GNU Octave 7.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
CRowVector.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 1994-2022 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include <istream>
31#include <ostream>
32#include <type_traits>
33
34#include "Array-util.h"
35#include "lo-blas-proto.h"
36#include "lo-error.h"
37#include "mx-base.h"
38#include "mx-inlines.cc"
39#include "oct-cmplx.h"
40
41// Complex Row Vector class
42
43bool
45{
47 if (len != a.numel ())
48 return 0;
49 return mx_inline_equal (len, data (), a.data ());
50}
51
52bool
54{
55 return !(*this == a);
56}
57
58// destructive insert/delete/reorder operations
59
62{
63 octave_idx_type a_len = a.numel ();
64
65 if (c < 0 || c + a_len > numel ())
66 (*current_liboctave_error_handler) ("range error for insert");
67
68 if (a_len > 0)
69 {
70 make_unique ();
71
72 for (octave_idx_type i = 0; i < a_len; i++)
73 xelem (c+i) = a.elem (i);
74 }
75
76 return *this;
77}
78
81{
82 octave_idx_type a_len = a.numel ();
83
84 if (c < 0 || c + a_len > numel ())
85 (*current_liboctave_error_handler) ("range error for insert");
86
87 if (a_len > 0)
88 {
89 make_unique ();
90
91 for (octave_idx_type i = 0; i < a_len; i++)
92 xelem (c+i) = a.elem (i);
93 }
94
95 return *this;
96}
97
100{
102
103 if (len > 0)
104 {
105 make_unique ();
106
107 for (octave_idx_type i = 0; i < len; i++)
108 xelem (i) = val;
109 }
110
111 return *this;
112}
113
116{
118
119 if (len > 0)
120 {
121 make_unique ();
122
123 for (octave_idx_type i = 0; i < len; i++)
124 xelem (i) = val;
125 }
126
127 return *this;
128}
129
132{
134
135 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
136 (*current_liboctave_error_handler) ("range error for fill");
137
138 if (c1 > c2) { std::swap (c1, c2); }
139
140 if (c2 >= c1)
141 {
142 make_unique ();
143
144 for (octave_idx_type i = c1; i <= c2; i++)
145 xelem (i) = val;
146 }
147
148 return *this;
149}
150
154{
156
157 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
158 (*current_liboctave_error_handler) ("range error for fill");
159
160 if (c1 > c2) { std::swap (c1, c2); }
161
162 if (c2 >= c1)
163 {
164 make_unique ();
165
166 for (octave_idx_type i = c1; i <= c2; i++)
167 xelem (i) = val;
168 }
169
170 return *this;
171}
172
175{
177 octave_idx_type nc_insert = len;
178 ComplexRowVector retval (len + a.numel ());
179 retval.insert (*this, 0);
180 retval.insert (a, nc_insert);
181 return retval;
182}
183
186{
188 octave_idx_type nc_insert = len;
189 ComplexRowVector retval (len + a.numel ());
190 retval.insert (*this, 0);
191 retval.insert (a, nc_insert);
192 return retval;
193}
194
197{
199}
200
203{
205}
206
209{
210 return do_mx_unary_map<Complex, Complex, std::conj<double>> (a);
211}
212
213// resize is the destructive equivalent for this one
214
217{
218 if (c1 > c2) { std::swap (c1, c2); }
219
220 octave_idx_type new_c = c2 - c1 + 1;
221
222 ComplexRowVector result (new_c);
223
224 for (octave_idx_type i = 0; i < new_c; i++)
225 result.elem (i) = elem (c1+i);
226
227 return result;
228}
229
232{
233 ComplexRowVector result (n);
234
235 for (octave_idx_type i = 0; i < n; i++)
236 result.elem (i) = elem (r1+i);
237
238 return result;
239}
240
241// row vector by row vector -> row vector operations
242
245{
247
248 octave_idx_type a_len = a.numel ();
249
250 if (len != a_len)
251 octave::err_nonconformant ("operator +=", len, a_len);
252
253 if (len == 0)
254 return *this;
255
256 Complex *d = fortran_vec (); // Ensures only one reference to my privates!
257
258 mx_inline_add2 (len, d, a.data ());
259 return *this;
260}
261
264{
266
267 octave_idx_type a_len = a.numel ();
268
269 if (len != a_len)
270 octave::err_nonconformant ("operator -=", len, a_len);
271
272 if (len == 0)
273 return *this;
