26 #if defined (HAVE_CONFIG_H)
134 double zr = z.real ();
135 double zi = z.imag ();
141 F77_FUNC (
zairy, ZAIRY) (zr, zi, id, sc, ar, ai, nz, t_ierr);
145 if (zi == 0.0 && (! scaled || zr >= 0.0))
164 retval(i, j) =
airy (z(i, j), deriv, scaled,
ierr(i, j));
180 retval(i) =
airy (z(i), deriv, scaled,
ierr(i));
200 float ar = a.real ();
201 float ai = a.imag ();
203 if (z.imag () == 0.0 && (! scaled || z.real () >= 0.0))
222 retval(i, j) =
airy (z(i, j), deriv, scaled,
ierr(i, j));
238 retval(i) =
airy (z(i), deriv, scaled,
ierr(i));
246 return x ==
static_cast<double> (
static_cast<long> (
x));
279 double zr = z.real ();
280 double zi = z.imag ();
282 F77_FUNC (
zbesj, ZBESJ) (zr, zi, alpha, kode, 1, &yr, &yi, nz, t_ierr);
286 if (zi == 0.0 && zr >= 0.0)
296 if ((
static_cast<long> (alpha)) & 1)
308 tmp -= sin (M_PI * alpha) *
zbesy (z, alpha, kode,
ierr);
334 double zr = z.real ();
335 double zi = z.imag ();
339 if (zr == 0.0 && zi == 0.0)
346 F77_FUNC (
zbesy, ZBESY) (zr, zi, alpha, kode, 1, &yr, &yi, nz,
351 if (zi == 0.0 && zr >= 0.0)
362 if ((
static_cast<long> (alpha - 0.5)) & 1)
374 tmp += sin (M_PI * alpha) *
zbesj (z, alpha, kode,
ierr);
398 double zr = z.real ();
399 double zi = z.imag ();
401 F77_FUNC (
zbesi, ZBESI) (zr, zi, alpha, kode, 1, &yr, &yi, nz, t_ierr);
405 if (zi == 0.0 && zr >= 0.0)
425 Complex tmp2 = (2.0 / M_PI) * sin (M_PI * alpha)
431 tmp2 *= exp (-z -
std::abs (z.real ()));
458 double zr = z.real ();
459 double zi = z.imag ();
463 if (zr == 0.0 && zi == 0.0)
470 F77_FUNC (
zbesk, ZBESK) (zr, zi, alpha, kode, 1, &yr, &yi, nz,
475 if (zi == 0.0 && zr >= 0.0)
503 double zr = z.real ();
504 double zi = z.imag ();
506 F77_FUNC (
zbesh, ZBESH) (zr, zi, alpha, kode, 1, 1, &yr, &yi, nz,
539 double zr = z.real ();
540 double zi = z.imag ();
542 F77_FUNC (
zbesh, ZBESH) (zr, zi, alpha, kode, 2, 1, &yr, &yi, nz,
571 retval =
f (
x, alpha, (scaled ? 2 : 1),
ierr);
589 retval(i, j) =
f (
x(i, j), alpha, (scaled ? 2 : 1),
ierr(i, j));
607 retval(i, j) =
f (
x, alpha(i, j), (scaled ? 2 : 1),
ierr(i, j));
624 if (x_nr != alpha_nr || x_nc != alpha_nc)
625 (*current_liboctave_error_handler)
626 (
"%s: the sizes of alpha and x must conform", fn);
637 retval(i, j) =
f (
x(i, j), alpha(i, j), (scaled ? 2 : 1),
ierr(i, j));
653 retval(i) =
f (
x(i), alpha, (scaled ? 2 : 1),
ierr(i));
669 retval(i) =
f (
x, alpha(i), (scaled ? 2 : 1),
ierr(i));
681 if (dv != alpha.
