GNU Octave  9.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
fCNDArray.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 1996-2024 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if defined (HAVE_CONFIG_H)
27 # include "config.h"
28 #endif
29 
30 #include <complex>
31 #include <istream>
32 #include <ostream>
33 
34 #include "Array-util.h"
35 #include "f77-fcn.h"
36 #include "fCNDArray.h"
37 #include "lo-ieee.h"
38 #include "lo-mappers.h"
39 #include "mx-base.h"
40 #include "mx-op-defs.h"
41 #include "mx-fcnda-fs.h"
42 #include "oct-fftw.h"
43 #include "oct-locbuf.h"
44 
45 #include "bsxfun-defs.cc"
46 
48  : MArray<FloatComplex> (a.dims ())
49 {
50  octave_idx_type n = a.numel ();
51  for (octave_idx_type i = 0; i < n; i++)
52  xelem (i) = static_cast<unsigned char> (a(i));
53 }
54 
55 #if defined (HAVE_FFTW)
56 
59 {
60  dim_vector dv = dims ();
61 
62  if (dim > dv.ndims () || dim < 0)
63  return FloatComplexNDArray ();
64 
65  octave_idx_type stride = 1;
66  octave_idx_type n = dv(dim);
67 
68  for (int i = 0; i < dim; i++)
69  stride *= dv(i);
70 
71  octave_idx_type howmany = numel () / dv(dim);
72  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
73  octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride);
74  octave_idx_type dist = (stride == 1 ? n : 1);
75 
76  const FloatComplex *in (data ());
77  FloatComplexNDArray retval (dv);
78  FloatComplex *out (retval.fortran_vec ());
79 
80  // Need to be careful here about the distance between fft's
81  for (octave_idx_type k = 0; k < nloop; k++)
82  octave::fftw::fft (in + k * stride * n, out + k * stride * n,
83  n, howmany, stride, dist);
84 
85  return retval;
86 }
87 
90 {
91  dim_vector dv = dims ();
92 
93  if (dim > dv.ndims () || dim < 0)
94  return FloatComplexNDArray ();
95 
96  octave_idx_type stride = 1;
97  octave_idx_type n = dv(dim);
98 
99  for (int i = 0; i < dim; i++)
100  stride *= dv(i);
101 
102  octave_idx_type howmany = numel () / dv(dim);
103  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
104  octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride);
105  octave_idx_type dist = (stride == 1 ? n : 1);
106 
107  const FloatComplex *in (data ());
108  FloatComplexNDArray retval (dv);
109  FloatComplex *out (retval.fortran_vec ());
110 
111  // Need to be careful here about the distance between fft's
112  for (octave_idx_type k = 0; k < nloop; k++)
113  octave::fftw::ifft (in + k * stride * n, out + k * stride * n,
114  n, howmany, stride, dist);
115 
116  return retval;
117 }
118 
121 {
122  dim_vector dv = dims ();
123  if (dv.ndims () < 2)
125 
126  dim_vector dv2 (dv(0), dv(1));
127  const FloatComplex *in = data ();
128  FloatComplexNDArray retval (dv);
129  FloatComplex *out = retval.fortran_vec ();
130  octave_idx_type howmany = numel () / dv(0) / dv(1);
131  octave_idx_type dist = dv(0) * dv(1);
132 
133  for (octave_idx_type i=0; i < howmany; i++)
134  octave::fftw::fftNd (in + i*dist, out + i*dist, 2, dv2);
135 
136  return retval;
137 }
138 
141 {
142  dim_vector dv = dims ();
143  if (dv.ndims () < 2)
