GNU Octave  9.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
dmperm.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 1998-2024 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if defined (HAVE_CONFIG_H)
27 # include "config.h"
28 #endif
29 
30 #include "CSparse.h"
31 #include "dRowVector.h"
32 #include "dSparse.h"
33 #include "oct-sparse.h"
34 
35 #include "defun.h"
36 #include "errwarn.h"
37 #include "ov.h"
38 #include "ovl.h"
39 #include "utils.h"
40 
42 
43 #if defined (OCTAVE_ENABLE_64)
44 # define CXSPARSE_NAME(name) cs_dl ## name
45 #else
46 # define CXSPARSE_NAME(name) cs_di ## name
47 #endif
48 
49 #if defined (HAVE_CXSPARSE)
50 
51 static RowVector
53 {
54  RowVector ret (n);
55  for (octave_idx_type i = 0; i < n; i++)
56  ret.xelem (i) = p[i] + 1;
57  return ret;
58 }
59 
60 static octave_value_list
61 dmperm_internal (bool rank, const octave_value arg, int nargout)
62 {
63  octave_value_list retval;
64  octave_idx_type nr = arg.rows ();
65  octave_idx_type nc = arg.columns ();
68  CXSPARSE_NAME () csm;
69  csm.m = nr;
70  csm.n = nc;
71  csm.x = nullptr;
72  csm.nz = -1;
73 
74  if (arg.isreal ())
75  {
76  m = arg.sparse_matrix_value ();
77  csm.nzmax = m.nnz ();
78  csm.p = to_suitesparse_intptr (m.xcidx ());
79  csm.i = to_suitesparse_intptr (m.xridx ());
80  }
81  else
82  {
83  cm = arg.sparse_complex_matrix_value ();
84  csm.nzmax = cm.nnz ();
85  csm.p = to_suitesparse_intptr (cm.xcidx ());
86  csm.i = to_suitesparse_intptr (cm.xridx ());
87  }
88 
89  if (nargout <= 1 || rank)
90  {
91  suitesparse_integer *jmatch = CXSPARSE_NAME (_maxtrans) (&csm, 0);
92  if (rank)
93  {
94  octave_idx_type r = 0;
95  for (octave_idx_type i = 0; i < nc; i++)
96  if (jmatch[nr+i] >= 0)
97  r++;
98  retval(0) = static_cast<double> (r);
99  }
100  else
101  retval(0) = put_int (jmatch + nr, nc);
102  CXSPARSE_NAME (_free) (jmatch);
103  }
104  else
105  {
106  CXSPARSE_NAME (d) *dm = CXSPARSE_NAME(_dmperm) (&csm, 0);
107 
108  retval = ovl (put_int (dm->p, nr), put_int (dm->q, nc),
109  put_int (dm->r, dm->nb+1), put_int (dm->s, dm->nb+1),
110  put_int (dm->cc, 5), put_int (dm->rr, 5));
111 
112  CXSPARSE_NAME (_dfree) (dm);
113  }
114 
115  return retval;
116 }
117 
118 #endif
119 
120 // NOTE: the docstring for dmperm is adapted from the text found in the
121 // file cs_dmperm.m that is distributed with the CSparse portion of the
122 // SuiteSparse library, version 5.6.0. CSparse is distributed under the
123 // terms of the LGPL v2.1 or any later version.
124 
125 DEFUN (dmperm, args, nargout,
126  doc: /* -*- texinfo -*-
127 @deftypefn {} {@var{p} =} dmperm (@var{A})
128 @deftypefnx {} {[@var{p}, @var{q}, @var{r}, @var{s}, @var{cc}, @var{rr}] =} dmperm (@var{A})
129 
130 @cindex @nospell{Dulmage-Mendelsohn} decomposition
131 Perform a @nospell{Dulmage-Mendelsohn} permutation of the sparse matrix
132 @var{A}.
133 
134 With a single output argument @code{dmperm}, return a maximum matching @var{p}
135 such that @code{p(j) = i} if column @var{j} is matched to row @var{i}, or 0 if
136 column @var{j} is unmatched. If @var{A} is square and full structural rank,
137 @var{p} is a row permutation and @code{A(p,:)} has a zero-free diagonal. The
138 structural rank of @var{A} is @code{sprank(A) = sum(p>0)}.
139 
140 Called with two or more output arguments, return the
141 @nospell{Dulmage-Mendelsohn} decomposition of @var{A}. @var{p} and @var{q} are
142 permutation vectors. @var{cc} and @var{rr} are vectors of length 5.
143 @code{c = A(p,q)} is split into a 4-by-4 set of coarse blocks:
144 
145 @example
146 @group
147  A11 A12 A13 A14
148  0 0 A23 A24
149  0 0 0 A34
150  0 0 0 A44
151 @end group
152 @end example
153 
154 @noindent
155 where @code{A12}, @code{A23}, and @code{A34} are square with zero-free
156 diagonals. The columns of @code{A11} are the unmatched columns, and the rows
157 of @code{A44} are the unmatched rows. Any of these blocks can be empty. In
158 the "coarse" decomposition, the (i,j)-th block is
159 @code{C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1)}. In terms of a linear system,
160 @code{[A11 A12]} is the underdetermined part of the system (it is always
161 rectangular and with more columns and rows, or 0-by-0), @code{A23} is the
162 well-determined part of the system (it is always square), and
163 @code{[A34 ; A44]} is the over-determined part of the system (it is always
164 rectangular with more rows than columns, or 0-by-0).
