623 4327365114 874 d0 /
91 DATA xgk( 7) / 0.5627571346 6860468333 9000099272 694 d0 /
92 DATA xgk( 8) / 0.4333953941 2924719079 9265943165 784 d0 /
93 DATA xgk( 9) / 0.2943928627 0146019813 1126603103 866 d0 /
94 DATA xgk( 10) / 0.1488743389 8163121088 4826001129 720 d0 /
95 DATA xgk( 11) / 0.0000000000 0000000000 0000000000 000 d0 /
96C
97 DATA wgk( 1) / 0.0116946388 6737187427 8064396062 192 d0 /
98 DATA wgk( 2) / 0.0325581623 0796472747 8818972459 390 d0 /
99 DATA wgk( 3) / 0.0547558965 7435199603 1381300244 580 d0 /
100 DATA wgk( 4) / 0.0750396748 1091995276 7043140916 190 d0 /
101 DATA wgk( 5) / 0.0931254545 8369760553 5065465083 366 d0 /
102 DATA wgk( 6) / 0.1093871588 0229764189 9210590325 805 d0 /
103 DATA wgk( 7) / 0.1234919762 6206585107 7958109831 074 d0 /
104 DATA wgk( 8) / 0.1347092173 1147332592 8054001771 707 d0 /
105 DATA wgk( 9) / 0.1427759385 7706008079 7094273138 717 d0 /
106 DATA wgk( 10) / 0.1477391049 0133849137 4841515972 068 d0 /
107 DATA wgk( 11) / 0.1494455540 0291690566 4936468389 821 d0 /
108C
109C
110C LIST OF MAJOR VARIABLES
111C -----------------------
112C
113C CENTR - MID POINT OF THE INTERVAL
114C HLGTH - HALF-LENGTH OF THE INTERVAL
115C ABSC - ABSCISSA
116C FVAL* - FUNCTION VALUE
117C RESG - RESULT OF THE 10-POINT GAUSS FORMULA
118C RESK - RESULT OF THE 21-POINT KRONROD FORMULA
119C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
120C I.E. TO I/(B-A)
121C
122C
123C MACHINE DEPENDENT CONSTANTS
124C ---------------------------
125C
126C EPMACH IS THE LARGEST RELATIVE SPACING.
127C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
128C
129C***FIRST EXECUTABLE STATEMENT DQK21
130 epmach = d1mach(4)
131 uflow = d1mach(1)
132C
133 centr = 0.5d+00*(a+b)
134 hlgth = 0.5d+00*(b-a)
135 dhlgth = dabs(hlgth)
136C
137C COMPUTE THE 21-POINT KRONROD APPROXIMATION TO
138C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
139C
140 resg = 0.0d+00
141 ierr = 0
142 CALL f(centr,ierr,fc)
143 IF (ierr .LT. 0) RETURN
144 resk = wgk(11)*fc
145 resabs = dabs(resk)
146 DO 10 j=1,5
147 jtw = 2*j
148 absc = hlgth*xgk(jtw)
149 CALL f(centr-absc,ierr,fval1)
150 IF (ierr .LT. 0) RETURN
151 CALL f(centr+absc,ierr,fval2)
152 IF (ierr .LT. 0) RETURN
153 fv1(jtw) = fval1
154 fv2(jtw) = fval2
155 fsum = fval1+fval2
156 resg = resg+wg(j)*fsum
157 resk = resk+wgk(jtw)*fsum
158 resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2))
159 10 CONTINUE
160 DO 15 j = 1,5
161 jtwm1 = 2*j-1
162 absc = hlgth*xgk(jtwm1)
163 CALL f(centr-absc,ierr,fval1)
164 IF (ierr .LT. 0) RETURN
165 CALL f(centr+absc,ierr,fval2)
166 IF (ierr .LT. 0) RETURN
167 fv1(jtwm1) = fval1
168 fv2(jtwm1) = fval2
169 fsum = fval1+fval2
170 resk = resk+wgk(jtwm1)*fsum
171 resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2))
172 15 CONTINUE
173 reskh = resk*0.5d+00
174 resasc = wgk(11)*dabs(fc-reskh)
175 DO 20 j=1,10
176 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
177 20 CONTINUE
178 result = resk*hlgth
179 resabs = resabs*dhlgth
180 resasc = resasc*dhlgth
181 abserr = dabs((resk-resg)*hlgth)
182 IF(resasc.NE.0.0d+00.AND.abserr.NE.0.0d+00)
183 * abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
184 IF(resabs.GT.uflow/(0.5d+02*epmach)) abserr = dmax1
185 * ((epmach*0.5d+02)*resabs,abserr)
186 RETURN
187 END
subroutine dqk21(f, a, b, result, abserr, resabs, resasc, ierr)
Definition dqk21.f:2