144  return FloatComplexNDArray ();
145 
146  dim_vector dv2 (dv(0), dv(1));
147  const FloatComplex *in = data ();
148  FloatComplexNDArray retval (dv);
149  FloatComplex *out = retval.fortran_vec ();
150  octave_idx_type howmany = numel () / dv(0) / dv(1);
151  octave_idx_type dist = dv(0) * dv(1);
152 
153  for (octave_idx_type i=0; i < howmany; i++)
154  octave::fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2);
155 
156  return retval;
157 }
158 
161 {
162  dim_vector dv = dims ();
163  int rank = dv.ndims ();
164 
165  const FloatComplex *in (data ());
166  FloatComplexNDArray retval (dv);
167  FloatComplex *out (retval.fortran_vec ());
168 
169  octave::fftw::fftNd (in, out, rank, dv);
170 
171  return retval;
172 }
173 
176 {
177  dim_vector dv = dims ();
178  int rank = dv.ndims ();
179 
180  const FloatComplex *in (data ());
181  FloatComplexNDArray retval (dv);
182  FloatComplex *out (retval.fortran_vec ());
183 
184  octave::fftw::ifftNd (in, out, rank, dv);
185 
186  return retval;
187 }
188 
189 #else
190 
192 FloatComplexNDArray::fourier (int dim) const
193 {
194  octave_unused_parameter (dim);
195 
196  (*current_liboctave_error_handler)
197  ("support for FFTW was unavailable or disabled when liboctave was built");
198 
199  return FloatComplexNDArray ();
200 }
201 
203 FloatComplexNDArray::ifourier (int dim) const
204 {
205  octave_unused_parameter (dim);
206 
207  (*current_liboctave_error_handler)
208  ("support for FFTW was unavailable or disabled when liboctave was built");
209 
210  return FloatComplexNDArray ();
211 }
212 
215 {
216  (*current_liboctave_error_handler)
217  ("support for FFTW was unavailable or disabled when liboctave was built");
218 
219  return FloatComplexNDArray ();
220 }
221 
224 {
225  (*current_liboctave_error_handler)
226  ("support for FFTW was unavailable or disabled when liboctave was built");
227 
228  return FloatComplexNDArray ();
229 }
230 
233 {
234  (*current_liboctave_error_handler)
235  ("support for FFTW was unavailable or disabled when liboctave was built");
236 
237  return FloatComplexNDArray ();
238 }
239 
242 {
243  (*current_liboctave_error_handler)
244  ("support for FFTW was unavailable or disabled when liboctave was built");
245 
246  return FloatComplexNDArray ();
247 }
248 
249 #endif
250 
251 // unary operations
252 
255 {
256  if (any_element_is_nan ())
258 
259  return do_mx_unary_op<bool, FloatComplex> (*this, mx_inline_not);
260 }
261 
262 // FIXME: this is not quite the right thing.
263 
264 bool
266 {
267  return do_mx_check<FloatComplex> (*this, mx_inline_any_nan);
268 }
269 
270 bool
272 {
273  return ! do_mx_check<FloatComplex> (*this, mx_inline_all_finite);
274 }
275 
276 // Return true if no elements have imaginary components.
277 
278 bool
280 {
281  return do_mx_check<FloatComplex> (*this, mx_inline_all_real);
282 }
283 
284 // Return nonzero if any element of CM has a non-integer real or
285 // imaginary part. Also extract the largest and smallest (real or
286 // imaginary) values and return them in MAX_VAL and MIN_VAL.
