GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
fCRowVector.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 1994-2025 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include <istream>
31#include <ostream>
32#include <type_traits>
33
34#include "Array-util.h"
35#include "lo-blas-proto.h"
36#include "lo-error.h"
37#include "mx-base.h"
38#include "mx-inlines.cc"
39#include "oct-cmplx.h"
40
41// FloatComplex Row Vector class
42
43bool
45{
47 if (len != a.numel ())
48 return 0;
49 return mx_inline_equal (len, data (), a.data ());
50}
51
52bool
54{
55 return !(*this == a);
56}
57
58// destructive insert/delete/reorder operations
59
62{
63 octave_idx_type a_len = a.numel ();
64
65 if (c < 0 || c + a_len > numel ())
66 (*current_liboctave_error_handler) ("range error for insert");
67
68 if (a_len > 0)
69 {
70 make_unique ();
71
72 for (octave_idx_type i = 0; i < a_len; i++)
73 xelem (c+i) = a.elem (i);
74 }
75
76 return *this;
77}
78
82{
83 octave_idx_type a_len = a.numel ();
84
85 if (c < 0 || c + a_len > numel ())
86 (*current_liboctave_error_handler) ("range error for insert");
87
88 if (a_len > 0)
89 {
90 make_unique ();
91
92 for (octave_idx_type i = 0; i < a_len; i++)
93 xelem (c+i) = a.elem (i);
94 }
95
96 return *this;
97}
98
101{
103
104 if (len > 0)
105 {
106 make_unique ();
107
108 for (octave_idx_type i = 0; i < len; i++)
109 xelem (i) = val;
110 }
111
112 return *this;
113}
114
117{
119
120 if (len > 0)
121 {
122 make_unique ();
123
124 for (octave_idx_type i = 0; i < len; i++)
125 xelem (i) = val;
126 }
127
128 return *this;
129}
130
133{
135
136 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
137 (*current_liboctave_error_handler) ("range error for fill");
138
139 if (c1 > c2) { std::swap (c1, c2); }
140
141 if (c2 >= c1)
142 {
143 make_unique ();
144
145 for (octave_idx_type i = c1; i <= c2; i++)
146 xelem (i) = val;
147 }
148
149 return *this;
150}
151
155{
157
158 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
159 (*current_liboctave_error_handler) ("range error for fill");
160
161 if (c1 > c2) { std::swap (c1, c2); }
162
163 if (c2 >= c1)
164 {
165 make_unique ();
166
167 for (octave_idx_type i = c1; i <= c2; i++)
168 xelem (i) = val;
169 }
170
171 return *this;
172}
173
176{
178 octave_idx_type nc_insert = len;
179 FloatComplexRowVector retval (len + a.numel ());
180 retval.insert (*this, 0);
181 retval.insert (a, nc_insert);
182 return retval;
183}
184
187{
189 octave_idx_type nc_insert = len;
190 FloatComplexRowVector retval (len + a.numel ());
191 retval.insert (*this, 0);
192 retval.insert (a, nc_insert);
193 return retval;
194}
195
198{
199 return MArray<FloatComplex>::hermitian (std::conj);
200}
201
207
210{
211 return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float>> (a);
212}
213
214// resize is the destructive equivalent for this one
215
218{
219 if (c1 > c2) { std::swap (c1, c2); }
220
221 octave_idx_type new_c = c2 - c1 + 1;
222
223 FloatComplexRowVector result (new_c);
224
225 for (octave_idx_type i = 0; i < new_c; i++)
226 result.elem (i) = elem (c1+i);
227
228 return result;
229}
230
233{
234 FloatComplexRowVector result (n);
235
236 for (octave_idx_type i = 0; i < n; i++)
237 result.elem (i) = elem (r1+i);
238
239 return result;
240}
241
242// row vector by row vector -> row vector operations
243
246{
248
249 octave_idx_type a_len = a.numel ();
250
251 if (len != a_len)
252 octave::err_nonconformant ("operator +=", len, a_len);
253
254 if (len == 0)
255 return *this;
256
257 FloatComplex *d = rwdata (); // Ensures only 1 reference to my privates!
258
259 mx_inline_add2 (len, d, a.data ());
260 return *this;
261}
262
265{
267
268 octave_idx_type a_len = a.numel ();
269
270 if (len != a_len)
271 octave::err_nonconformant ("operator -=", len, a_len);
272
273 if (len == 0)
274 return *this;
