GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
svd.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 1994-2025 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include <algorithm>
31#include <unordered_map>
32
33#include "CMatrix.h"
34#include "dDiagMatrix.h"
35#include "dMatrix.h"
36#include "fCMatrix.h"
37#include "fDiagMatrix.h"
38#include "fMatrix.h"
39#include "lo-error.h"
40#include "lo-lapack-proto.h"
41#include "svd.h"
42
43// class to compute optimal work space size (lwork) for DGEJSV and SGEJSV
44template<typename T>
45class gejsv_lwork
46{
47public:
48
49 OCTAVE_DISABLE_CONSTRUCT_COPY_MOVE_DELETE (gejsv_lwork)
50
51 // Unfortunately, dgejsv and sgejsv do not provide estimation of 'lwork'.
52 // Thus, we have to estimate it according to corresponding LAPACK
53 // documentation and related source codes (e.g. cgejsv).
54 // In LAPACKE (C interface to LAPACK), the memory handling code in
55 // LAPACKE_dgejsv() (lapacke_dgejsv.c, last visit 2019-02-17) uses
56 // the minimum required working space. In contrast, here the optimal
57 // working space size is computed, at the cost of much longer code.
58
59 static F77_INT optimal (char& joba, char& jobu, char& jobv,
60 F77_INT m, F77_INT n);
61
62private:
63 typedef typename T::element_type P;
64
65 // functions could be called from GEJSV
66 static F77_INT geqp3_lwork (F77_INT m, F77_INT n,
67 P *a, F77_INT lda,
68 F77_INT *jpvt, P *tau, P *work,
69 F77_INT lwork, F77_INT& info);
70
71 static F77_INT geqrf_lwork (F77_INT m, F77_INT n,
72 P *a, F77_INT lda,
73 P *tau, P *work,
74 F77_INT lwork, F77_INT& info);
75
76 static F77_INT gelqf_lwork (F77_INT m, F77_INT n,
77 P *a, F77_INT lda,
78 P *tau, P *work,
79 F77_INT lwork, F77_INT& info);
80
81 static F77_INT ormlq_lwork (char& side, char& trans,
82 F77_INT m, F77_INT n, F77_INT k,
83 P *a, F77_INT lda,
84 P *tau, P *c, F77_INT ldc,
85 P *work, F77_INT lwork, F77_INT& info);
86
87 static F77_INT ormqr_lwork (char& side, char& trans,
88 F77_INT m, F77_INT n, F77_INT k,
89 P *a, F77_INT lda,
90 P *tau, P *c, F77_INT ldc,
91 P *work, F77_INT lwork, F77_INT& info);
92};
93
94#define GEJSV_REAL_QP3_LWORK(f, F) \
95 F77_XFCN (f, F, (m, n, a, lda, jpvt, tau, work, lwork, info))
96
97#define GEJSV_REAL_QR_LWORK(f, F) \
98 F77_XFCN (f, F, (m, n, a, lda, tau, work, lwork, info))
99
100#define GEJSV_REAL_ORM_LWORK(f, F) \
101 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&side, 1), \
102 F77_CONST_CHAR_ARG2 (&trans, 1), \
103 m, n, k, a, lda, tau, \
104 c, ldc, work, lwork, info \
105 F77_CHAR_ARG_LEN (1) \
106 F77_CHAR_ARG_LEN (1)))
107
108// For Matrix
109template<>
111gejsv_lwork<Matrix>::geqp3_lwork (F77_INT m, F77_INT n,
112 P *a, F77_INT lda,
113 F77_INT *jpvt, P *tau, P *work,
114 F77_INT lwork, F77_INT& info)
115{
116 GEJSV_REAL_QP3_LWORK (dgeqp3, DGEQP3);
117 return static_cast<F77_INT> (work[0]);
118}
119
120template<>
122gejsv_lwork<Matrix>::geqrf_lwork (F77_INT m, F77_INT n,
123 P *a, F77_INT lda,
124 P *tau, P *work,
125 F77_INT lwork, F77_INT& info)
126{
127 GEJSV_REAL_QR_LWORK (dgeqrf, DGEQRF);