287 
288 bool
289 FloatComplexNDArray::all_integers (float& max_val, float& min_val) const
290 {
291  octave_idx_type nel = numel ();
292 
293  if (nel > 0)
294  {
295  FloatComplex val = elem (0);
296 
297  float r_val = val.real ();
298  float i_val = val.imag ();
299 
300  max_val = r_val;
301  min_val = r_val;
302 
303  if (i_val > max_val)
304  max_val = i_val;
305 
306  if (i_val < max_val)
307  min_val = i_val;
308  }
309  else
310  return false;
311 
312  for (octave_idx_type i = 0; i < nel; i++)
313  {
314  FloatComplex val = elem (i);
315 
316  float r_val = val.real ();
317  float i_val = val.imag ();
318 
319  if (r_val > max_val)
320  max_val = r_val;
321 
322  if (i_val > max_val)
323  max_val = i_val;
324 
325  if (r_val < min_val)
326  min_val = r_val;
327 
328  if (i_val < min_val)
329  min_val = i_val;
330 
331  if (octave::math::x_nint (r_val) != r_val
332  || octave::math::x_nint (i_val) != i_val)
333  return false;
334  }
335 
336  return true;
337 }
338 
339 bool
341 {
342  return false;
343 }
344 
347 {
348  return do_mx_red_op<bool, FloatComplex> (*this, dim, mx_inline_all);
349 }
350 
353 {
354  return do_mx_red_op<bool, FloatComplex> (*this, dim, mx_inline_any);
355 }
356 
359 {
360  return do_mx_cum_op<FloatComplex, FloatComplex> (*this, dim,
362 }
363 
366 {
367  return do_mx_cum_op<FloatComplex, FloatComplex> (*this, dim,
369 }
370 
373 {
374  return do_mx_red_op<FloatComplex, FloatComplex> (*this, dim, mx_inline_prod);
375 }
376 
379 {
380  return do_mx_red_op<Complex, FloatComplex> (*this, dim, mx_inline_dprod);
381 }
382 
385 {
386  return do_mx_red_op<FloatComplex, FloatComplex> (*this, dim, mx_inline_sum);
387 }
388 
391 {
392  return do_mx_red_op<Complex, FloatComplex> (*this, dim, mx_inline_dsum);
393 }
394 
397 {
398  return do_mx_red_op<float, FloatComplex> (*this, dim, mx_inline_sumsq);
399 }
400 
403 {
404  return do_mx_diff_op<FloatComplex> (*this, dim, order, mx_inline_diff);
405 }
406 
410 {
411  if (rb.numel () > 0)
412  insert (rb, ra_idx);
413  return *this;
414 }
415 
419 {
420  FloatComplexNDArray tmp (rb);
421  if (rb.numel () > 0)
422  insert (tmp, ra_idx);
423  return *this;
424 }
425 
429 {
430  FloatComplexNDArray retval (ra);
431  if (rb.numel () > 0)
432  retval.insert (rb, ra_idx);
433  return retval;
434 }
435 
436 static const FloatComplex FloatComplex_NaN_result (octave::numeric_limits<float>::NaN (),
438 
441 {
442  return do_mx_minmax_op<FloatComplex> (*this, dim, mx_inline_max);
443 }
444 
447 {
448  return do_mx_minmax_op<FloatComplex> (*this, idx_arg, dim, mx_inline_max);
449 }
450 
453 {
454  return do_mx_minmax_op<FloatComplex> (*this, dim, mx_inline_min);
455 }
456 
459 {
460  return do_mx_minmax_op<FloatComplex> (*this, idx_arg, dim, mx_inline_min);
461 }
462 
465 {
466  return do_mx_cumminmax_op<FloatComplex> (*this, dim, mx_inline_cummax);
467 }
468 
471 {
472  return do_mx_cumminmax_op<FloatComplex> (*this, idx_arg, dim,
474 }
475 
478 {
479  return do_mx_cumminmax_op<FloatComplex> (*this, dim, mx_inline_cummin);
480 }
481 
484 {
485  return do_mx_cumminmax_op<FloatComplex> (*this, idx_arg, dim,
487 }
488 
491 {
492  return do_mx_unary_map<float, FloatComplex, std::abs> (*this);
493 }
494 
497 {
498  return do_mx_unary_map<bool, FloatComplex, octave::math::isnan> (*this);
499 }
500 
503 {
504  return do_mx_unary_map<bool, FloatComplex, octave::math::isinf> (*this);
505 }
506 
509 {
510  return do_mx_unary_map<bool, FloatComplex, octave::math::isfinite> (*this);
511 }
512 
515 {
516  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float>> (a);
517 }
518 
522 {
523  dim_vector a_dv = a.dims ();
524  dim_vector dv = dims ();
525 
526  int n = a_dv.ndims ();
527 
528  if (n == dv.ndims ())
529  {
530  Array<octave_idx_type> a_ra_idx (dim_vector (a_dv.ndims (), 1), 0);
531 
532  a_ra_idx.elem (0) = r;
533  a_ra_idx.elem (1) = c;
534 
535  for (int i = 0; i < n; i++)
536  {
537  if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i))
538  (*current_liboctave_error_handler)
539  ("Array<T>::insert: range error for insert");
540  }
541 
542  a_ra_idx.elem (0) = 0;
543  a_ra_idx.elem (1) = 0;
544 
545  octave_idx_type n_elt = a.numel ();
546 
547  // IS make_unique () NECESSARY HERE?
