GNU Octave  6.2.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
randpoisson.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 2006-2021 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 /* Original version written by Paul Kienzle distributed as free
27  software in the in the public domain. */
28 
29 #if defined (HAVE_CONFIG_H)
30 # include "config.h"
31 #endif
32 
33 #include <cmath>
34 #include <cstddef>
35 
36 #include "f77-fcn.h"
37 #include "lo-error.h"
38 #include "lo-ieee.h"
39 #include "randmtzig.h"
40 #include "randpoisson.h"
41 
42 namespace octave
43 {
44  static double xlgamma (double x)
45  {
46  return std::lgamma (x);
47  }
48 
49  /* ---- pprsc.c from Stadloeber's winrand --- */
50 
51  /* flogfak(k) = ln(k!) */
52  static double flogfak (double k)
53  {
54 #define C0 9.18938533204672742e-01
55 #define C1 8.33333333333333333e-02
56 #define C3 -2.77777777777777778e-03
57 #define C5 7.93650793650793651e-04
58 #define C7 -5.95238095238095238e-04
59 
60  static double logfak[30L] =
61  {
62  0.00000000000000000, 0.00000000000000000, 0.69314718055994531,
63  1.79175946922805500, 3.17805383034794562, 4.78749174278204599,
64  6.57925121201010100, 8.52516136106541430, 10.60460290274525023,
65  12.80182748008146961, 15.10441257307551530, 17.50230784587388584,
66  19.98721449566188615, 22.55216385312342289, 25.19122118273868150,
67  27.89927138384089157, 30.67186010608067280, 33.50507345013688888,
68  36.39544520803305358, 39.33988418719949404, 42.33561646075348503,
69  45.38013889847690803, 48.47118135183522388, 51.60667556776437357,
70  54.78472939811231919, 58.00360522298051994, 61.26170176100200198,
71  64.55753862700633106, 67.88974313718153498, 71.25703896716800901
72  };
73 
74  double r, rr;
75 
76  if (k >= 30.0)
77  {
78  r = 1.0 / k;
79  rr = r * r;
80  return ((k + 0.5)*std::log (k) - k + C0
81  + r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
82  }
83  else
84  return (logfak[static_cast<int> (k)]);
85  }
86 
87  /******************************************************************
88  * *
89  * Poisson Distribution - Patchwork Rejection/Inversion *
90  * *
91  ******************************************************************
92  * *
93  * For parameter my < 10, Tabulated Inversion is applied. *
94  * For my >= 10, Patchwork Rejection is employed: *
95  * The area below the histogram function f(x) is rearranged in *
96  * its body by certain point reflections. Within a large center *
97  * interval variates are sampled efficiently by rejection from *
98  * uniform hats. Rectangular immediate acceptance regions speed *
99  * up the generation. The remaining tails are covered by *
100  * exponential functions. *
101  * *
102  ******************************************************************
103  * *
104  * FUNCTION : - pprsc samples a random number from the Poisson *
105  * distribution with parameter my > 0. *
106  * REFERENCE : - H. Zechner (1994): Efficient sampling from *
107  * continuous and discrete unimodal distributions, *
108  * Doctoral Dissertation, 156 pp., Technical *
109  * University Graz, Austria. *
110  * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with *
111  * unsigned long integer *seed. *
112  * *
113  * Implemented by H. Zechner, January 1994 *
114  * Revised by F. Niederl, July 1994 *
115  * *
116  ******************************************************************/
117 
118  static double f (double k, double l_nu, double c_pm)
119  {
120  return exp (k * l_nu - flogfak (k) - c_pm);
121  }
122 
123  static double pprsc (double my)
124  {
125  static double my_last = -1.0;
126  static double m, k2, k4, k1, k5;
127  static double dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
128  f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;
129  double Dk, X, Y;
130  double Ds, U, V, W;
131 
132  if (my != my_last)
133  { /* set-up */
134  my_last = my;
135  /* approximate deviation of reflection points k2, k4 from my - 1/2 */
136  Ds = std::sqrt (my + 0.25);
137 
138  /* mode m, reflection points k2 and k4, and points k1 and k5, */
139  /* which delimit the centre region of h(x) */
140  m = std::floor (my);
141  k2 = ceil (my - 0.5 - Ds);
142  k4 = std::floor (my - 0.5 + Ds);
143  k1 = k2 + k2 - m + 1L;
144  k5 = k4 + k4 - m;
145 
146  /* range width of the critical left and right centre region */
147  dl = (k2 - k1);
148  dr = (k5 - k4);