128 return static_cast<F77_INT> (work[0]);
129}
130
131template<>
133gejsv_lwork<Matrix>::gelqf_lwork (F77_INT m, F77_INT n,
134 P *a, F77_INT lda,
135 P *tau, P *work,
136 F77_INT lwork, F77_INT& info)
137{
138 GEJSV_REAL_QR_LWORK (dgelqf, DGELQF);
139 return static_cast<F77_INT> (work[0]);
140}
141
142template<>
144gejsv_lwork<Matrix>::ormlq_lwork (char& side, char& trans,
145 F77_INT m, F77_INT n, F77_INT k,
146 P *a, F77_INT lda,
147 P *tau, P *c, F77_INT ldc,
148 P *work, F77_INT lwork, F77_INT& info)
149{
150 GEJSV_REAL_ORM_LWORK (dormlq, DORMLQ);
151 return static_cast<F77_INT> (work[0]);
152}
153
154template<>
156gejsv_lwork<Matrix>::ormqr_lwork (char& side, char& trans,
157 F77_INT m, F77_INT n, F77_INT k,
158 P *a, F77_INT lda,
159 P *tau, P *c, F77_INT ldc,
160 P *work, F77_INT lwork, F77_INT& info)
161{
162 GEJSV_REAL_ORM_LWORK (dormqr, DORMQR);
163 return static_cast<F77_INT> (work[0]);
164}
165
166// For FloatMatrix
167template<>
169gejsv_lwork<FloatMatrix>::geqp3_lwork (F77_INT m, F77_INT n,
170 P *a, F77_INT lda,
171 F77_INT *jpvt, P *tau, P *work,
172 F77_INT lwork, F77_INT& info)
173{
174 GEJSV_REAL_QP3_LWORK (sgeqp3, SGEQP3);
175 return static_cast<F77_INT> (work[0]);
176}
177
178template<>
180gejsv_lwork<FloatMatrix>::geqrf_lwork (F77_INT m, F77_INT n,
181 P *a, F77_INT lda,
182 P *tau, P *work,
183 F77_INT lwork, F77_INT& info)
184{
185 GEJSV_REAL_QR_LWORK (sgeqrf, SGEQRF);
186 return static_cast<F77_INT> (work[0]);
187}
188
189template<>
191gejsv_lwork<FloatMatrix>::gelqf_lwork (F77_INT m, F77_INT n,
192 P *a, F77_INT lda,
193 P *tau, P *work,
194 F77_INT lwork, F77_INT& info)
195{
196 GEJSV_REAL_QR_LWORK (sgelqf, SGELQF);
197 return static_cast<F77_INT> (work[0]);
198}
199
200template<>
202gejsv_lwork<FloatMatrix>::ormlq_lwork (char& side, char& trans,
203 F77_INT m, F77_INT n, F77_INT k,
204 P *a, F77_INT lda,
205 P *tau, P *c, F77_INT ldc,
206 P *work, F77_INT lwork, F77_INT& info)
207{
208 GEJSV_REAL_ORM_LWORK (sormlq, SORMLQ);
209 return static_cast<F77_INT> (work[0]);
210}
211
212template<>
214gejsv_lwork<FloatMatrix>::ormqr_lwork (char& side, char& trans,
215 F77_INT m, F77_INT n, F77_INT k,
216 P *a, F77_INT lda,
217 P *tau, P *c, F77_INT ldc,
218 P *work, F77_INT lwork, F77_INT& info)
219{
220 GEJSV_REAL_ORM_LWORK (sormqr, SORMQR);
221 return static_cast<F77_INT> (work[0]);
222}
223
224#undef GEJSV_REAL_QP3_LWORK
225#undef GEJSV_REAL_QR_LWORK
226#undef GEJSV_REAL_ORM_LWORK
227
228template<typename T>
230gejsv_lwork<T>::optimal (char& joba, char& jobu, char& jobv,
231 F77_INT m, F77_INT n)
232{
233 F77_INT lwork = -1;
234 std::vector<P> work (2); // dummy work space
235
236 // variables that mimic running environment of gejsv
237 F77_INT lda = std::max<F77_INT> (m, 1);
238 F77_INT ierr = 0;
239 char side = 'L';
240 char trans = 'N';
241 std::vector<P> mat_a (1);
242 P *a = mat_a.data (); // dummy input matrix
243 std::vector<F77_INT> vec_jpvt = {0};
244 P *tau = work.data ();
245 P *u = work.data ();
246 P *v = work.data ();
247
248 bool need_lsvec = jobu == 'U' || jobu == 'F';