274
275 Complex *d = fortran_vec (); // Ensures only one reference to my privates!
276
277 mx_inline_sub2 (len, d, a.data ());
278 return *this;
279}
280
281// row vector by matrix -> row vector
282
285{
286 ComplexRowVector retval;
287
288 F77_INT len = octave::to_f77_int (v.numel ());
289
290 F77_INT a_nr = octave::to_f77_int (a.rows ());
291 F77_INT a_nc = octave::to_f77_int (a.cols ());
292
293 if (a_nr != len)
294 octave::err_nonconformant ("operator *", 1, len, a_nr, a_nc);
295
296 if (len == 0)
297 retval.resize (a_nc, 0.0);
298 else
299 {
300 // Transpose A to form A'*x == (x'*A)'
301
302 F77_INT ld = a_nr;
303
304 retval.resize (a_nc);
305 Complex *y = retval.fortran_vec ();
306
307 F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("T", 1),
308 a_nr, a_nc, 1.0, F77_CONST_DBLE_CMPLX_ARG (a.data ()),
309 ld, F77_CONST_DBLE_CMPLX_ARG (v.data ()), 1, 0.0, F77_DBLE_CMPLX_ARG (y), 1
310 F77_CHAR_ARG_LEN (1)));
311 }
312
313 return retval;
314}
315
318{
319 ComplexRowVector tmp (v);
320 return tmp * a;
321}
322
323// other operations
324
327{
329 if (len == 0)
330 return Complex (0.0);
331
332 Complex res = elem (0);
333 double absres = std::abs (res);
334
335 for (octave_idx_type i = 1; i < len; i++)
336 if (std::abs (elem (i)) < absres)
337 {
338 res = elem (i);
339 absres = std::abs (res);
340 }
341
342 return res;
343}
344
347{
349 if (len == 0)
350 return Complex (0.0);
351
352 Complex res = elem (0);
353 double absres = std::abs (res);
354
355 for (octave_idx_type i = 1; i < len; i++)
356 if (std::abs (elem (i)) > absres)
357 {
358 res = elem (i);
359 absres = std::abs (res);
360 }
361
362 return res;
363}
364
365// i/o
366
367std::ostream&
368operator << (std::ostream& os, const ComplexRowVector& a)
369{
370// int field_width = os.precision () + 7;
371 for (octave_idx_type i = 0; i < a.numel (); i++)
372 os << ' ' /* setw (field_width) */ << a.elem (i);
373 return os;
374}
375
376std::istream&
377operator >> (std::istream& is, ComplexRowVector& a)
378{
380
381 if (len > 0)
382 {
383 Complex tmp;
384 for (octave_idx_type i = 0; i < len; i++)
385 {
386 is >> tmp;
387 if (is)
388 a.elem (i) = tmp;
389 else
390 break;
391 }
392 }
393 return is;
394}
395
396// row vector by column vector -> scalar
397
398// row vector by column vector -> scalar
399
402{
403 ComplexColumnVector tmp (a);
404 return v * tmp;
405}
406
409{
410 Complex retval (0.0, 0.0);
411
412 F77_INT len = octave::to_f77_int (v.numel ());
413
414 F77_INT a_len = octave::to_f77_int (a.numel ());
415
416 if (len != a_len)
417 octave::err_nonconformant ("operator *", len, a_len);
418 if (len != 0)
419 F77_FUNC (xzdotu, XZDOTU) (len, F77_CONST_DBLE_CMPLX_ARG (v.data ()), 1,
421
422 return retval;
423}
424
425// other operations
426
428linspace (const Complex& x1, const Complex& x2, octave_idx_type n_in)
429{
430 ComplexRowVector retval;
431
432 if (n_in < 1)
433 return retval;
434 else if (n_in == 1)
435 {
436 retval.resize (1, x2);
437 return retval;
438 }
439
440 // Use unsigned type (guaranteed n_in > 1 at this point) so that divisions
441 // by 2 can be replaced by compiler with shift right instructions.
442 typedef std::make_unsigned<octave_idx_type>::type unsigned_octave_idx_type;
443
444 unsigned_octave_idx_type n = n_in;
445
446 // Set endpoints, rather than calculate, for maximum accuracy.
447 retval.clear (n);
448 retval.xelem (0) = x1;
449 retval.xelem (n-1) = x2;
450
451 // Construct linspace symmetrically from both ends.
452 Complex delta = (x2 - x1) / (n - 1.0);
453 unsigned_octave_idx_type n2 = n/2;
454 for (unsigned_octave_idx_type i = 1; i < n2; i++)
455 {
456 retval.xelem (i) = x1 + static_cast<double> (i)*delta;
457 retval.xelem (n-1-i) = x2 - static_cast<double> (i)*delta;
458 }
459 if (n % 2 == 1) // Middle element if number of elements is odd.