275
276 FloatComplex *d = rwdata (); // Ensures only 1 reference to my privates!
277
278 mx_inline_sub2 (len, d, a.data ());
279 return *this;
280}
281
282// row vector by matrix -> row vector
283
286{
288
289 F77_INT len = octave::to_f77_int (v.numel ());
290
291 F77_INT a_nr = octave::to_f77_int (a.rows ());
292 F77_INT a_nc = octave::to_f77_int (a.cols ());
293
294 if (a_nr != len)
295 octave::err_nonconformant ("operator *", 1, len, a_nr, a_nc);
296
297 if (len == 0)
298 retval.resize (a_nc, 0.0);
299 else
300 {
301 // Transpose A to form A'*x == (x'*A)'
302
303 F77_INT ld = a_nr;
304
305 retval.resize (a_nc);
306 FloatComplex *y = retval.rwdata ();
307
308 F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("T", 1),
309 a_nr, a_nc, 1.0, F77_CONST_CMPLX_ARG (a.data ()),
310 ld, F77_CONST_CMPLX_ARG (v.data ()), 1, 0.0, F77_CMPLX_ARG (y), 1
311 F77_CHAR_ARG_LEN (1)));
312 }
313
314 return retval;
315}
316
319{
320 FloatComplexRowVector tmp (v);
321 return tmp * a;
322}
323
324// other operations
325
328{
330 if (len == 0)
331 return FloatComplex (0.0);
332
333 FloatComplex res = elem (0);
334 float absres = std::abs (res);
335
336 for (octave_idx_type i = 1; i < len; i++)
337 if (std::abs (elem (i)) < absres)
338 {
339 res = elem (i);
340 absres = std::abs (res);
341 }
342
343 return res;
344}
345
348{
350 if (len == 0)
351 return FloatComplex (0.0);
352
353 FloatComplex res = elem (0);
354 float absres = std::abs (res);
355
356 for (octave_idx_type i = 1; i < len; i++)
357 if (std::abs (elem (i)) > absres)
358 {
359 res = elem (i);
360 absres = std::abs (res);
361 }
362
363 return res;
364}
365
366// i/o
367
368std::ostream&
369operator << (std::ostream& os, const FloatComplexRowVector& a)
370{
371// int field_width = os.precision () + 7;
372 for (octave_idx_type i = 0; i < a.numel (); i++)
373 os << ' ' /* setw (field_width) */ << a.elem (i);
374 return os;
375}
376
377std::istream&
379{
381
382 if (len > 0)
383 {
384 FloatComplex tmp;
385 for (octave_idx_type i = 0; i < len; i++)
386 {
387 is >> tmp;
388 if (is)
389 a.elem (i) = tmp;
390 else
391 break;
392 }
393 }
394 return is;
395}
396
397// row vector by column vector -> scalar
398
399// row vector by column vector -> scalar
400
403{
405 return v * tmp;
406}
407
410{
411 FloatComplex retval (0.0, 0.0);
412
413 F77_INT len = octave::to_f77_int (v.numel ());
414
415 F77_INT a_len = octave::to_f77_int (a.numel ());
416
417 if (len != a_len)
418 octave::err_nonconformant ("operator *", len, a_len);
419
420 if (len != 0)
421 F77_FUNC (xcdotu, XCDOTU) (len, F77_CONST_CMPLX_ARG (v.data ()), 1,
422 F77_CONST_CMPLX_ARG (a.data ()), 1, F77_CMPLX_ARG (&retval));
423
424 return retval;
425}
426
427// other operations
428
431{
433
434 if (n_in < 1)
435 return retval;
436 else if (n_in == 1)
437 {
438 retval.resize (1, x2);
439 return retval;
440 }
441 else if (x1 == x2)
442 {
443 retval.resize (n_in, x2);
444 return retval;
445 }
446
447 // Use unsigned type (guaranteed n_in > 1 at this point) so that divisions
448 // by 2 can be replaced by compiler with shift right instructions.
449 typedef std::make_unsigned<octave_idx_type>::type unsigned_octave_idx_type;
450
451 unsigned_octave_idx_type n = n_in;
452
453 // Set endpoints, rather than calculate, for maximum accuracy.
454 retval.clear (n);
455 retval.xelem (0) = x1;
456 retval.xelem (n-1) = x2;
457
458 // Construct linspace symmetrically from both ends.