249 bool need_rsvec = jobv == 'V' || jobv == 'J';
250
251 F77_INT lw_pocon = 3 * n; // for [s,d]pocon
252 F77_INT lw_geqp3 = geqp3_lwork (m, n, a, lda, vec_jpvt.data (),
253 tau, work.data (), -1, ierr);
254 F77_INT lw_geqrf = geqrf_lwork (m, n, a, lda,
255 tau, work.data (), -1, ierr);
256
257 if (! (need_lsvec || need_rsvec) )
258 {
259 // only SIGMA is needed
260 if (! (joba == 'E' || joba == 'G') )
261 lwork = std::max<F77_INT> ({2*m + n, n + lw_geqp3, n + lw_geqrf, 7});
262 else
263 lwork = std::max<F77_INT> ({2*m + n, n + lw_geqp3, n + lw_geqrf,
264 n + n*n + lw_pocon, 7});
265 }
266 else if (need_rsvec && ! need_lsvec)
267 {
268 // SIGMA and the right singular vectors are needed
269 F77_INT lw_gelqf = gelqf_lwork (n, n, a, lda,
270 tau, work.data (), -1, ierr);
271 trans = 'T';
272 F77_INT lw_ormlq = ormlq_lwork (side, trans, n, n, n, a, lda,
273 tau, v, n, work.data (), -1, ierr);
274 lwork = std::max<F77_INT> ({2*m + n, n + lw_geqp3, n + lw_pocon,
275 n + lw_gelqf, 2*n + lw_geqrf, n + lw_ormlq});
276 }
277 else if (need_lsvec && ! need_rsvec)
278 {
279 // SIGMA and the left singular vectors are needed
280 F77_INT n1 = (jobu == 'U') ? n : m; // size of U is m x n1
281 F77_INT lw_ormqr = ormqr_lwork (side, trans, m, n1, n, a, lda,
282 tau, u, m, work.data (), -1, ierr);
283 lwork = std::max<F77_INT> ({2*m + n, n + lw_geqp3, n + lw_pocon,
284 2*n + lw_geqrf, n + lw_ormqr});
285 }
286 else // full SVD is needed
287 {
288 if (jobv == 'V')
289 lwork = std::max (2*m + n, 6*n + 2*n*n);
290 else if (jobv == 'J')
291 lwork = std::max<F77_INT> ({2*m + n, 4*n + n*n, 2*n + n*n + 6});
292
293 F77_INT n1 = (jobu == 'U') ? n : m; // size of U is m x n1
294 F77_INT lw_ormqr = ormqr_lwork (side, trans, m, n1, n, a, lda,
295 tau, u, m, work.data (), -1, ierr);
296 lwork = std::max (lwork, n + lw_ormqr);
297 }
298
299 return lwork;
300}
301
303
305
306template <typename T>
307T
309{
310 if (m_type == svd::Type::sigma_only)
311 (*current_liboctave_error_handler)
312 ("svd: U not computed because type == svd::sigma_only");
313
314 return m_left_sm;
315}
316
317template <typename T>
318T
320{
321 if (m_type == svd::Type::sigma_only)
322 (*current_liboctave_error_handler)
323 ("svd: V not computed because type == svd::sigma_only");
324
325 return m_right_sm;
326}
327
328// GESVD specializations
329
330#define GESVD_REAL_STEP(f, F) \
331 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobu, 1), \
332 F77_CONST_CHAR_ARG2 (&jobv, 1), \
333 m, n, tmp_data, m1, s_vec, u, m1, vt, \
334 nrow_vt1, work.data (), lwork, info \
335 F77_CHAR_ARG_LEN (1) \
336 F77_CHAR_ARG_LEN (1)))
337
338#define GESVD_COMPLEX_STEP(f, F, CMPLX_ARG) \
339 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobu, 1), \
340 F77_CONST_CHAR_ARG2 (&jobv, 1), \
341 m, n, CMPLX_ARG (tmp_data), \
342 m1, s_vec, CMPLX_ARG (u), m1, \
343 CMPLX_ARG (vt), nrow_vt1, \
344 CMPLX_ARG (work.data ()), \
345 lwork, rwork.data (), info \
346 F77_CHAR_ARG_LEN (1) \
347 F77_CHAR_ARG_LEN (1)))
348
349// DGESVD
350template<>
351OCTAVE_API void
