GNU Octave  9.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
randpoisson.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 2006-2024 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 /* Original version written by Paul Kienzle distributed as free
27  software in the in the public domain. */
28 
29 #if defined (HAVE_CONFIG_H)
30 # include "config.h"
31 #endif
32 
33 #include <cmath>
34 #include <cstddef>
35 
36 #include "f77-fcn.h"
37 #include "lo-error.h"
38 #include "lo-ieee.h"
39 #include "randmtzig.h"
40 #include "randpoisson.h"
41 
43 
44 static double xlgamma (double x)
45 {
46  return std::lgamma (x);
47 }
48 
49 /* ---- pprsc.c from Stadloeber's winrand --- */
50 
51 /* flogfak(k) = ln(k!) */
52 static double
53 flogfak (double k)
54 {
55 #define C0 9.18938533204672742e-01
56 #define C1 8.33333333333333333e-02
57 #define C3 -2.77777777777777778e-03
58 #define C5 7.93650793650793651e-04
59 #define C7 -5.95238095238095238e-04
60 
61  static double logfak[30L] =
62  {
63  0.00000000000000000, 0.00000000000000000, 0.69314718055994531,
64  1.79175946922805500, 3.17805383034794562, 4.78749174278204599,
65  6.57925121201010100, 8.52516136106541430, 10.60460290274525023,
66  12.80182748008146961, 15.10441257307551530, 17.50230784587388584,
67  19.98721449566188615, 22.55216385312342289, 25.19122118273868150,
68  27.89927138384089157, 30.67186010608067280, 33.50507345013688888,
69  36.39544520803305358, 39.33988418719949404, 42.33561646075348503,
70  45.38013889847690803, 48.47118135183522388, 51.60667556776437357,
71  54.78472939811231919, 58.00360522298051994, 61.26170176100200198,
72  64.55753862700633106, 67.88974313718153498, 71.25703896716800901
73  };
74 
75  double r, rr;
76 
77  if (k >= 30.0)
78  {
79  r = 1.0 / k;
80  rr = r * r;
81  return ((k + 0.5)*std::log (k) - k + C0
82  + r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
83  }
84  else
85  return (logfak[static_cast<int> (k)]);
86 }
87 
88 /******************************************************************
89  * *
90  * Poisson Distribution - Patchwork Rejection/Inversion *
91  * *
92  ******************************************************************
93  * *
94  * For parameter my < 10, Tabulated Inversion is applied. *
95  * For my >= 10, Patchwork Rejection is employed: *
96  * The area below the histogram function f(x) is rearranged in *
97  * its body by certain point reflections. Within a large center *
98  * interval variates are sampled efficiently by rejection from *
99  * uniform hats. Rectangular immediate acceptance regions speed *
100  * up the generation. The remaining tails are covered by *
101  * exponential functions. *
102  * *
103  ******************************************************************
104  * *
105  * FUNCTION : - pprsc samples a random number from the Poisson *
106  * distribution with parameter my > 0. *
107  * REFERENCE : - H. Zechner (1994): Efficient sampling from *
108  * continuous and discrete unimodal distributions, *
109  * Doctoral Dissertation, 156 pp., Technical *
110  * University Graz, Austria. *
111  * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with *
112  * unsigned long integer *seed. *
113  * *
114  * Implemented by H. Zechner, January 1994 *
115  * Revised by F. Niederl, July 1994 *
116  * *
117  ******************************************************************/
118 
119 static double
120 f (double k, double l_nu, double c_pm)
121 {
122  return exp (k * l_nu - flogfak (k) - c_pm);
123 }
124 
125 static double
126 pprsc (double my)
127 {
128  static double my_last = -1.0;
129  static double m, k2, k4, k1, k5;
130  static double dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
131  f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;
132  double Dk, X, Y;
133  double Ds, U, V, W;
134 
135  if (my != my_last)
136  {
137  /* set-up */
138  my_last = my;
139  /* approximate deviation of reflection points k2, k4 from my - 1/2 */
140  Ds = std::sqrt (my + 0.25);
141 
142  /* mode m, reflection points k2 and k4, and points k1 and k5, */
143  /* which delimit the centre region of h(x) */
144  m = std::floor (my);
145  k2 = ceil (my - 0.5 - Ds);
146  k4 = std::floor (my - 0.5 + Ds);
147  k1 = k2 + k2 - m + 1L;
148  k5 = k4 + k4 - m;
149 
150  /* range width of the critical left and right centre region */
151  dl = (k2 - k1);
152  dr = (k5 - k4);
153 