548 
549  for (octave_idx_type i = 0; i < n_elt; i++)
550  {
551  Array<octave_idx_type> ra_idx = a_ra_idx;
552 
553  ra_idx.elem (0) = a_ra_idx(0) + r;
554  ra_idx.elem (1) = a_ra_idx(1) + c;
555 
556  elem (ra_idx) = a.elem (a_ra_idx);
557 
558  increment_index (a_ra_idx, a_dv);
559  }
560  }
561  else
563  ("Array<T>::insert: invalid indexing operation");
564 
565  return *this;
566 }
567 
571 {
573  return *this;
574 }
575 
579 {
581  return *this;
582 }
583 
584 void
586  const dim_vector& dimensions,
587  int start_dimension)
588 {
589  ::increment_index (ra_idx, dimensions, start_dimension);
590 }
591 
594  const dim_vector& dimensions)
595 {
596  return ::compute_index (ra_idx, dimensions);
597 }
598 
601 {
602  return MArray<FloatComplex>::diag (k);
603 }
604 
607 {
608  return MArray<FloatComplex>::diag (m, n);
609 }
610 
611 // This contains no information on the array structure !!!
612 std::ostream&
613 operator << (std::ostream& os, const FloatComplexNDArray& a)
614 {
615  octave_idx_type nel = a.numel ();
616 
617  for (octave_idx_type i = 0; i < nel; i++)
618  {
619  os << ' ';
620  octave::write_value<Complex> (os, a.elem (i));
621  os << "\n";
622  }
623  return os;
624 }
625 
626 std::istream&
627 operator >> (std::istream& is, FloatComplexNDArray& a)
628 {
629  octave_idx_type nel = a.numel ();
630 
631  if (nel > 0)
632  {
633  FloatComplex tmp;
634  for (octave_idx_type i = 0; i < nel; i++)
635  {
636  tmp = octave::read_value<FloatComplex> (is);
637  if (is)
638  a.elem (i) = tmp;
639  else
640  return is;
641  }
642  }
643 
644  return is;
645 }
646 
648 
651 
654 
657 
658 FloatComplexNDArray& operator *= (FloatComplexNDArray& a, float s)
659 {
660  if (a.is_shared ())
661  a = a * s;
662  else
663  do_ms_inplace_op<FloatComplex, float> (a, s, mx_inline_mul2);
664  return a;
665 }
666 
669 {
670  if (a.is_shared ())
671  a = a / s;
672  else
673  do_ms_inplace_op<FloatComplex, float> (a, s, mx_inline_div2);
674  return a;
675 }
676 
679 
octave_idx_type compute_index(octave_idx_type n, const dim_vector &dims)
Definition: Array-util.cc:177
#define NaN
Definition: Faddeeva.cc:261
#define BSXFUN_STDREL_DEFS_MXLOOP(ARRAY)
Definition: bsxfun-defs.cc:244
#define BSXFUN_STDOP_DEFS_MXLOOP(ARRAY)
Definition: bsxfun-defs.cc:236
#define BSXFUN_OP_DEF_MXLOOP(OP, ARRAY, LOOP)
Definition: bsxfun-defs.cc:221
T & elem(octave_idx_type n)
Size of the specified dimension.
Definition: Array.h:562
T * fortran_vec()
Size of the specified dimension.
Definition: Array-base.cc:1764
Array< T, Alloc > & insert(const Array< T, Alloc > &a, const Array< octave_idx_type > &idx)
Insert an array into another at a specified position.
Definition: Array-base.cc:1608
const T * data() const
Size of the specified dimension.
Definition: Array.h:663
bool is_shared() const
Size of the specified dimension.
Definition: Array.h:668
const dim_vector & dims() const
Return a const-reference so that dims ()(i) works efficiently.
Definition: Array.h:503
T & xelem(octave_idx_type n)
Size of the specified dimension.
Definition: Array.h:524
Array< T, Alloc > diag(octave_idx_type k=0) const
Get the kth super or subdiagonal.
Definition: Array-base.cc:2541
octave_idx_type numel() const
Number of elements in the array.