352svd<Matrix>::gesvd (char& jobu, char& jobv, F77_INT m, F77_INT n,
353 double *tmp_data, F77_INT m1, double *s_vec,
354 double *u, double *vt, F77_INT nrow_vt1,
355 std::vector<double>& work, F77_INT& lwork,
356 F77_INT& info)
357{
358 GESVD_REAL_STEP (dgesvd, DGESVD);
359
360 lwork = static_cast<F77_INT> (work[0]);
361 work.reserve (lwork);
362
363 GESVD_REAL_STEP (dgesvd, DGESVD);
364}
365
366// SGESVD
367template<>
368OCTAVE_API void
369svd<FloatMatrix>::gesvd (char& jobu, char& jobv, F77_INT m, F77_INT n,
370 float *tmp_data, F77_INT m1, float *s_vec,
371 float *u, float *vt, F77_INT nrow_vt1,
372 std::vector<float>& work, F77_INT& lwork,
373 F77_INT& info)
374{
375 GESVD_REAL_STEP (sgesvd, SGESVD);
376
377 lwork = static_cast<F77_INT> (work[0]);
378 work.reserve (lwork);
379
380 GESVD_REAL_STEP (sgesvd, SGESVD);
381}
382
383// ZGESVD
384template<>
385OCTAVE_API void
386svd<ComplexMatrix>::gesvd (char& jobu, char& jobv, F77_INT m, F77_INT n,
387 Complex *tmp_data, F77_INT m1, double *s_vec,
388 Complex *u, Complex *vt, F77_INT nrow_vt1,
389 std::vector<Complex>& work, F77_INT& lwork,
390 F77_INT& info)
391{
392 std::vector<double> rwork (5 * std::max (m, n));
393
394 GESVD_COMPLEX_STEP (zgesvd, ZGESVD, F77_DBLE_CMPLX_ARG);
395
396 lwork = static_cast<F77_INT> (work[0].real ());
397 work.reserve (lwork);
398
399 GESVD_COMPLEX_STEP (zgesvd, ZGESVD, F77_DBLE_CMPLX_ARG);
400}
401
402// CGESVD
403template<>
404OCTAVE_API void
405svd<FloatComplexMatrix>::gesvd (char& jobu, char& jobv, F77_INT m,
406 F77_INT n, FloatComplex *tmp_data,
407 F77_INT m1, float *s_vec, FloatComplex *u,
408 FloatComplex *vt, F77_INT nrow_vt1,
409 std::vector<FloatComplex>& work,
410 F77_INT& lwork, F77_INT& info)
411{
412 std::vector<float> rwork (5 * std::max (m, n));
413
414 GESVD_COMPLEX_STEP (cgesvd, CGESVD, F77_CMPLX_ARG);
415
416 lwork = static_cast<F77_INT> (work[0].real ());
417 work.reserve (lwork);
418
419 GESVD_COMPLEX_STEP (cgesvd, CGESVD, F77_CMPLX_ARG);
420}
421
422#undef GESVD_REAL_STEP
423#undef GESVD_COMPLEX_STEP
424
425// GESDD specializations
426
427#define GESDD_REAL_STEP(f, F) \
428 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobz, 1), \
429 m, n, tmp_data, m1, s_vec, u, m1, vt, nrow_vt1, \
430 work.data (), lwork, iwork, info \
431 F77_CHAR_ARG_LEN (1)))
432
433#define GESDD_COMPLEX_STEP(f, F, CMPLX_ARG) \
434 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobz, 1), m, n, \
435 CMPLX_ARG (tmp_data), m1, \
436 s_vec, CMPLX_ARG (u), m1, \
437 CMPLX_ARG (vt), nrow_vt1, \
438 CMPLX_ARG (work.data ()), lwork, \
439 rwork.data (), iwork, info \
440 F77_CHAR_ARG_LEN (1)))
441
442// DGESDD
443template<>
444OCTAVE_API void
445svd<Matrix>::gesdd (char& jobz, F77_INT m, F77_INT n, double *tmp_data,
446 F77_INT m1, double *s_vec, double *u, double *vt,
447 F77_INT nrow_vt1, std::vector<double>& work,
448 F77_INT& lwork, F77_INT *iwork, F77_INT& info)
449{
450 GESDD_REAL_STEP (dgesdd, DGESDD);
451
452 lwork = static_cast<F77_INT> (work[0]);
453 work.reserve (lwork);
454
455 GESDD_REAL_STEP (dgesdd, DGESDD);
456}
457
