GNU Octave 7.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
dmperm.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 1998-2022 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include "CSparse.h"
31#include "dRowVector.h"
32#include "dSparse.h"
33#include "oct-sparse.h"
34
35#include "defun.h"
36#include "errwarn.h"
37#include "ov.h"
38#include "ovl.h"
39#include "utils.h"
40
41OCTAVE_NAMESPACE_BEGIN
42
43#if defined (OCTAVE_ENABLE_64)
44# define CXSPARSE_NAME(name) cs_dl ## name
45#else
46# define CXSPARSE_NAME(name) cs_di ## name
47#endif
48
49#if defined (HAVE_CXSPARSE)
50
51static RowVector
53{
54 RowVector ret (n);
55 for (octave_idx_type i = 0; i < n; i++)
56 ret.xelem (i) = p[i] + 1;
57 return ret;
58}
59
61dmperm_internal (bool rank, const octave_value arg, int nargout)
62{
63 octave_value_list retval;
64 octave_idx_type nr = arg.rows ();
65 octave_idx_type nc = arg.columns ();
68 CXSPARSE_NAME () csm;
69 csm.m = nr;
70 csm.n = nc;
71 csm.x = nullptr;
72 csm.nz = -1;
73
74 if (arg.isreal ())
75 {
76 m = arg.sparse_matrix_value ();
77 csm.nzmax = m.nnz ();
78 csm.p = to_suitesparse_intptr (m.xcidx ());
79 csm.i = to_suitesparse_intptr (m.xridx ());
80 }
81 else
82 {
84 csm.nzmax = cm.nnz ();
85 csm.p = to_suitesparse_intptr (cm.xcidx ());
86 csm.i = to_suitesparse_intptr (cm.xridx ());
87 }
88
89 if (nargout <= 1 || rank)
90 {
91 suitesparse_integer *jmatch = CXSPARSE_NAME (_maxtrans) (&csm, 0);
92 if (rank)
93 {
94 octave_idx_type r = 0;
95 for (octave_idx_type i = 0; i < nc; i++)
96 if (jmatch[nr+i] >= 0)
97 r++;
98 retval(0) = static_cast<double> (r);
99 }
100 else
101 retval(0) = put_int (jmatch + nr, nc);
102 CXSPARSE_NAME (_free) (jmatch);
103 }
104 else
105 {
106 CXSPARSE_NAME (d) *dm = CXSPARSE_NAME(_dmperm) (&csm, 0);
107
108 retval = ovl (put_int (dm->p, nr), put_int (dm->q, nc),
109 put_int (dm->r, dm->nb+1), put_int (dm->s, dm->nb+1),
110 put_int (dm->cc, 5), put_int (dm->rr, 5));
111
112 CXSPARSE_NAME (_dfree) (dm);
113 }
114
115 return retval;
116}
117
118#endif
119
120// NOTE: the docstring for dmperm is adapted from the text found in the
121// file cs_dmperm.m that is distributed with the CSparse portion of the
122// SuiteSparse library, version 5.6.0. CSparse is distributed under the
123// terms of the LGPL v2.1 or any later version.
124
125DEFUN (dmperm, args, nargout,
126 doc: /* -*- texinfo -*-
127@deftypefn {} {@var{p} =} dmperm (@var{A})
128@deftypefnx {} {[@var{p}, @var{q}, @var{r}, @var{s}, @var{cc}, @var{rr}] =} dmperm (@var{A})
129
130@cindex @nospell{Dulmage-Mendelsohn} decomposition
131Perform a @nospell{Dulmage-Mendelsohn} permutation of the sparse matrix
132@var{A}.
133
134With a single output argument @code{dmperm}, return a maximum matching @var{p}
135such that @code{p(j) = i} if column @var{j} is matched to row @var{i}, or 0 if
136column @var{j} is unmatched. If @var{A} is square and full structural rank,
137@var{p} is a row permutation and @code{A(p,:)} has a zero-free diagonal. The
138structural rank of @var{A} is @code{sprank(A) = sum(p>0)}.
139
140Called with two or more output arguments, return the
141@nospell{Dulmage-Mendelsohn} decomposition of @var{A}. @var{p} and @var{q} are
142permutation vectors. @var{cc} and @var{rr} are vectors of length 5.
143@code{c = A(p,q)} is split into a 4-by-4 set of coarse blocks:
144
145@example
146@group
147 A11 A12 A13 A14
148 0 0 A23 A24
149 0 0 0 A34
150 0 0 0 A44
151@end group
152@end example
153
154@noindent
155where @code{A12}, @code{A23}, and @code{A34} are square with zero-free
156diagonals. The columns of @code{A11} are the unmatched columns, and the rows
157of @code{A44} are the unmatched rows. Any of these blocks can be empty. In
158the "coarse" decomposition, the (i,j)-th block is
159@code{C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1)}. In terms of a linear system,
160@code{[A11 A12]} is the underdetermined part of the system (it is always
161rectangular and with more columns and rows, or 0-by-0), @code{A23} is the
162well-determined part of the system (it is always square), and
163@code{[A34 ; A44]} is the over-determined part of the system (it is always
164rectangular with more rows than columns, or 0-by-0).