Definition: Array.h:414
bool any_element_is_inf_or_nan() const
Definition: fCNDArray.cc:271
FloatComplexNDArray max(int dim=-1) const
Definition: fCNDArray.cc:440
bool all_integers(float &max_val, float &min_val) const
Definition: fCNDArray.cc:289
FloatComplexNDArray fourier2d() const
Definition: fCNDArray.cc:120
FloatComplexNDArray ifourierNd() const
Definition: fCNDArray.cc:175
FloatComplexNDArray sum(int dim=-1) const
Definition: fCNDArray.cc:384
FloatComplexNDArray min(int dim=-1) const
Definition: fCNDArray.cc:452
FloatComplexNDArray cumprod(int dim=-1) const
Definition: fCNDArray.cc:358
FloatComplexNDArray cummin(int dim=-1) const
Definition: fCNDArray.cc:477
FloatNDArray abs() const
Definition: fCNDArray.cc:490
FloatComplexNDArray cummax(int dim=-1) const
Definition: fCNDArray.cc:464
FloatComplexNDArray sumsq(int dim=-1) const
Definition: fCNDArray.cc:396
bool too_large_for_float() const
Definition: fCNDArray.cc:340
ComplexNDArray dsum(int dim=-1) const
Definition: fCNDArray.cc:390
FloatComplexNDArray diff(octave_idx_type order=1, int dim=-1) const
Definition: fCNDArray.cc:402
FloatComplexNDArray & insert(const NDArray &a, octave_idx_type r, octave_idx_type c)
Definition: fCNDArray.cc:520
static void increment_index(Array< octave_idx_type > &ra_idx, const dim_vector &dimensions, int start_dimension=0)
Definition: fCNDArray.cc:585
bool any_element_is_nan() const
Definition: fCNDArray.cc:265
FloatComplexNDArray prod(int dim=-1) const
Definition: fCNDArray.cc:372
boolNDArray operator!() const
Definition: fCNDArray.cc:254
FloatComplexNDArray ifourier(int dim=1) const
Definition: fCNDArray.cc:89
boolNDArray isinf() const
Definition: fCNDArray.cc:502
FloatComplexNDArray cumsum(int dim=-1) const
Definition: fCNDArray.cc:365
boolNDArray all(int dim=-1) const
Definition: fCNDArray.cc:346
FloatComplexNDArray concat(const FloatComplexNDArray &rb, const Array< octave_idx_type > &ra_idx)
Definition: fCNDArray.cc:408
FloatComplexNDArray fourierNd() const
Definition: fCNDArray.cc:160
boolNDArray any(int dim=-1) const
Definition: fCNDArray.cc:352
static octave_idx_type compute_index(Array< octave_idx_type > &ra_idx, const dim_vector &dimensions)
Definition: fCNDArray.cc:593
FloatComplexNDArray ifourier2d() const
Definition: fCNDArray.cc:140
boolNDArray isnan() const
Definition: fCNDArray.cc:496
FloatComplexNDArray diag(octave_idx_type k=0) const
Definition: fCNDArray.cc:600
bool all_elements_are_real() const
Definition: fCNDArray.cc:279
boolNDArray isfinite() const
Definition: fCNDArray.cc:508
FloatComplexNDArray fourier(int dim=1) const
Definition: fCNDArray.cc:58
ComplexNDArray dprod(int dim=-1) const
Definition: fCNDArray.cc:378
Template for N-dimensional array classes with like-type math operators.
Definition: MArray.h:63
Vector representing the dimensions (size) of an Array.
Definition: dim-vector.h:94
octave_idx_type ndims() const
Number of dimensions.