458// SGESDD
459template<>
460OCTAVE_API void
461svd<FloatMatrix>::gesdd (char& jobz, F77_INT m, F77_INT n, float *tmp_data,
462 F77_INT m1, float *s_vec, float *u, float *vt,
463 F77_INT nrow_vt1, std::vector<float>& work,
464 F77_INT& lwork, F77_INT *iwork, F77_INT& info)
465{
466 GESDD_REAL_STEP (sgesdd, SGESDD);
467
468 lwork = static_cast<F77_INT> (work[0]);
469 work.reserve (lwork);
470
471 GESDD_REAL_STEP (sgesdd, SGESDD);
472}
473
474// ZGESDD
475template<>
476OCTAVE_API void
478 Complex *tmp_data, F77_INT m1, double *s_vec,
479 Complex *u, Complex *vt, F77_INT nrow_vt1,
480 std::vector<Complex>& work, F77_INT& lwork,
481 F77_INT *iwork, F77_INT& info)
482{
483
484 F77_INT min_mn = std::min (m, n);
485 F77_INT max_mn = std::max (m, n);
486
487 F77_INT lrwork;
488 if (jobz == 'N')
489 lrwork = 7*min_mn;
490 else
491 lrwork = min_mn * std::max (5*min_mn+5, 2*max_mn+2*min_mn+1);
492
493 std::vector<double> rwork (lrwork);
494
495 GESDD_COMPLEX_STEP (zgesdd, ZGESDD, F77_DBLE_CMPLX_ARG);
496
497 lwork = static_cast<F77_INT> (work[0].real ());
498 work.reserve (lwork);
499
500 GESDD_COMPLEX_STEP (zgesdd, ZGESDD, F77_DBLE_CMPLX_ARG);
501}
502
503// CGESDD
504template<>
505OCTAVE_API void
507 FloatComplex *tmp_data, F77_INT m1,
508 float *s_vec, FloatComplex *u,
509 FloatComplex *vt, F77_INT nrow_vt1,
510 std::vector<FloatComplex>& work,
511 F77_INT& lwork, F77_INT *iwork,
512 F77_INT& info)
513{
514 F77_INT min_mn = std::min (m, n);
515 F77_INT max_mn = std::max (m, n);
516
517 F77_INT lrwork;
518 if (jobz == 'N')
519 lrwork = 7*min_mn;
520 else
521 lrwork = min_mn * std::max (5*min_mn+5, 2*max_mn+2*min_mn+1);
522 std::vector<float> rwork (lrwork);
523
524 GESDD_COMPLEX_STEP (cgesdd, CGESDD, F77_CMPLX_ARG);
525
526 lwork = static_cast<F77_INT> (work[0].real ());
527 work.reserve (lwork);
528
529 GESDD_COMPLEX_STEP (cgesdd, CGESDD, F77_CMPLX_ARG);
530}
531
532#undef GESDD_REAL_STEP
533#undef GESDD_COMPLEX_STEP
534
535// GEJSV specializations
536
537#define GEJSV_REAL_STEP(f, F) \
538 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&joba, 1), \
539 F77_CONST_CHAR_ARG2 (&jobu, 1), \
540 F77_CONST_CHAR_ARG2 (&jobv, 1), \
541 F77_CONST_CHAR_ARG2 (&jobr, 1), \
542 F77_CONST_CHAR_ARG2 (&jobt, 1), \
543 F77_CONST_CHAR_ARG2 (&jobp, 1), \
544 m, n, tmp_data, m1, s_vec, u, m1, v, nrow_v1, \
545 work.data (), lwork, iwork.data (), info \
546 F77_CHAR_ARG_LEN (1) \
547 F77_CHAR_ARG_LEN (1) \
548 F77_CHAR_ARG_LEN (1) \
549 F77_CHAR_ARG_LEN (1) \
550 F77_CHAR_ARG_LEN (1) \
551 F77_CHAR_ARG_LEN (1)))
552
553#define GEJSV_COMPLEX_STEP(f, F, CMPLX_ARG) \
554 F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&joba, 1), \
555 F77_CONST_CHAR_ARG2 (&jobu, 1), \
556 F77_CONST_CHAR_ARG2 (&jobv, 1), \
557 F77_CONST_CHAR_ARG2 (&jobr, 1), \
558 F77_CONST_CHAR_ARG2 (&jobt, 1), \
559 F77_CONST_CHAR_ARG2 (&jobp, 1), \
560 m, n, CMPLX_ARG (tmp_data), m1, \
561 s_vec, CMPLX_ARG (u), m1, \
562 CMPLX_ARG (v), nrow_v1, \
563 CMPLX_ARG (work.data ()), lwork, \
564 rwork.data (), lrwork, iwork.data (), info \
565 F77_CHAR_ARG_LEN (1) \