dims ())
682 (*current_liboctave_error_handler)
683 (
"%s: the sizes of alpha and x must conform", fn);
691 retval(i) =
f (
x(i), alpha(i), (scaled ? 2 : 1),
ierr(i));
710 retval(i, j) =
f (
x(i), alpha(j), (scaled ? 2 : 1),
ierr(i, j));
715 #define SS_BESSEL(name, fcn) \
717 name (double alpha, const Complex& x, bool scaled, octave_idx_type& ierr) \
719 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
722 #define SM_BESSEL(name, fcn) \
724 name (double alpha, const ComplexMatrix& x, bool scaled, \
725 Array<octave_idx_type>& ierr) \
727 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
730 #define MS_BESSEL(name, fcn) \
732 name (const Matrix& alpha, const Complex& x, bool scaled, \
733 Array<octave_idx_type>& ierr) \
735 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
738 #define MM_BESSEL(name, fcn) \
740 name (const Matrix& alpha, const ComplexMatrix& x, bool scaled, \
741 Array<octave_idx_type>& ierr) \
743 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
746 #define SN_BESSEL(name, fcn) \
748 name (double alpha, const ComplexNDArray& x, bool scaled, \
749 Array<octave_idx_type>& ierr) \
751 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
754 #define NS_BESSEL(name, fcn) \
756 name (const NDArray& alpha, const Complex& x, bool scaled, \
757 Array<octave_idx_type>& ierr) \
759 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
762 #define NN_BESSEL(name, fcn) \
764 name (const NDArray& alpha, const ComplexNDArray& x, bool scaled, \
765 Array<octave_idx_type>& ierr) \
767 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
770 #define RC_BESSEL(name, fcn) \
772 name (const RowVector& alpha, const ComplexColumnVector& x, bool scaled, \
773 Array<octave_idx_type>& ierr) \
775 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
778 #define ALL_BESSEL(name, fcn) \
779 SS_BESSEL (name, fcn) \
780 SM_BESSEL (name, fcn) \
781 MS_BESSEL (name, fcn) \
782 MM_BESSEL (name, fcn) \
783 SN_BESSEL (name, fcn) \
784 NS_BESSEL (name, fcn) \
785 NN_BESSEL (name, fcn) \
786 RC_BESSEL (name, fcn)
826 return x ==
static_cast<float> (
static_cast<long> (
x));
845 if (z.imag () == 0.0 && z.real () >= 0.0)
855 if ((
static_cast<long> (alpha)) & 1)
863 FloatComplex tmp = cosf (
static_cast<float> (M_PI) * alpha)
868 tmp -= sinf (
static_cast<float> (M_PI) * alpha)
896 if (z.real () == 0.0 && z.imag () == 0.0)
908 if (z.imag () == 0.0 && z.real () >= 0.0)
919 if ((
static_cast<long> (alpha - 0.5)) & 1)
927 FloatComplex tmp = cosf (
static_cast<float> (M_PI) * alpha)
932 tmp += sinf (
static_cast<float> (M_PI) * alpha)
961 if (z.imag () == 0.0 && z.real () >= 0.0)
975 * sinf (
static_cast<float> (M_PI) * alpha)
981 tmp2 *= exp (-z -
std::abs (z.real ()));
1009 if (z.real () == 0.0 && z.imag () == 0.0)
1020 if (z.imag () == 0.0 && z.real () >= 0.0)
1060 FloatComplex tmp = exp (
static_cast<float> (M_PI) * alpha * eye)
1093 FloatComplex tmp = exp (-
static_cast<float> (M_PI) * alpha * eye)
1111 retval =
f (
x, alpha, (scaled ? 2 : 1),
ierr);
1129 retval(i, j) =
f (
x(i, j), alpha, (scaled ? 2 : 1),
ierr(i, j));
1148 retval(i, j) =
f (
x, alpha(i, j), (scaled ? 2 : 1),
ierr(i, j));
1166 if (x_nr != alpha_nr || x_nc != alpha_nc)
1167 (*current_liboctave_error_handler)
1168 (
"%s: the sizes of alpha and x must conform", fn);
1179 retval(i, j) =
f (
x(i, j), alpha(i, j), (scaled ? 2 : 1),
ierr(i, j));
1195 retval(i) =
f (
x(i), alpha, (scaled ? 2 : 1),
ierr(i));
1211 retval(i) =
f (
x, alpha(i), (scaled ? 2 : 1),
ierr(i));
1224 if (dv != alpha.