154  /* recurrence constants r(k)=p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 */
155  r1 = my / k1;
156  r2 = my / k2;
157  r4 = my / (k4 + 1.0);
158  r5 = my / (k5 + 1.0);
159 
160  /* reciprocal values of the scale parameters of exp. tail envelope */
161  ll = std::log (r1); /* expon. tail left */
162  lr = -std::log (r5); /* expon. tail right*/
163 
164  /* Poisson constants, necessary for computing function values f(k) */
165  l_my = std::log (my);
166  c_pm = m * l_my - flogfak (m);
167 
168  /* function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5 */
169  f2 = f (k2, l_my, c_pm);
170  f4 = f (k4, l_my, c_pm);
171  f1 = f (k1, l_my, c_pm);
172  f5 = f (k5, l_my, c_pm);
173 
174  /* area of the two centre and the two exponential tail regions */
175  /* area of the two immediate acceptance regions between k2, k4 */
176  p1 = f2 * (dl + 1.0); /* immed. left */
177  p2 = f2 * dl + p1; /* centre left */
178  p3 = f4 * (dr + 1.0) + p2; /* immed. right */
179  p4 = f4 * dr + p3; /* centre right */
180  p5 = f1 / ll + p4; /* exp. tail left */
181  p6 = f5 / lr + p5; /* exp. tail right*/
182  }
183 
184  for (;;)
185  {
186  /* generate uniform number U -- U(0, p6) */
187  /* case distinction corresponding to U */
188  if ((U = rand_uniform<double> () * p6) < p2)
189  {
190  /* centre left */
191 
192  /* immediate acceptance region
193  R2 = [k2, m) *[0, f2), X = k2, ... m -1 */
194  if ((V = U - p1) < 0.0) return (k2 + std::floor (U/f2));
195  /* immediate acceptance region
196  R1 = [k1, k2)*[0, f1), X = k1, ... k2-1 */
197  if ((W = V / dl) < f1 ) return (k1 + std::floor (V/f1));
198 
199  /* computation of candidate X < k2, and its counterpart Y > k2 */
200  /* either squeeze-acceptance of X or acceptance-rejection of Y */
201  Dk = std::floor (dl * rand_uniform<double> ()) + 1.0;
202  if (W <= f2 - Dk * (f2 - f2/r2))
203  {
204  /* quick accept of */
205  return (k2 - Dk); /* X = k2 - Dk */
206  }
207  if ((V = f2 + f2 - W) < 1.0)
208  {
209  /* quick reject of Y*/
210  Y = k2 + Dk;
211  if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0))
212  {
213  /* quick accept of */
214  return (Y); /* Y = k2 + Dk */
215  }
216  if (V <= f (Y, l_my, c_pm)) return (Y); /* final accept of Y*/
217  }
218  X = k2 - Dk;
219  }
220  else if (U < p4)
221  {
222  /* centre right */
223  /* immediate acceptance region
224  R3 = [m, k4+1)*[0, f4), X = m, ... k4 */
225  if ((V = U - p3) < 0.0) return (k4 - std::floor ((U - p2)/f4));
226  /* immediate acceptance region
227  R4 = [k4+1, k5+1)*[0, f5) */
228  if ((W = V / dr) < f5 ) return (k5 - std::floor (V/f5));
229 
230  /* computation of candidate X > k4, and its counterpart Y < k4 */
231  /* either squeeze-acceptance of X or acceptance-rejection of Y */
232  Dk = std::floor (dr * rand_uniform<double> ()) + 1.0;
233  if (W <= f4 - Dk * (f4 - f4*r4))
234  {
235  /* quick accept of */
236  return (k4 + Dk); /* X = k4 + Dk */
237  }
238  if ((V = f4 + f4 - W) < 1.0)
239  {
240  /* quick reject of Y*/
241  Y = k4 - Dk;
242  if (V <= f4 + Dk * (1.0 - f4)/ dr)
243  {
244  /* quick accept of */
245  return (Y); /* Y = k4 - Dk */
246  }
247  if (V <= f (Y, l_my, c_pm)) return (Y); /* final accept of Y*/
248  }
249  X = k4 + Dk;
250  }
251  else
252  {
253  W = rand_uniform<double> ();
254  if (U < p5)
255  {
256  /* expon. tail left */
257  Dk = std::floor (1.0 - std::log (W)/ll);
258  if ((X = k1 - Dk) < 0L) continue; /* 0 <= X <= k1 - 1 */
259  W *= (U - p4) * ll; /* W -- U(0, h(x)) */
260  if (W <= f1 - Dk * (f1 - f1/r1))
261  return (X); /* quick accept of X*/
262  }
263  else
264  {
265  /* expon. tail right*/
266  Dk = std::floor (1.0 - std::log (W)/lr);
267  X = k5 + Dk; /* X >= k5 + 1 */
268  W *= (U - p5) * lr; /* W -- U(0, h(x)) */
269  if (W <= f5 - Dk * (f5 - f5*r5))
270  return (X); /* quick accept of X*/
271  }
272  }
273 
274  /* acceptance-rejection test of candidate X from the original area */
275  /* test, whether W <= f(k), with W = U*h(x) and U -- U(0, 1)*/
276  /* log f(X) = (X - m)*log(my) - log X! + log m! */
277  if (std::log (W) <= X * l_my - flogfak (X) - c_pm) return (X);
278  }
279 }
280 /* ---- pprsc.c end ------ */
281 
282 /* The remainder of the file is by Paul Kienzle */
283 
284 /* Table size is predicated on the maximum value of lambda
285  * we want to store in the table, and the maximum value of
286  * returned by the uniform random number generator on [0,1).