566 F77_CHAR_ARG_LEN (1) \
567 F77_CHAR_ARG_LEN (1) \
568 F77_CHAR_ARG_LEN (1) \
569 F77_CHAR_ARG_LEN (1) \
570 F77_CHAR_ARG_LEN (1)))
571
572// DGEJSV
573template<>
574void
575svd<Matrix>::gejsv (char& joba, char& jobu, char& jobv,
576 char& jobr, char& jobt, char& jobp,
577 F77_INT m, F77_INT n,
578 P *tmp_data, F77_INT m1, DM_P *s_vec, P *u,
579 P *v, F77_INT nrow_v1, std::vector<P>& work,
580 F77_INT& lwork, std::vector<F77_INT>& iwork,
581 F77_INT& info)
582{
583 lwork = gejsv_lwork<Matrix>::optimal (joba, jobu, jobv, m, n);
584 work.reserve (lwork);
585
586 GEJSV_REAL_STEP (dgejsv, DGEJSV);
587}
588
589// SGEJSV
590template<>
591void
592svd<FloatMatrix>::gejsv (char& joba, char& jobu, char& jobv,
593 char& jobr, char& jobt, char& jobp,
594 F77_INT m, F77_INT n,
595 P *tmp_data, F77_INT m1, DM_P *s_vec, P *u,
596 P *v, F77_INT nrow_v1, std::vector<P>& work,
597 F77_INT& lwork, std::vector<F77_INT>& iwork,
598 F77_INT& info)
599{
600 lwork = gejsv_lwork<FloatMatrix>::optimal (joba, jobu, jobv, m, n);
601 work.reserve (lwork);
602
603 GEJSV_REAL_STEP (sgejsv, SGEJSV);
604}
605
606// ZGEJSV
607template<>
608void
609svd<ComplexMatrix>::gejsv (char& joba, char& jobu, char& jobv,
610 char& jobr, char& jobt, char& jobp,
611 F77_INT m, F77_INT n,
612 P *tmp_data, F77_INT m1, DM_P *s_vec, P *u,
613 P *v, F77_INT nrow_v1, std::vector<P>& work,
614 F77_INT& lwork, std::vector<F77_INT>& iwork,
615 F77_INT& info)
616{
617 F77_INT lrwork = -1; // work space size query
618 std::vector<double> rwork (1);
619 work.reserve (2);
620
621 GEJSV_COMPLEX_STEP (zgejsv, ZGEJSV, F77_DBLE_CMPLX_ARG);
622
623 lwork = static_cast<F77_INT> (work[0].real ());
624 work.reserve (lwork);
625
626 lrwork = static_cast<F77_INT> (rwork[0]);
627 rwork.reserve (lrwork);
628
629 F77_INT liwork = static_cast<F77_INT> (iwork[0]);
630 iwork.reserve (liwork);
631
632 GEJSV_COMPLEX_STEP (zgejsv, ZGEJSV, F77_DBLE_CMPLX_ARG);
633}
634
635// CGEJSV
636template<>
637void
638svd<FloatComplexMatrix>::gejsv (char& joba, char& jobu, char& jobv,
639 char& jobr, char& jobt, char& jobp,
640 F77_INT m, F77_INT n, P *tmp_data,
641 F77_INT m1, DM_P *s_vec, P *u, P *v,
642 F77_INT nrow_v1, std::vector<P>& work,
643 F77_INT& lwork,
644 std::vector<F77_INT>& iwork, F77_INT& info)
645{
646 F77_INT lrwork = -1; // work space size query
647 std::vector<float> rwork (1);
648 work.reserve (2);
649
650 GEJSV_COMPLEX_STEP (cgejsv, CGEJSV, F77_CMPLX_ARG);
651
652 lwork = static_cast<F77_INT> (work[0].real ());
653 work.reserve (lwork);
654
655 lrwork = static_cast<F77_INT> (rwork[0]);
656 rwork.reserve (lrwork);
657
658 F77_INT liwork = static_cast<F77_INT> (iwork[0]);
659 iwork.reserve (liwork);
660
661 GEJSV_COMPLEX_STEP (cgejsv, CGEJSV, F77_CMPLX_ARG);
662}
663
664#undef GEJSV_REAL_STEP
665#undef GEJSV_COMPLEX_STEP
666
667template<typename T>
668svd<T>::svd (const T& a, svd::Type type, svd::Driver driver)
669 : m_type (type), m_driver (driver), m_left_sm (), m_sigma (),
670 m_right_sm ()
671{
672 F77_INT info;
673
674 F77_INT m = to_f77_int (a.rows ());