460 retval.xelem (n2) = (x1 == -x2 ? 0 : (x1 + x2) / 2.0);
461
462 return retval;
463}
ComplexRowVector conj(const ComplexRowVector &a)
Definition: CRowVector.cc:208
ComplexRowVector operator*(const ComplexRowVector &v, const ComplexMatrix &a)
Definition: CRowVector.cc:284
std::ostream & operator<<(std::ostream &os, const ComplexRowVector &a)
Definition: CRowVector.cc:368
std::istream & operator>>(std::istream &is, ComplexRowVector &a)
Definition: CRowVector.cc:377
ComplexRowVector linspace(const Complex &x1, const Complex &x2, octave_idx_type n_in)
Definition: CRowVector.cc:428
Complex & xelem(octave_idx_type n)
Definition: Array.h:504
void make_unique(void)
Definition: Array.h:215
octave_idx_type numel(void) const
Number of elements in the array.
Definition: Array.h:411
octave_idx_type cols(void) const
Definition: Array.h:457
T & elem(octave_idx_type n)
Size of the specified dimension.
Definition: Array.h:534
octave_idx_type rows(void) const
Definition: Array.h:449
const Complex * data(void) const
Definition: Array.h:616
OCTARRAY_API Complex * fortran_vec(void)
Definition: Array.cc:1744
OCTAVE_API ComplexRowVector & operator-=(const RowVector &a)
Definition: CRowVector.cc:263
OCTAVE_API ComplexRowVector & operator+=(const RowVector &a)
Definition: CRowVector.cc:244
OCTAVE_API ComplexRowVector extract(octave_idx_type c1, octave_idx_type c2) const
Definition: CRowVector.cc:216
OCTAVE_API ComplexRowVector append(const RowVector &a) const
Definition: CRowVector.cc:174
void resize(octave_idx_type n, const Complex &rfv=Complex(0))
Definition: CRowVector.h:127
void clear(octave_idx_type n)
Definition: CRowVector.h:132
OCTAVE_API bool operator==(const ComplexRowVector &a) const
Definition: CRowVector.cc:44
OCTAVE_API Complex max(void) const
Definition: CRowVector.cc:346
OCTAVE_API ComplexRowVector extract_n(octave_idx_type c1, octave_idx_type n) const
Definition: CRowVector.cc:231
OCTAVE_API Complex min(void) const
Definition: CRowVector.cc:326
OCTAVE_API ComplexRowVector & fill(double val)
Definition: CRowVector.cc:99
OCTAVE_API ComplexColumnVector hermitian(void) const
Definition: CRowVector.cc:196
OCTAVE_API ComplexRowVector & insert(const RowVector &a, octave_idx_type c)
Definition: CRowVector.cc:61
OCTAVE_API bool operator!=(const ComplexRowVector &a) const
Definition: CRowVector.cc:53
OCTAVE_API ComplexColumnVector transpose(void) const
Definition: CRowVector.cc:202
MArray< T > hermitian(T(*fcn)(const T &)=nullptr) const
Definition: MArray.h:102
MArray< T > transpose(void) const
Definition: MArray.h:99
#define F77_DBLE_CMPLX_ARG(x)
Definition: f77-fcn.h:316
#define F77_XFCN(f, F, args)
Definition: f77-fcn.h:45
octave_f77_int_type F77_INT
Definition: f77-fcn.h:306
#define F77_CONST_DBLE_CMPLX_ARG(x)
Definition: f77-fcn.h:319
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
void mx_inline_sub2(std::size_t n, R *r, const X *x)
Definition: mx-inlines.cc:127
void mx_inline_add2(std::size_t n, R *r, const X *x)
Definition: mx-inlines.cc:126
bool mx_inline_equal(std::size_t n, const T1 *x, const T2 *y)
Definition: mx-inlines.cc:570
void err_nonconformant(const char *op, octave_idx_type op1_len, octave_idx_type op2_len)
std::complex< double > Complex
Definition: oct-cmplx.h:33
static T abs(T x)
Definition: pr-output.cc:1678
F77_RET_T F77_FUNC(xerbla, XERBLA)(F77_CONST_CHAR_ARG_DEF(s_arg
F77_RET_T len
Definition: xerbla.cc:61
subroutine xzdotu(n, zx, incx, zy, incy, retval)
Definition: xzdotu.f:2