287  * With lambda==10 and u_max = 1 - 1/(2^32+1), we
288  * have poisson_pdf(lambda,36) < 1-u_max. If instead our
289  * generator uses more bits of mantissa or returns a value
290  * in the range [0,1], then for lambda==10 we need a table
291  * size of 46 instead. For long doubles, the table size
292  * will need to be longer still. */
293 #define TABLESIZE 46
294 
295 /* Given uniform u, find x such that CDF(L,x)==u. Return x. */
296 
297 template <typename T>
298 static void
299 poisson_cdf_lookup (double lambda, T *p, std::size_t n)
300 {
301  double t[TABLESIZE];
302 
303  /* Precompute the table for the u up to and including 0.458.
304  * We will almost certainly need it. */
305  int intlambda = static_cast<int> (std::floor (lambda));
306  double P;
307  int tableidx;
308  std::size_t i = n;
309 
310  t[0] = P = exp (-lambda);
311  for (tableidx = 1; tableidx <= intlambda; tableidx++)
312  {
313  P = P*lambda/static_cast<double> (tableidx);
314  t[tableidx] = t[tableidx-1] + P;
315  }
316 
317  while (i-- > 0)
318  {
319  double u = rand_uniform<double> ();
320 
321  /* If u > 0.458 we know we can jump to floor(lambda) before
322  * comparing (this observation is based on Stadlober's winrand
323  * code). For lambda >= 1, this will be a win. Lambda < 1
324  * is already fast, so adding an extra comparison is not a
325  * problem. */
326  int k = (u > 0.458 ? intlambda : 0);
327 
328  /* We aren't using a for loop here because when we find the
329  * right k we want to jump to the next iteration of the
330  * outer loop, and the continue statement will only work for
331  * the inner loop. */
332  nextk:
333  if (u <= t[k])
334  {
335  p[i] = static_cast<T> (k);
336  continue;
337  }
338  if (++k < tableidx)
339  goto nextk;
340 
341  /* We only need high values of the table very rarely so we
342  * don't automatically compute the entire table. */
343  while (tableidx < TABLESIZE)
344  {
345  P = P*lambda/static_cast<double> (tableidx);
346  t[tableidx] = t[tableidx-1] + P;
347  /* Make sure we converge to 1.0 just in case u is uniform
348  * on [0,1] rather than [0,1). */
349  if (t[tableidx] == t[tableidx-1]) t[tableidx] = 1.0;
350  tableidx++;
351  if (u <= t[tableidx-1]) break;
352  }
353 
354  /* We are assuming that the table size is big enough here.