675 F77_INT n = to_f77_int (a.cols ());
676
677 if (m == 0 || n == 0)
678 {
679 switch (m_type)
680 {
681 case svd::Type::std:
682 m_left_sm = T (m, m, 0);
683 for (F77_INT i = 0; i < m; i++)
684 m_left_sm.xelem (i, i) = 1;
685 m_sigma = DM_T (m, n);
686 m_right_sm = T (n, n, 0);
687 for (F77_INT i = 0; i < n; i++)
688 m_right_sm.xelem (i, i) = 1;
689 break;
690
692 m_left_sm = T (m, 0, 0);
693 m_sigma = DM_T (0, 0);
694 m_right_sm = T (n, 0, 0);
695 break;
696
698 default:
699 m_sigma = DM_T (0, 1);
700 break;
701 }
702 return;
703 }
704
705 T atmp = a;
706 P *tmp_data = atmp.rwdata ();
707
708 F77_INT min_mn = (m < n ? m : n);
709
710 char jobu = 'A';
711 char jobv = 'A';
712
713 F77_INT ncol_u = m;
714 F77_INT nrow_vt = n;
715 F77_INT nrow_s = m;
716 F77_INT ncol_s = n;
717
718 switch (m_type)
719 {
721 jobu = jobv = 'S';
722 ncol_u = nrow_vt = nrow_s = ncol_s = min_mn;
723 break;
724
726
727 // Note: for this case, both jobu and jobv should be 'N', but there
728 // seems to be a bug in dgesvd from Lapack V2.0. To demonstrate the
729 // bug, set both jobu and jobv to 'N' and find the singular values of
730 // [eye(3), eye(3)]. The result is [-sqrt(2), -sqrt(2), -sqrt(2)].
731 //
732 // For Lapack 3.0, this problem seems to be fixed.
733
734 jobu = jobv = 'N';
735 ncol_u = nrow_vt = 1;
736 break;
737
738 default:
739 break;
740 }
741
742 if (! (jobu == 'N' || jobu == 'O'))
743 m_left_sm.resize (m, ncol_u);
744
745 P *u = m_left_sm.rwdata ();
746
747 m_sigma.resize (nrow_s, ncol_s);
748 DM_P *s_vec = m_sigma.rwdata ();
749
750 if (! (jobv == 'N' || jobv == 'O'))
751 {
752 if (m_driver == svd::Driver::GEJSV)
753 m_right_sm.resize (n, nrow_vt);
754 else
755 m_right_sm.resize (nrow_vt, n);
756 }
757
758 P *vt = m_right_sm.rwdata ();
759
760 // Query _GESVD for the correct dimension of WORK.
761
762 F77_INT lwork = -1;
763
764 std::vector<P> work (1);
765
766 const F77_INT f77_int_one = static_cast<F77_INT> (1);
767 F77_INT m1 = std::max (m, f77_int_one);
768 F77_INT nrow_vt1 = std::max (nrow_vt, f77_int_one);
769
770 if (m_driver == svd::Driver::GESVD)
771 gesvd (jobu, jobv, m, n, tmp_data, m1, s_vec, u, vt, nrow_vt1,
772 work, lwork, info);
773 else if (m_driver == svd::Driver::GESDD)
774 {
775 liboctave_panic_unless (jobu == jobv);
776 char jobz = jobu;
777
778 std::vector<F77_INT> iwork (8 * std::min (m, n));
779
780 gesdd (jobz, m, n, tmp_data, m1, s_vec, u, vt, nrow_vt1,
781 work, lwork, iwork.data (), info);
782 }
783 else if (m_driver == svd::Driver::GEJSV)
784 {
785 bool transposed = false;
786 if (n > m)
787 {
788 // GEJSV only accepts m >= n, thus we need to transpose here
789 transposed = true;
790
791 std::swap (m, n);
792 m1 = std::max (m, f77_int_one);
793 nrow_vt1 = std::max (n, f77_int_one); // we have m > n
794 if (m_type == svd::Type::sigma_only)
795 nrow_vt1 = 1;
796 std::swap (jobu, jobv);
797
798 atmp = atmp.hermitian ();
799 tmp_data = atmp.rwdata ();
800
801 // Swap pointers of U and V.
802 u = m_right_sm.rwdata ();
803 vt = m_left_sm.rwdata ();
804 }
805
806 // translate jobu and jobv from gesvd to gejsv.