dims ())
1225 (*current_liboctave_error_handler)
1226 (
"%s: the sizes of alpha and x must conform", fn);
1234 retval(i) =
f (
x(i), alpha(i), (scaled ? 2 : 1),
ierr(i));
1253 retval(i, j) =
f (
x(i), alpha(j), (scaled ? 2 : 1),
ierr(i, j));
1258 #define SS_BESSEL(name, fcn) \
1260 name (float alpha, const FloatComplex& x, bool scaled, \
1261 octave_idx_type& ierr) \
1263 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1266 #define SM_BESSEL(name, fcn) \
1267 FloatComplexMatrix \
1268 name (float alpha, const FloatComplexMatrix& x, bool scaled, \
1269 Array<octave_idx_type>& ierr) \
1271 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1274 #define MS_BESSEL(name, fcn) \
1275 FloatComplexMatrix \
1276 name (const FloatMatrix& alpha, const FloatComplex& x, bool scaled, \
1277 Array<octave_idx_type>& ierr) \
1279 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1282 #define MM_BESSEL(name, fcn) \
1283 FloatComplexMatrix \
1284 name (const FloatMatrix& alpha, const FloatComplexMatrix& x, \
1285 bool scaled, Array<octave_idx_type>& ierr) \
1287 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1290 #define SN_BESSEL(name, fcn) \
1291 FloatComplexNDArray \
1292 name (float alpha, const FloatComplexNDArray& x, bool scaled, \
1293 Array<octave_idx_type>& ierr) \
1295 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1298 #define NS_BESSEL(name, fcn) \
1299 FloatComplexNDArray \
1300 name (const FloatNDArray& alpha, const FloatComplex& x, \
1301 bool scaled, Array<octave_idx_type>& ierr) \
1303 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1306 #define NN_BESSEL(name, fcn) \
1307 FloatComplexNDArray \
1308 name (const FloatNDArray& alpha, const FloatComplexNDArray& x, \
1309 bool scaled, Array<octave_idx_type>& ierr) \
1311 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1314 #define RC_BESSEL(name, fcn) \
1315 FloatComplexMatrix \
1316 name (const FloatRowVector& alpha, \
1317 const FloatComplexColumnVector& x, bool scaled, \
1318 Array<octave_idx_type>& ierr) \
1320 return do_bessel (fcn, #name, alpha, x, scaled, ierr); \
1323 #define ALL_BESSEL(name, fcn) \
1324 SS_BESSEL (name, fcn) \
1325 SM_BESSEL (name, fcn) \
1326 MS_BESSEL (name, fcn) \
1327 MM_BESSEL (name, fcn) \
1328 SN_BESSEL (name, fcn) \
1329 NS_BESSEL (name, fcn) \
1330 NN_BESSEL (name, fcn) \
1331 RC_BESSEL (name, fcn)
1356 double zr = z.real ();
1357 double zi = z.imag ();
1361 F77_INT sc = (scaled ? 2 : 1);
1367 if (zi == 0.0 && (! scaled || zr >= 0.0))
1386 retval(i, j) =
biry (z(i, j), deriv, scaled,
ierr(i, j));
1402 retval(i) =
biry (z(i), deriv, scaled,
ierr(i));
1415 F77_INT sc = (scaled ? 2 : 1);
1422 float ar = a.real ();
1423 float ai = a.imag ();
1425 if (z.imag () == 0.0 && (! scaled || z.real () >= 0.0))
1444 retval(i, j) =
biry (z(i, j), deriv, scaled,
ierr(i, j));
1460 retval(i) =
biry (z(i), deriv, scaled,
ierr(i));
1485 ellipj (
double u,
double m,
double& sn,
double& cn,
double& dn,
double& err)
1487 static const int Nmax = 16;
1488 double m1, t=0, si_u, co_u, se_u, ta_u, b, c[Nmax], a[Nmax], phi;
1493 (*current_liboctave_warning_with_id_handler)
1494 (
"Octave:ellipj-invalid-m",
1495 "ellipj: invalid M value, required value 0 <= M <= 1");
1502 double sqrt_eps = std::sqrt (std::numeric_limits<double>::epsilon ());