Definition: dim-vector.h:257
std::istream & operator>>(std::istream &is, FloatComplexNDArray &a)
Definition: fCNDArray.cc:627
std::ostream & operator<<(std::ostream &os, const FloatComplexNDArray &a)
Definition: fCNDArray.cc:613
FloatComplexNDArray concat(NDArray &ra, FloatComplexNDArray &rb, const Array< octave_idx_type > &ra_idx)
Definition: fCNDArray.cc:427
FloatComplexNDArray & operator/=(FloatComplexNDArray &a, float s)
Definition: fCNDArray.cc:668
FloatComplexNDArray conj(const FloatComplexNDArray &a)
Definition: fCNDArray.cc:514
void err_nan_to_logical_conversion()
OCTAVE_NORETURN liboctave_error_handler current_liboctave_error_handler
Definition: lo-error.c:41
T x_nint(T x)
Definition: lo-mappers.h:269
void mx_inline_div2(std::size_t n, R *r, const X *x)
Definition: mx-inlines.cc:130
void mx_inline_any(const T *v, bool *r, octave_idx_type l, octave_idx_type n, octave_idx_type u)
Definition: mx-inlines.cc:859
void mx_inline_cummin(const T *v, T *r, octave_idx_type n)
Definition: mx-inlines.cc:1201
bool mx_inline_all_real(std::size_t n, const std::complex< T > *x)
Definition: mx-inlines.cc:312
void mx_inline_cumprod(const T *v, T *r, octave_idx_type n)
Definition: mx-inlines.cc:876
void mx_inline_cumsum(const T *v, T *r, octave_idx_type n)
Definition: mx-inlines.cc:875
bool mx_inline_any_nan(std::size_t n, const T *x)
Definition: mx-inlines.cc:260
void mx_inline_max(const T *v, T *r, octave_idx_type n)
Definition: mx-inlines.cc:980
void mx_inline_not(std::size_t n, bool *r, const X *x)
Definition: mx-inlines.cc:183
void mx_inline_all(const T *v, bool *r, octave_idx_type m, octave_idx_type n)
Definition: mx-inlines.cc:825
void mx_inline_prod(const T *v, T *r, octave_idx_type l, octave_idx_type n, octave_idx_type u)
Definition: mx-inlines.cc:855
void mx_inline_cummax(const T *v, T *r, octave_idx_type n)
Definition: mx-inlines.cc:1202
void mx_inline_dprod(const T *v, typename subst_template_param< std::complex, T, double >::type *r, octave_idx_type l, octave_idx_type n, octave_idx_type u)
Definition: mx-inlines.cc:856
void mx_inline_mul2(std::size_t n, R *r, const X *x)
Definition: mx-inlines.cc:129
T mx_inline_sumsq(const T *v, octave_idx_type n)
Definition: mx-inlines.cc:763
T mx_inline_sum(const T *v, octave_idx_type n)
Definition: mx-inlines.cc:760
void mx_inline_min(const T *v, T *r, octave_idx_type n)
Definition: mx-inlines.cc:979
T octave_idx_type m
Definition: mx-inlines.cc:781
void mx_inline_dsum(const T *v, typename subst_template_param< std::complex, T, double >::type *r, octave_idx_type l, octave_idx_type n, octave_idx_type u)
Definition: mx-inlines.cc:853
void mx_inline_diff(const T *v, T *r, octave_idx_type n, octave_idx_type order)
Definition: mx-inlines.cc:1398
bool mx_inline_all_finite(std::size_t n, const T *x)
Definition: mx-inlines.cc:273
octave_idx_type n
Definition: mx-inlines.cc:761
T * r
Definition: mx-inlines.cc:781
void mx_inline_pow(std::size_t n, R *r, const X *x, const Y *y)
Definition: mx-inlines.cc:419
#define NDND_BOOL_OPS(ND1, ND2)
Definition: mx-op-defs.h:350
#define NDS_BOOL_OPS(ND, S)
Definition: mx-op-defs.h:256
#define NDND_CMP_OPS(ND1, ND2)
Definition: mx-op-defs.h:333
#define SND_BOOL_OPS(S, ND)
Definition: mx-op-defs.h:303
#define NDS_CMP_OPS(ND, S)
Definition: mx-op-defs.h:239
#define SND_CMP_OPS(S, ND)
Definition: mx-op-defs.h:286
#define MINMAX_FCNS(T, S)
Definition: mx-op-defs.h:589
std::complex< float > FloatComplex
Definition: oct-cmplx.h:34
octave_int< T > pow(const octave_int< T > &a, const octave_int< T > &b)
const octave_base_value const Array< octave_idx_type > & ra_idx