807 std::unordered_map<char, std::string> job_svd2jsv;
808 job_svd2jsv['A'] = "FJ";
809 job_svd2jsv['S'] = "UV";
810 job_svd2jsv['O'] = "WW";
811 job_svd2jsv['N'] = "NN";
812 jobu = job_svd2jsv[jobu][0];
813 jobv = job_svd2jsv[jobv][1];
814
815 char joba = 'F'; // 'F': most conservative
816 char jobr = 'R'; // 'R' is recommended.
817 char jobt = 'N'; // or 'T', but that requires U and V appear together
818 char jobp = 'N'; // use 'P' if denormal is poorly implemented.
819
820 std::vector<F77_INT> iwork (std::max<F77_INT> (m + 3*n, 1));
821
822 gejsv (joba, jobu, jobv, jobr, jobt, jobp, m, n, tmp_data, m1,
823 s_vec, u, vt, nrow_vt1, work, lwork, iwork, info);
824
825 if (iwork[2] == 1)
826 (*current_liboctave_warning_with_id_handler)
827 ("Octave:convergence", "svd: (driver: GEJSV) "
828 "Denormal occurred, possible loss of accuracy.");
829
830 if (info < 0)
831 (*current_liboctave_error_handler)
832 ("svd: (driver: GEJSV) Illegal argument at #%d",
833 static_cast<int> (-info));
834 else if (info > 0)
835 (*current_liboctave_warning_with_id_handler)
836 ("Octave:convergence", "svd: (driver: GEJSV) "
837 "Fail to converge within max sweeps, "
838 "possible inaccurate result.");
839
840 if (transposed) // put things that need to transpose back here
841 std::swap (m, n);
842 }
843 else
844 (*current_liboctave_error_handler) ("svd: unknown driver");
845
846 // LAPACK can return -0 which is a small problem (bug #55710).
847 for (octave_idx_type i = 0; i < m_sigma.diag_length (); i++)
848 {
849 if (! m_sigma.dgxelem (i))
850 m_sigma.dgxelem (i) = DM_P (0);
851 }
852
853 // GESVD and GESDD return VT instead of V, GEJSV return V.
854 if (! (jobv == 'N' || jobv == 'O') && (m_driver != svd::Driver::GEJSV))
855 m_right_sm = m_right_sm.hermitian ();
856}
857
858// Instantiations we need.
859
860template class svd<Matrix>;
861
862template class svd<FloatMatrix>;
863
864template class svd<ComplexMatrix>;
865
866template class svd<FloatComplexMatrix>;
867
868OCTAVE_END_NAMESPACE(math)
869OCTAVE_END_NAMESPACE(octave)
Definition svd.h:39
T::real_diag_matrix_type DM_T
Definition svd.h:42
Type
Definition svd.h:45
T right_singular_matrix() const
Definition svd.cc:319
Driver
Definition svd.h:52
T left_singular_matrix() const
Definition svd.cc:308
svd()
Definition svd.h:58
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
#define F77_DBLE_CMPLX_ARG(x)
Definition f77-fcn.h:316
#define F77_CMPLX_ARG(x)
Definition f77-fcn.h:310
octave_f77_int_type F77_INT
Definition f77-fcn.h:306
#define GESVD_REAL_STEP(f, F)
Definition svd.cc:330
#define GESDD_COMPLEX_STEP(f, F, CMPLX_ARG)
Definition svd.cc:433
#define GEJSV_REAL_STEP(f, F)
Definition svd.cc:537
#define GEJSV_REAL_ORM_LWORK(f, F)
Definition svd.cc:100
#define GEJSV_REAL_QR_LWORK(f, F)
Definition svd.cc:97
#define GEJSV_COMPLEX_STEP(f, F, CMPLX_ARG)
Definition svd.cc:553
#define GEJSV_REAL_QP3_LWORK(f, F)
Definition svd.cc:94
#define GESDD_REAL_STEP(f, F)
Definition svd.cc:427
#define GESVD_COMPLEX_STEP(f, F, CMPLX_ARG)
Definition svd.cc:338
OCTAVE_NORETURN liboctave_error_handler current_liboctave_error_handler
Definition lo-error.c:41
#define liboctave_panic_unless(cond)
Definition lo-error.h:102
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE const F77_INT F77_INT & ierr
#define OCTAVE_API
Definition main.in.cc:55
std::complex< double > Complex
Definition oct-cmplx.h:33
std::complex< float > FloatComplex
Definition oct-cmplx.h:34