1508 t = 0.25*
m*(u - si_u*co_u);
1509 sn = si_u - t * co_u;
1510 cn = co_u + t * si_u;
1511 dn = 1 - 0.5*
m*si_u*si_u;
1513 else if ((1 -
m) < sqrt_eps)
1521 sn = ta_u + 0.25*m1*(si_u*co_u - u)*se_u*se_u;
1522 cn = se_u - 0.25*m1*(si_u*co_u - u)*ta_u*se_u;
1523 dn = se_u + 0.25*m1*(si_u*co_u + u)*ta_u*se_u;
1530 b = std::sqrt (1 -
m);
1531 c[0] = std::sqrt (
m);
1532 for (
n = 1;
n < Nmax; ++
n)
1534 a[
n] = (a[
n - 1] + b)/2;
1535 c[
n] = (a[
n - 1] - b)/2;
1536 b = std::sqrt (a[
n - 1]*b);
1537 if (c[
n]/a[
n] < std::numeric_limits<double>::epsilon ())
break;
1545 for (ii = 1;
n > 0; ii *= 2, --
n) {}
1547 for (
n = Nn;
n > 0; --
n)
1549 phi = (
std::asin ((c[
n]/a[
n])* sin (phi)) + phi)/2;
1553 dn = std::sqrt (1 -
m*sn*sn);
1561 double m1 = 1 -
m, ss1, cc1, dd1;
1563 ellipj (u.imag (), m1, ss1, cc1, dd1, err);
1574 double ss, cc, dd, ddd;
1576 ellipj (u.real (),
m, ss, cc, dd, err);
1577 ddd = cc1*cc1 +
m*ss*ss*ss1*ss1;
1578 sn =
Complex (ss*dd1/ddd, cc*dd*ss1*cc1/ddd);
1579 cn =
Complex (cc*cc1/ddd, -ss*dd*ss1*dd1/ddd);
1580 dn =
Complex (dd*cc1*dd1/ddd, -
m*ss*cc*ss1/ddd);
1622 static const double a[] =
1624 -2.806989788730439e+01, 1.562324844726888e+02,
1625 -1.951109208597547e+02, 9.783370457507161e+01,
1626 -2.168328665628878e+01, 1.772453852905383e+00
1628 static const double b[] =
1630 -5.447609879822406e+01, 1.615858368580409e+02,
1631 -1.556989798598866e+02, 6.680131188771972e+01,
1632 -1.328068155288572e+01
1634 static const double c[] =
1636 -5.504751339936943e-03, -2.279687217114118e-01,
1637 -1.697592457770869e+00, -1.802933168781950e+00,
1638 3.093354679843505e+00, 2.077595676404383e+00
1640 static const double d[] =
1642 7.784695709041462e-03, 3.224671290700398e-01,
1643 2.445134137142996e+00, 3.754408661907416e+00
1646 static const double spi2 = 8.862269254527579e-01;
1647 static const double pbreak_lo = 0.04850;
1648 static const double pbreak_hi = 1.95150;
1652 if (
x >= pbreak_lo &&
x <= pbreak_hi)
1655 const double q = 0.5*(1-
x),
r = q*q;
1656 const double yn = (((((a[0]*
r + a[1])*
r + a[2])*
r + a[3])*
r + a[4])*
r + a[5])*q;
1657 const double yd = ((((b[0]*
r + b[1])*
r + b[2])*
r + b[3])*
r + b[4])*
r + 1.0;
1660 else if (
x > 0.0 &&
x < 2.0)
1663 const double q = (
x < 1
1664 ? std::sqrt (-2*std::log (0.5*
x))
1665 : std::sqrt (-2*std::log (0.5*(2-
x))));
1667 const double yn = ((((c[0]*q + c[1])*q + c[2])*q + c[3])*q + c[4])*q + c[5];
1669 const double yd = (((
d[0]*q +
d[1])*q +
d[2])*q +
d[3])*q + 1.0;
1686 double u = (
erf (y) - (1-
x)) * spi2 * exp (y*y);
1752 static const double a[] =
1754 -2.806989788730439e+01, 1.562324844726888e+02,
1755 -1.951109208597547e+02, 9.783370457507161e+01,
1756 -2.168328665628878e+01, 1.772453852905383e+00
1758 static const double b[] =
1760 -5.447609879822406e+01, 1.615858368580409e+02,
1761 -1.556989798598866e+02, 6.680131188771972e+01,
1762 -1.328068155288572e+01
1764 static const double c[] =
1766 -5.504751339936943e-03, -2.279687217114118e-01,
1767 -1.697592457770869e+00, -1.802933168781950e+00,
1768 3.093354679843505e+00, 2.077595676404383e+00
1770 static const double d[] =
1772 7.784695709041462e-03, 3.224671290700398e-01,
1773 2.445134137142996e+00, 3.754408661907416e+00