165 
166 The structural rank of @var{A} is @code{sprank (A) = rr(4)-1}, which is an
167 upper bound on the numerical rank of @var{A}.
168 @code{sprank(A) = rank(full(sprand(A)))} with probability 1 in exact
169 arithmetic.
170 
171 The @code{A23} submatrix is further subdivided into block upper triangular form
172 via the "fine" decomposition (the strongly-connected components of @code{A23}).
173 If @var{A} is square and structurally non-singular, @code{A23} is the entire
174 matrix.
175 
176 @code{C(r(i):r(i+1)-1,s(j):s(j+1)-1)} is the (i,j)-th block of the fine
177 decomposition. The (1,1) block is the rectangular block @code{[A11 A12]},
178 unless this block is 0-by-0. The (b,b) block is the rectangular block
179 @code{[A34 ; A44]}, unless this block is 0-by-0, where @code{b = length(r)-1}.
180 All other blocks of the form @code{C(r(i):r(i+1)-1,s(i):s(i+1)-1)} are diagonal
181 blocks of @code{A23}, and are square with a zero-free diagonal.
182 
183 The method used is described in: @nospell{A. Pothen & C.-J. Fan.}
184 @cite{Computing the Block Triangular Form of a Sparse Matrix}.
185 @nospell{ACM} Trans.@: Math.@: Software, 16(4):303--324, 1990.
186 @seealso{colamd, ccolamd}
187 @end deftypefn */)
188 {
189 #if defined (HAVE_CXSPARSE)
190 
191  if (args.length () != 1)
192  print_usage ();
193 
194  return dmperm_internal (false, args(0), nargout);
195 
196 #else
197 
198  octave_unused_parameter (args);
199  octave_unused_parameter (nargout);
200 
201  err_disabled_feature ("dmperm", "CXSparse");
202 
203 #endif
204 }
205 
206 /*
207 %!testif HAVE_CXSPARSE
208 %! n = 20;
209 %! a = speye (n,n);
210 %! a = a(randperm (n),:);
211 %! assert (a(dmperm (a),:), speye (n));
212 
213 %!testif HAVE_CXSPARSE
214 %! n = 20;
215 %! d = 0.2;
216 %! a = tril (sprandn (n,n,d), -1) + speye (n,n);
217 %! a = a(randperm (n), randperm (n));
218 %! [p,q,r,s] = dmperm (a);
219 %! assert (tril (a(p,q), -1), sparse (n, n));
220 */
221 
222 DEFUN (sprank, args, nargout,
223  doc: /* -*- texinfo -*-
224 @deftypefn {} {@var{p} =} sprank (@var{S})
225 @cindex structural rank
226 
227 Calculate the structural rank of the sparse matrix @var{S}.
228 
229 Note that only the structure of the matrix is used in this calculation based
230 on a @nospell{Dulmage-Mendelsohn} permutation to block triangular form. As
231 such the numerical rank of the matrix @var{S} is bounded by
232 @code{sprank (@var{S}) >= rank (@var{S})}. Ignoring floating point errors
233 @code{sprank (@var{S}) == rank (@var{S})}.
234 @seealso{dmperm}
235 @end deftypefn */)
236 {
237 #if defined (HAVE_CXSPARSE)
238 
239  if (args.length () != 1)
240  print_usage ();
241 
242  return dmperm_internal (true, args(0), nargout);
243 
244 #else
245 
246  octave_unused_parameter (args);
247  octave_unused_parameter (nargout);
248 
249  err_disabled_feature ("sprank", "CXSparse");
250 
251 #endif
252 }
253 
254 /*
255 %!testif HAVE_CXSPARSE
256 %! assert (sprank (speye (20)), 20);
257 %!testif HAVE_CXSPARSE
258 %! assert (sprank ([1,0,2,0;2,0,4,0]), 2);
259 
260 %!error sprank (1,2)
261 */
262 
263 OCTAVE_END_NAMESPACE(octave)
T & xelem(octave_idx_type n)
Size of the specified dimension.
Definition: Array.h:524
octave_idx_type * xcidx()
Definition: Sparse.h:602
octave_idx_type nzmax() const
Amount of storage for nonzero elements.
Definition: Sparse.h:336
octave_idx_type nnz() const
Actual number of nonzero terms.
Definition: Sparse.h:339
octave_idx_type * xridx()
Definition: Sparse.h:589
SparseMatrix sparse_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:900
octave_idx_type rows() const
Definition: ov.h:545
octave_idx_type columns() const
Definition: ov.h:547
SparseComplexMatrix sparse_complex_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:904
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
void print_usage(void)
Definition: defun-int.h:72
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition: defun.h:56
#define CXSPARSE_NAME(name)
Definition: dmperm.cc:46
void err_disabled_feature(const std::string &fcn, const std::string &feature, const std::string &pkg)
Definition: errwarn.cc:53
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
F77_RET_T const F77_DBLE * x
T octave_idx_type m
Definition: mx-inlines.cc:781
octave_idx_type n
Definition: mx-inlines.cc:761
T * r
Definition: mx-inlines.cc:781
suitesparse_integer * to_suitesparse_intptr(octave_idx_type *i)
Definition: oct-sparse.cc:51
int suitesparse_integer
Definition: oct-sparse.h:184
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition: ovl.h:219