459 bool isnan_delta = false;
460 FloatComplex delta = (x2 - x1) / (n - 1.0f);
461 if (octave::math::isinf (delta))
462 {
463 if (octave::math::isinf (delta.real ()))
464 delta.real (octave::numeric_limits<float>::NaN ());
465 if (octave::math::isinf (delta.imag ()))
466 delta.imag (octave::numeric_limits<float>::NaN ());
467 isnan_delta = true;
468 }
469
470 unsigned_octave_idx_type n2 = n/2;
471 for (unsigned_octave_idx_type i = 1; i < n2; i++)
472 {
473 retval.xelem (i) = x1 + static_cast<float> (i)*delta;
474 retval.xelem (n-1-i) = x2 - static_cast<float> (i)*delta;
475 }
476 if (n % 2 == 1) // Middle element if number of elements is odd.
477 {
478 if (x1 == -x2)
479 retval.xelem (n2) = 0;
480 else
481 {
482 FloatComplex c = (x1 + x2) / 2.0f;
483 if (isnan_delta)
484 {
485 if (octave::math::isnan (delta.real ()))
486 c.real (octave::numeric_limits<float>::NaN ());
487 if (octave::math::isnan (delta.imag ()))
488 c.imag (octave::numeric_limits<float>::NaN ());
489 }
490 retval.xelem (n2) = c;
491 }
492 }
493
494 return retval;
495}
T & xelem(octave_idx_type n)
Size of the specified dimension.
Definition Array.h:525
T & elem(octave_idx_type n)
Size of the specified dimension.
Definition Array.h:563
octave_idx_type rows() const
Definition Array.h:463
octave_idx_type cols() const
Definition Array.h:473
void make_unique()
Definition Array.h:220
const T * data() const
Size of the specified dimension.
Definition Array.h:665
T * rwdata()
Size of the specified dimension.
octave_idx_type numel() const
Number of elements in the array.
Definition Array.h:418
void clear(octave_idx_type n)
void resize(octave_idx_type n, const FloatComplex &rfv=FloatComplex(0))
FloatComplexColumnVector hermitian() const
FloatComplexColumnVector transpose() const
FloatComplexRowVector append(const FloatRowVector &a) const
bool operator!=(const FloatComplexRowVector &a) const
FloatComplexRowVector & operator+=(const FloatRowVector &a)
FloatComplex max() const
FloatComplexRowVector & fill(float val)
FloatComplexRowVector & insert(const FloatRowVector &a, octave_idx_type c)
FloatComplexRowVector extract_n(octave_idx_type c1, octave_idx_type n) const
FloatComplexRowVector extract(octave_idx_type c1, octave_idx_type c2) const
FloatComplexRowVector & operator-=(const FloatRowVector &a)
bool operator==(const FloatComplexRowVector &a) const
FloatComplex min() const
MArray< T > transpose() const
Definition MArray.h:97
MArray< T > hermitian(T(*fcn)(const T &)=nullptr) const
Definition MArray.h:100
#define F77_CONST_CMPLX_ARG(x)
Definition f77-fcn.h:313
#define F77_CMPLX_ARG(x)
Definition f77-fcn.h:310
#define F77_XFCN(f, F, args)
Definition f77-fcn.h:45
octave_f77_int_type F77_INT
Definition f77-fcn.h:306
std::istream & operator>>(std::istream &is, FloatComplexRowVector &a)
FloatComplexRowVector operator*(const FloatComplexRowVector &v, const FloatComplexMatrix &a)
std::ostream & operator<<(std::ostream &os, const FloatComplexRowVector &a)
FloatComplexRowVector linspace(const FloatComplex &x1, const FloatComplex &x2, octave_idx_type n_in)
FloatComplexRowVector conj(const FloatComplexRowVector &a)
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
void mx_inline_sub2(std::size_t n, R *r, const X *x)
void mx_inline_add2(std::size_t n, R *r, const X *x)
bool mx_inline_equal(std::size_t n, const T1 *x, const T2 *y)
std::complex< float > FloatComplex
Definition oct-cmplx.h:34
subroutine xcdotu(n, zx, incx, zy, incy, retval)
Definition xcdotu.f:2
F77_RET_T F77_FUNC(xerbla, XERBLA)(F77_CONST_CHAR_ARG_DEF(s_arg
F77_RET_T len
Definition xerbla.cc:61