1776 static const double spi2 = 8.862269254527579e-01;
1777 static const double pbreak = 0.95150;
1778 double ax = fabs (
x), y;
1784 const double q = 0.5 *
x,
r = q*q;
1785 const double yn = (((((a[0]*
r + a[1])*
r + a[2])*
r + a[3])*
r + a[4])*
r + a[5])*q;
1786 const double yd = ((((b[0]*
r + b[1])*
r + b[2])*
r + b[3])*
r + b[4])*
r + 1.0;
1792 const double q = std::sqrt (-2*std::log (0.5*(1-ax)));
1793 const double yn = ((((c[0]*q + c[1])*q + c[2])*q + c[3])*q + c[4])*q + c[5];
1794 const double yd = (((
d[0]*q +
d[1])*q +
d[2])*q +
d[3])*q + 1.0;
1805 double u = (
erf (y) -
x) * spi2 * exp (y*y);
1829 double im =
x.imag ();
1830 double u =
expm1 (
x.real ());
1831 double v = sin (im/2);
1833 retval =
Complex (u*v + u + v, (u+1) * sin (im));
1836 retval = std::exp (
x) -
Complex (1);
1848 float im =
x.imag ();
1849 float u =
expm1 (
x.real ());
1850 float v = sin (im/2);
1878 result = std::tgamma (
x);
1901 result = std::tgammaf (
x);
1911 double r =
x.real (), i =
x.imag ();
1913 if (fabs (
r) < 0.5 && fabs (i) < 0.5)
1915 double u = 2*
r +
r*
r + i*i;
1920 retval = std::log (
Complex (1) +
x);
1930 float r =
x.real (), i =
x.imag ();
1932 if (fabs (
r) < 0.5 && fabs (i) < 0.5)
1934 float u = 2*
r +
r*
r + i*i;
1944 static const double pi = 3.14159265358979323846;
1946 template <
typename T>
1957 return std::log (
x);
1964 return std::log (
x);
1967 template <
typename T>
1975 static const T dg_coeff[10] =
1977 -0.83333333333333333e-1, 0.83333333333333333e-2,
1978 -0.39682539682539683e-2, 0.41666666666666667e-2,
1979 -0.75757575757575758e-2, 0.21092796092796093e-1,
1980 -0.83333333333333333e-1, 0.4432598039215686,
1981 -0.3053954330270122e+1, 0.125318899521531e+2
1984 T overz2 = T (1.0) / (zc * zc);
1989 p += dg_coeff[k] * overz2k;
1990 p +=
xlog (zc) - T (0.5) / zc;
1994 template <
typename T>
1998 static const double euler_mascheroni
1999 = 0.577215664901532860606512090082402431042;
2011 p =
psi (1 - z) - (
pi / tan (
pi * z));
2016 p = - euler_mascheroni;
2024 p += 1.0 / (2 * k - 1);
2026 p = - euler_mascheroni - 2 * std::log (2) + 2 * (p);
2036 const signed char n = 10 - z;
2037 for (
signed char k =
n - 1; k >= 0; k--)
2051 template <
typename T>
2057 typedef typename std::complex<T>::value_type P;
2062 std::complex<T> dgam (0.0, 0.0);
2064 dgam = std::complex<T> (
psi (z_r), 0.0);
2066 dgam =
psi (P (1.0) - z)- (P (
pi) / tan (P (
pi) * z));
2070 std::complex<T> z_m = z;
2073 unsigned char n = 8 - z_ra;
2074 z_m = z + std::complex<T> (
n, 0.0);
2079 std::complex<T> z_p = z + P (
n - 1);
2080 for (
unsigned char k =
n; k > 0; k--, z_p -= 1.0)
2081 dgam -= P (1.0) / z_p;
2100 template <
typename T>
2128 template <
typename T>
2134 fortran_psifn<T> (z,
n, ans,
ierr);
2163 #if defined (HAVE_LGAMMA_R)
2165 result = lgamma_r (
x, &sgngam);
2168 int sgngam = signgam;
2172 return result +
Complex (0., M_PI);
2182 #if defined (HAVE_LGAMMAF_R)
2184 result = lgammaf_r (
x, &sgngam);
2186 result = std::lgammaf (
x);
2187 int sgngam = signgam;
2199 ?
Complex (std::log (-(1.0 +
x)), M_PI)
subroutine cairy(Z, ID, KODE, AI, NZ, IERR)
subroutine cbesh(Z, FNU, KODE, M, N, CY, NZ, IERR)
subroutine cbiry(Z, ID, KODE, BI, IERR)
OCTARRAY_OVERRIDABLE_FUNC_API octave_idx_type numel(void) const
Number of elements in the array.