149 
150  /* recurrence constants r(k)=p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 */
151  r1 = my / k1;
152  r2 = my / k2;
153  r4 = my / (k4 + 1.0);
154  r5 = my / (k5 + 1.0);
155 
156  /* reciprocal values of the scale parameters of exp. tail envelope */
157  ll = std::log (r1); /* expon. tail left */
158  lr = -std::log (r5); /* expon. tail right*/
159 
160  /* Poisson constants, necessary for computing function values f(k) */
161  l_my = std::log (my);
162  c_pm = m * l_my - flogfak (m);
163 
164  /* function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5 */
165  f2 = f (k2, l_my, c_pm);
166  f4 = f (k4, l_my, c_pm);
167  f1 = f (k1, l_my, c_pm);
168  f5 = f (k5, l_my, c_pm);
169 
170  /* area of the two centre and the two exponential tail regions */
171  /* area of the two immediate acceptance regions between k2, k4 */
172  p1 = f2 * (dl + 1.0); /* immed. left */
173  p2 = f2 * dl + p1; /* centre left */
174  p3 = f4 * (dr + 1.0) + p2; /* immed. right */
175  p4 = f4 * dr + p3; /* centre right */
176  p5 = f1 / ll + p4; /* exp. tail left */
177  p6 = f5 / lr + p5; /* exp. tail right*/
178  }
179 
180  for (;;)
181  {
182  /* generate uniform number U -- U(0, p6) */
183  /* case distinction corresponding to U */
184  if ((U = rand_uniform<double> () * p6) < p2)
185  { /* centre left */
186 
187  /* immediate acceptance region
188  R2 = [k2, m) *[0, f2), X = k2, ... m -1 */
189  if ((V = U - p1) < 0.0) return (k2 + std::floor (U/f2));
190  /* immediate acceptance region
191  R1 = [k1, k2)*[0, f1), X = k1, ... k2-1 */
192  if ((W = V / dl) < f1 ) return (k1 + std::floor (V/f1));
193 
194  /* computation of candidate X < k2, and its counterpart Y > k2 */
195  /* either squeeze-acceptance of X or acceptance-rejection of Y */
196  Dk = std::floor (dl * rand_uniform<double> ()) + 1.0;
197  if (W <= f2 - Dk * (f2 - f2/r2))
198  { /* quick accept of */
199  return (k2 - Dk); /* X = k2 - Dk */
200  }
201  if ((V = f2 + f2 - W) < 1.0)
202  { /* quick reject of Y*/
203  Y = k2 + Dk;
204  if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0))
205  { /* quick accept of */
206  return (Y); /* Y = k2 + Dk */
207  }
208  if (V <= f (Y, l_my, c_pm)) return (Y); /* final accept of Y*/
209  }
210  X = k2 - Dk;
211  }
212  else if (U < p4)
213  { /* centre right */
214  /* immediate acceptance region
215  R3 = [m, k4+1)*[0, f4), X = m, ... k4 */
216  if ((V = U - p3) < 0.0) return (k4 - std::floor ((U - p2)/f4));
217  /* immediate acceptance region
218  R4 = [k4+1, k5+1)*[0, f5) */
219  if ((W = V / dr) < f5 ) return (k5 - std::floor (V/f5));
220 
221  /* computation of candidate X > k4, and its counterpart Y < k4 */
222  /* either squeeze-acceptance of X or acceptance-rejection of Y */
223  Dk = std::floor (dr * rand_uniform<double> ()) + 1.0;
224  if (W <= f4 - Dk * (f4 - f4*r4))
225  { /* quick accept of */
226  return (k4 + Dk); /* X = k4 + Dk */
227  }
228  if ((V = f4 + f4 - W) < 1.0)
229  { /* quick reject of Y*/
230  Y = k4 - Dk;
231  if (V <= f4 + Dk * (1.0 - f4)/ dr)
232  { /* quick accept of */
233  return (Y); /* Y = k4 - Dk */
234  }
235  if (V <= f (Y, l_my, c_pm)) return (Y); /* final accept of Y*/
236  }
237  X = k4 + Dk;
238  }
239  else
240  {
241  W = rand_uniform<double> ();
242  if (U < p5)
243  { /* expon. tail left */
244  Dk = std::floor (1.0 - std::log (W)/ll);
245  if ((X = k1 - Dk) < 0L) continue; /* 0 <= X <= k1 - 1 */
246  W *= (U - p4) * ll; /* W -- U(0, h(x)) */
247  if (W <= f1 - Dk * (f1 - f1/r1))
248  return (X); /* quick accept of X*/
249  }
250  else
251  { /* expon. tail right*/
252  Dk = std::floor (1.0 - std::log (W)/lr);
253  X = k5 + Dk; /* X >= k5 + 1 */
254  W *= (U - p5) * lr; /* W -- U(0, h(x)) */
255  if (W <= f5 - Dk * (f5 - f5*r5))
256  return (X); /* quick accept of X*/
257  }
258  }
259 
260  /* acceptance-rejection test of candidate X from the original area */
261  /* test, whether W <= f(k), with W = U*h(x) and U -- U(0, 1)*/
262  /* log f(X) = (X - m)*log(my) - log X! + log m! */
263  if (std::log (W) <= X * l_my - flogfak (X) - c_pm) return (X);
264  }
265  }
266  /* ---- pprsc.c end ------ */
267 
268  /* The remainder of the file is by Paul Kienzle */
269 
270  /* Table size is predicated on the maximum value of lambda
271  * we want to store in the table, and the maximum value of
272  * returned by the uniform random number generator on [0,1).