165
166The structural rank of @var{A} is @code{sprank (A) = rr(4)-1}, which is an
167upper bound on the numerical rank of @var{A}.
168@code{sprank(A) = rank(full(sprand(A)))} with probability 1 in exact
169arithmetic.
170
171The @code{A23} submatrix is further subdivided into block upper triangular form
172via the "fine" decomposition (the strongly-connected components of @code{A23}).
173If @var{A} is square and structurally non-singular, @code{A23} is the entire
174matrix.
175
176@code{C(r(i):r(i+1)-1,s(j):s(j+1)-1)} is the (i,j)-th block of the fine
177decomposition. The (1,1) block is the rectangular block @code{[A11 A12]},
178unless this block is 0-by-0. The (b,b) block is the rectangular block
179@code{[A34 ; A44]}, unless this block is 0-by-0, where @code{b = length(r)-1}.
180All other blocks of the form @code{C(r(i):r(i+1)-1,s(i):s(i+1)-1)} are diagonal
181blocks of @code{A23}, and are square with a zero-free diagonal.
182
183The method used is described in: @nospell{A. Pothen & C.-J. Fan.}
184@cite{Computing the Block Triangular Form of a Sparse Matrix}.
185@nospell{ACM} Trans.@: Math.@: Software, 16(4):303--324, 1990.
186@seealso{colamd, ccolamd}
187@end deftypefn */)
188{
189#if defined (HAVE_CXSPARSE)
190
191 if (args.length () != 1)
192 print_usage ();
193
194 return dmperm_internal (false, args(0), nargout);
195
196#else
197
198 octave_unused_parameter (args);
199 octave_unused_parameter (nargout);
200
201 err_disabled_feature ("dmperm", "CXSparse");
202
203#endif
204}
205
206/*
207%!testif HAVE_CXSPARSE
208%! n = 20;
209%! a = speye (n,n);
210%! a = a(randperm (n),:);
211%! assert (a(dmperm (a),:), speye (n));
212
213%!testif HAVE_CXSPARSE
214%! n = 20;
215%! d = 0.2;
216%! a = tril (sprandn (n,n,d), -1) + speye (n,n);
217%! a = a(randperm (n), randperm (n));
218%! [p,q,r,s] = dmperm (a);
219%! assert (tril (a(p,q), -1), sparse (n, n));
220*/
221
222DEFUN (sprank, args, nargout,
223 doc: /* -*- texinfo -*-
224@deftypefn {} {@var{p} =} sprank (@var{S})
225@cindex structural rank
226
227Calculate the structural rank of the sparse matrix @var{S}.
228
229Note that only the structure of the matrix is used in this calculation based
230on a @nospell{Dulmage-Mendelsohn} permutation to block triangular form. As
231such the numerical rank of the matrix @var{S} is bounded by
232@code{sprank (@var{S}) >= rank (@var{S})}. Ignoring floating point errors
233@code{sprank (@var{S}) == rank (@var{S})}.
234@seealso{dmperm}
235@end deftypefn */)
236{
237#if defined (HAVE_CXSPARSE)
238
239 if (args.length () != 1)
240 print_usage ();
241
242 return dmperm_internal (true, args(0), nargout);
243
244#else
245
246 octave_unused_parameter (args);
247 octave_unused_parameter (nargout);
248
249 err_disabled_feature ("sprank", "CXSparse");
250
251#endif
252}
253
254/*
255%!testif HAVE_CXSPARSE
256%! assert (sprank (speye (20)), 20);
257%!testif HAVE_CXSPARSE
258%! assert (sprank ([1,0,2,0;2,0,4,0]), 2);
259
260%!error sprank (1,2)
261*/
262
263OCTAVE_NAMESPACE_END
T & xelem(octave_idx_type n)
Size of the specified dimension.
Definition: Array.h:504
octave_idx_type nnz(void) const
Actual number of nonzero terms.
Definition: Sparse.h:339
octave_idx_type * xridx(void)
Definition: Sparse.h:589
octave_idx_type nzmax(void) const
Amount of storage for nonzero elements.
Definition: Sparse.h:336
octave_idx_type * xcidx(void)
Definition: Sparse.h:602
SparseMatrix sparse_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:945
bool isreal(void) const
Definition: ov.h:783
octave_idx_type rows(void) const
Definition: ov.h:590
octave_idx_type columns(void) const
Definition: ov.h:592
SparseComplexMatrix sparse_complex_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:949
OCTINTERP_API void print_usage(void)
Definition: defun-int.h:72
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition: defun.h:56
static octave_value_list dmperm_internal(bool rank, const octave_value arg, int nargout)
Definition: dmperm.cc:61
static RowVector put_int(suitesparse_integer *p, octave_idx_type n)
Definition: dmperm.cc:52
#define CXSPARSE_NAME(name)
Definition: dmperm.cc:46
void err_disabled_feature(const std::string &fcn, const std::string &feature, const std::string &pkg)
Definition: errwarn.cc:53
F77_RET_T const F77_DBLE const F77_DBLE F77_DBLE * d
int suitesparse_integer
Definition: oct-sparse.h:173
suitesparse_integer * to_suitesparse_intptr(octave_idx_type *i)
Definition: oct-sparse.cc:51
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition: ovl.h:211