OCTARRAY_OVERRIDABLE_FUNC_API const dim_vector & dims(void) const
Return a const-reference so that dims ()(i) works efficiently.
OCTARRAY_API void resize(const dim_vector &dv, const T &rfv)
Size of the specified dimension.
OCTARRAY_OVERRIDABLE_FUNC_API octave_idx_type rows(void) const
OCTARRAY_OVERRIDABLE_FUNC_API octave_idx_type cols(void) const
void resize(octave_idx_type nr, octave_idx_type nc, const Complex &rfv=Complex(0))
void resize(octave_idx_type nr, octave_idx_type nc, const FloatComplex &rfv=FloatComplex(0))
Vector representing the dimensions (size) of an Array.
octave_idx_type numel(int n=0) const
Number of elements that a matrix with this dimensions would have.
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
subroutine dpsifn(X, N, KODE, M, ANS, NZ, IERR)
#define F77_CONST_CMPLX_ARG(x)
#define F77_XFCN(f, F, args)
octave_f77_int_type F77_INT
double lo_ieee_nan_value(void)
Complex asin(const Complex &x)
bool negative_sign(double x)
std::complex< T > floor(const std::complex< T > &x)
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE const F77_INT F77_INT & ierr
F77_RET_T const F77_DBLE * x
F77_RET_T const F77_DBLE const F77_DBLE * f
static Complex zbesj(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
static void fortran_psifn(T z, octave_idx_type n, T &ans, octave_idx_type &ierr)
Complex(* dptr)(const Complex &, double, int, octave_idx_type &)
void fortran_psifn< float >(float z, octave_idx_type n_arg, float &ans, octave_idx_type &ierr)
static Complex zbesk(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Complex besselj(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
static Complex zbesh1(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
static Complex zbesi(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
static double do_erfinv(double x, bool refine)
static FloatComplex cbesh1(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Complex besselh2(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
static FloatComplex cbesj(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Complex erf(const Complex &x)
static FloatComplex cbesk(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
static FloatComplex cbesy(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
void fortran_psifn< double >(double z, octave_idx_type n_arg, double &ans, octave_idx_type &ierr)
static Complex zbesy(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Complex rc_log1p(double x)
Complex bessely(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Complex besselk(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
static double do_erfcinv(double x, bool refine)
Complex besselh1(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
static FloatComplex cbesi(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
Complex rc_lgamma(double x)
#define ALL_BESSEL(name, fcn)
static FloatComplex cbesh2(const FloatComplex &z, float alpha, int kode, octave_idx_type &ierr)
static T xlog(const T &x)
FloatComplex(* fptr)(const FloatComplex &, float, int, octave_idx_type &)
static Complex do_bessel(dptr f, const char *, double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
static T lanczos_approximation_psi(const T zc)
Complex airy(const Complex &z, bool deriv, bool scaled, octave_idx_type &ierr)
static Complex zbesh2(const Complex &z, double alpha, int kode, octave_idx_type &ierr)
Complex expm1(const Complex &x)
static bool is_integer_value(double x)
void ellipj(double u, double m, double &sn, double &cn, double &dn, double &err)
Complex besseli(double alpha, const Complex &x, bool scaled, octave_idx_type &ierr)
Complex biry(const Complex &z, bool deriv, bool scaled, octave_idx_type &ierr)
Complex log1p(const Complex &x)
static Complex bessel_return_value(const Complex &val, octave_idx_type ierr)
Complex erfc(const Complex &x)
std::complex< double > w(std::complex< double > z, double relerr=0)
std::complex< double > erfc(std::complex< double > z, double relerr=0)
std::complex< double > erfcx(std::complex< double > z, double relerr=0)
std::complex< double > erfi(std::complex< double > z, double relerr=0)
std::complex< double > erf(std::complex< double > z, double relerr=0)
std::complex< double > Dawson(std::complex< double > z, double relerr=0)
std::complex< double > Complex
std::complex< float > FloatComplex
octave_int< T > pow(const octave_int< T > &a, const octave_int< T > &b)
subroutine psifn(X, N, KODE, M, ANS, NZ, IERR)
F77_RET_T F77_FUNC(xerbla, XERBLA)(F77_CONST_CHAR_ARG_DEF(s_arg
subroutine zairy(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
subroutine zbesh(ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR)
subroutine zbiry(ZR, ZI, ID, KODE, BIR, BII, IERR)