355  * This should be true even if rand_uniform is returning values in
356  * the range [0,1] rather than [0,1). */
357  p[i] = static_cast<T> (tableidx-1);
358  }
359 }
360 
361 /* From Press, et al., Numerical Recipes */
362 template <typename T>
363 static void
364 poisson_rejection (double lambda, T *p, std::size_t n)
365 {
366  double sq = std::sqrt (2.0*lambda);
367  double alxm = std::log (lambda);
368  double g = lambda*alxm - xlgamma (lambda+1.0);
369  std::size_t i;
370 
371  for (i = 0; i < n; i++)
372  {
373  double y, em, t;
374  do
375  {
376  do
377  {
378  y = tan (M_PI*rand_uniform<double> ());
379  em = sq * y + lambda;
380  }
381  while (em < 0.0);
382  em = std::floor (em);
383  t = 0.9*(1.0+y*y)* exp (em*alxm-flogfak (em)-g);
384  }
385  while (rand_uniform<double> () > t);
386  p[i] = em;
387  }
388 }
389 
390 /* The cutoff of L <= 1e8 in the following two functions before using
391  * the normal approximation is based on:
392  * > L=1e8; x=floor(linspace(0,2*L,1000));
393  * > max(abs(normal_pdf(x,L,L)-poisson_pdf(x,L)))
394  * ans = 1.1376e-28
395  * For L=1e7, the max is around 1e-9, which is within the step size of
396  * rand_uniform. For L>1e10 the pprsc function breaks down, as I saw
397  * from the histogram of a large sample, so 1e8 is both small enough
398  * and large enough. */
399 
400 /* Generate a set of poisson numbers with the same distribution */
401 template <typename T>
402 void
404 {
405  double L = L_arg;
406  octave_idx_type i;
407  if (L < 0.0 || lo_ieee_isinf (L))
408  {
409  for (i=0; i<n; i++)
410  p[i] = numeric_limits<T>::NaN ();
411  }
412  else if (L <= 10.0)
413  {
414  poisson_cdf_lookup<T> (L, p, n);
415  }
416  else if (L <= 1e8)
417  {
418  for (i=0; i<n; i++)
419  p[i] = pprsc (L);
420  }
421  else
422  {
423  /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
424  const double sqrtL = std::sqrt (L);
425  for (i = 0; i < n; i++)
426  {
427  p[i] = std::floor (rand_normal<T> () * sqrtL + L + 0.5);
428  if (p[i] < 0.0)
429  p[i] = 0.0; /* will probably never happen */
430  }
431  }
432 }
433 
434 template void rand_poisson<double> (double, octave_idx_type, double *);
435 template void rand_poisson<float> (float, octave_idx_type, float *);
436 
437 /* Generate one poisson variate */
438 template <typename T>
439 T
440 rand_poisson (T L_arg)
441 {
442  double L = L_arg;
443  T ret;
444  if (L < 0.0) ret = numeric_limits<T>::NaN ();
445  else if (L <= 12.0)
446  {
447  /* From Press, et al. Numerical recipes */
448  double g = exp (-L);
449  int em = -1;
450  double t = 1.0;
451  do
452  {
453  ++em;
454  t *= rand_uniform<T> ();
455  }
456  while (t > g);
457  ret = em;
458  }
459  else if (L <= 1e8)
460  {
461  /* numerical recipes */
462  poisson_rejection<T> (L, &ret, 1);
463  }
464  else if (lo_ieee_isinf (L))
465  {
466  /* FIXME: R uses NaN, but the normal approximation suggests that
467  * limit should be Inf. Which is correct? */
468  ret = numeric_limits<T>::NaN ();
469  }
470  else
471  {
472  /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
473  ret = std::floor (rand_normal<T> () * std::sqrt (L) + L + 0.5);
474  if (ret < 0.0) ret = 0.0; /* will probably never happen */
475  }
476  return ret;
477 }
478 
479 template OCTAVE_API double rand_poisson<double> (double);
480 template OCTAVE_API float rand_poisson<float> (float);
481 
482 OCTAVE_END_NAMESPACE(octave)
#define NaN
Definition: Faddeeva.cc:261
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
#define lo_ieee_isinf(x)
Definition: lo-ieee.h:124
F77_RET_T const F77_INT const F77_INT const F77_INT const F77_DBLE const F77_DBLE F77_INT F77_DBLE * V
std::complex< T > floor(const std::complex< T > &x)
Definition: lo-mappers.h:130
std::complex< T > ceil(const std::complex< T > &x)
Definition: lo-mappers.h:103
F77_RET_T const F77_DBLE * x
F77_RET_T const F77_DBLE const F77_DBLE * f
double lgamma(double x)
Definition: lo-specfun.h:336
#define OCTAVE_API
Definition: main.cc:55
T octave_idx_type m
Definition: mx-inlines.cc:781
octave_idx_type n
Definition: mx-inlines.cc:761
T * r
Definition: mx-inlines.cc:781
double rand_uniform< double >()
Definition: randmtzig.cc:442
#define TABLESIZE
Definition: randpoisson.cc:293
#define C5
#define C1
void rand_poisson(T L_arg, octave_idx_type n, T *p)
Definition: randpoisson.cc:403
#define C3
template void rand_poisson< double >(double, octave_idx_type, double *)
template void rand_poisson< float >(float, octave_idx_type, float *)
#define C0
#define C7