273  * With lambda==10 and u_max = 1 - 1/(2^32+1), we
274  * have poisson_pdf(lambda,36) < 1-u_max. If instead our
275  * generator uses more bits of mantissa or returns a value
276  * in the range [0,1], then for lambda==10 we need a table
277  * size of 46 instead. For long doubles, the table size
278  * will need to be longer still. */
279 #define TABLESIZE 46
280 
281  /* Given uniform u, find x such that CDF(L,x)==u. Return x. */
282 
283  template <typename T>
284  static void
285  poisson_cdf_lookup (double lambda, T *p, size_t n)
286  {
287  double t[TABLESIZE];
288 
289  /* Precompute the table for the u up to and including 0.458.
290  * We will almost certainly need it. */
291  int intlambda = static_cast<int> (std::floor (lambda));
292  double P;
293  int tableidx;
294  size_t i = n;
295 
296  t[0] = P = exp (-lambda);
297  for (tableidx = 1; tableidx <= intlambda; tableidx++)
298  {
299  P = P*lambda/static_cast<double> (tableidx);
300  t[tableidx] = t[tableidx-1] + P;
301  }
302 
303  while (i-- > 0)
304  {
305  double u = rand_uniform<double> ();
306 
307  /* If u > 0.458 we know we can jump to floor(lambda) before
308  * comparing (this observation is based on Stadlober's winrand
309  * code). For lambda >= 1, this will be a win. Lambda < 1
310  * is already fast, so adding an extra comparison is not a
311  * problem. */
312  int k = (u > 0.458 ? intlambda : 0);
313 
314  /* We aren't using a for loop here because when we find the
315  * right k we want to jump to the next iteration of the
316  * outer loop, and the continue statement will only work for
317  * the inner loop. */
318  nextk:
319  if (u <= t[k])
320  {
321  p[i] = static_cast<T> (k);
322  continue;
323  }
324  if (++k < tableidx)
325  goto nextk;
326 
327  /* We only need high values of the table very rarely so we
328  * don't automatically compute the entire table. */
329  while (tableidx < TABLESIZE)
330  {
331  P = P*lambda/static_cast<double> (tableidx);
332  t[tableidx] = t[tableidx-1] + P;
333  /* Make sure we converge to 1.0 just in case u is uniform
334  * on [0,1] rather than [0,1). */
335  if (t[tableidx] == t[tableidx-1]) t[tableidx] = 1.0;
336  tableidx++;
337  if (u <= t[tableidx-1]) break;
338  }
339 
340  /* We are assuming that the table size is big enough here.
341  * This should be true even if rand_uniform is returning values in
342  * the range [0,1] rather than [0,1). */
343  p[i] = static_cast<T> (tableidx-1);
344  }
345  }
346 
347  /* From Press, et al., Numerical Recipes */
348  template <typename T>
349  static void
350  poisson_rejection (double lambda, T *p, size_t n)
351  {
352  double sq = std::sqrt (2.0*lambda);
353  double alxm = std::log (lambda);
354  double g = lambda*alxm - xlgamma (lambda+1.0);
355  size_t i;
356 
357  for (i = 0; i < n; i++)
358  {
359  double y, em, t;
360  do
361  {
362  do
363  {
364  y = tan (M_PI*rand_uniform<double> ());
365  em = sq * y + lambda;
366  } while (em < 0.0);
367  em = std::floor (em);
368  t = 0.9*(1.0+y*y)*exp (em*alxm-flogfak (em)-g);
369  } while (rand_uniform<double> () > t);
370  p[i] = em;
371  }
372  }
373 
374  /* The cutoff of L <= 1e8 in the following two functions before using
375  * the normal approximation is based on:
376  * > L=1e8; x=floor(linspace(0,2*L,1000));
377  * > max(abs(normal_pdf(x,L,L)-poisson_pdf(x,L)))
378  * ans = 1.1376e-28
379  * For L=1e7, the max is around 1e-9, which is within the step size of
380  * rand_uniform. For L>1e10 the pprsc function breaks down, as I saw
381  * from the histogram of a large sample, so 1e8 is both small enough
382  * and large enough. */
383 
384  /* Generate a set of poisson numbers with the same distribution */
385  template <typename T> void rand_poisson (T L_arg, octave_idx_type n, T *p)
386  {
387  double L = L_arg;
388  octave_idx_type i;
389  if (L < 0.0 || lo_ieee_isinf (L))
390  {
391  for (i=0; i<n; i++)
392  p[i] = numeric_limits<T>::NaN ();
393  }
394  else if (L <= 10.0)
395  {
396  poisson_cdf_lookup<T> (L, p, n);
397  }
398  else if (L <= 1e8)
399  {
400  for (i=0; i<n; i++)
401  p[i] = pprsc (L);
402  }
403  else
404  {
405  /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
406  const double sqrtL = std::sqrt (L);
407  for (i = 0; i < n; i++)
408  {
409  p[i] = std::floor (rand_normal<T> () * sqrtL + L + 0.5);
410  if (p[i] < 0.0)
411  p[i] = 0.0; /* will probably never happen */
412  }
413  }
414  }
415 
416  template void rand_poisson<double> (double, octave_idx_type, double *);
417  template void rand_poisson<float> (float, octave_idx_type, float *);
418 
419  /* Generate one poisson variate */
420  template <typename T> T rand_poisson (T L_arg)
421  {
422  double L = L_arg;
423  T ret;
424  if (L < 0.0) ret = numeric_limits<T>::NaN ();
425  else if (L <= 12.0)
426  {
427  /* From Press, et al. Numerical recipes */
428  double g = exp (-L);
429  int em = -1;
430  double t = 1.0;
431  do
432  {
433  ++em;
434  t *= rand_uniform<T> ();
435  } while (t > g);
436  ret = em;
437  }
438  else if (L <= 1e8)
439  {
440  /* numerical recipes */
441  poisson_rejection<T> (L, &ret, 1);
442  }
443  else if (lo_ieee_isinf (L))
444  {
445  /* FIXME: R uses NaN, but the normal approximation suggests that
446  * limit should be Inf. Which is correct? */
447  ret = numeric_limits<T>::NaN ();
448  }
449  else
450  {
451  /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
452  ret = std::floor (rand_normal<T> () * std::sqrt (L) + L + 0.5);
453  if (ret < 0.0) ret = 0.0; /* will probably never happen */
454  }
455  return ret;
456  }
457 
458  template double rand_poisson<double> (double);
459  template float rand_poisson<float> (float);
460 }
#define NaN
Definition: Faddeeva.cc:248
#define lo_ieee_isinf(x)
Definition: lo-ieee.h:120
F77_RET_T const F77_INT const F77_INT const F77_INT const F77_DBLE const F77_DBLE F77_INT F77_DBLE * V
F77_RET_T const F77_DBLE * x
T octave_idx_type m
Definition: mx-inlines.cc:773
octave_idx_type n
Definition: mx-inlines.cc:753
T * r
Definition: mx-inlines.cc:773
std::complex< T > ceil(const std::complex< T > &x)
Definition: lo-mappers.h:103
double lgamma(double x)
Definition: lo-specfun.h:347
std::complex< T > floor(const std::complex< T > &x)
Definition: lo-mappers.h:130
static double pprsc(double my)
Definition: randpoisson.cc:123
static double f(double k, double l_nu, double c_pm)
Definition: randpoisson.cc:118
static void poisson_cdf_lookup(double lambda, T *p, size_t n)
Definition: randpoisson.cc:285
template void rand_poisson< float >(float, octave_idx_type, float *)
template void rand_poisson< double >(double, octave_idx_type, double *)
static void poisson_rejection(double lambda, T *p, size_t n)
Definition: randpoisson.cc:350
static double flogfak(double k)
Definition: randpoisson.cc:52
static double xlgamma(double x)
Definition: randpoisson.cc:44
void rand_poisson(T L_arg, octave_idx_type n, T *p)
Definition: randpoisson.cc:385
double rand_uniform< double >(void)
Definition: randmtzig.cc:414
#define TABLESIZE
Definition: randpoisson.cc:279
#define C5
#define C1
#define C3
#define C0
#define C7