26 #if defined (HAVE_CONFIG_H)
40 #include "mx-cnda-s.h"
52 xelem (i) =
static_cast<unsigned char> (a(i));
55 #if defined (HAVE_FFTW)
62 if (dim > dv.
ndims () || dim < 0)
68 for (
int i = 0; i < dim; i++)
72 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
83 n, howmany, stride, dist);
93 if (dim > dv.
ndims () || dim < 0)
99 for (
int i = 0; i < dim; i++)
103 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
114 n, howmany, stride, dist);
163 int rank = dv.
ndims ();
178 int rank = dv.
ndims ();
194 octave_unused_parameter (dim);
196 (*current_liboctave_error_handler)
197 (
"support for FFTW was unavailable or disabled when liboctave was built");
205 octave_unused_parameter (dim);
207 (*current_liboctave_error_handler)
208 (
"support for FFTW was unavailable or disabled when liboctave was built");
216 (*current_liboctave_error_handler)
217 (
"support for FFTW was unavailable or disabled when liboctave was built");
225 (*current_liboctave_error_handler)
226 (
"support for FFTW was unavailable or disabled when liboctave was built");
234 (*current_liboctave_error_handler)
235 (
"support for FFTW was unavailable or disabled when liboctave was built");
243 (*current_liboctave_error_handler)
244 (
"support for FFTW was unavailable or disabled when liboctave was built");
297 double r_val = val.real ();
298 double i_val = val.imag ();
316 double r_val = val.real ();
317 double i_val = val.imag ();
348 return do_mx_red_op<bool, Complex> (*
this, dim,
mx_inline_all);
354 return do_mx_red_op<bool, Complex> (*
this, dim,
mx_inline_any);
372 return do_mx_red_op<Complex, Complex> (*
this, dim,
mx_inline_prod);
378 return do_mx_red_op<Complex, Complex> (*
this, dim,
mx_inline_sum);
384 return do_mx_red_op<Complex, Complex> (*
this, dim,
mx_inline_xsum);
396 return do_mx_diff_op<Complex> (*
this, dim, order,
mx_inline_diff);
438 return do_mx_minmax_op<Complex> (*
this, idx_arg, dim,
mx_inline_max);
450 return do_mx_minmax_op<Complex> (*
this, idx_arg, dim,
mx_inline_min);
480 return do_mx_unary_map<double, Complex, std::abs> (*
this);
486 return do_mx_unary_map<bool, Complex, octave::math::isnan> (*
this);
492 return do_mx_unary_map<bool, Complex, octave::math::isinf> (*
this);
498 return do_mx_unary_map<bool, Complex, octave::math::isfinite> (*
this);
504 return do_mx_unary_map<Complex, Complex, std::conj<double>> (a);
515 (*current_liboctave_error_handler)
516 (
"Array<T>::insert: invalid indexing operation");
520 a_ra_idx.elem (0) =
r;
521 a_ra_idx.elem (1) = c;
523 for (
int i = 0; i <
n; i++)
525 if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) >
dimensions(i))
526 (*current_liboctave_error_handler)
527 (
"Array<T>::insert: range error for insert");
530 a_ra_idx.elem (0) = 0;
531 a_ra_idx.elem (1) = 0;
541 ra_idx.elem (0) = a_ra_idx(0) +
r;
542 ra_idx.elem (1) = a_ra_idx(1) + c;
620 tmp = octave_read_value<Complex> (is);
octave_idx_type compute_index(octave_idx_type n, const dim_vector &dims)
std::ostream & operator<<(std::ostream &os, const ComplexNDArray &a)
ComplexNDArray & operator/=(ComplexNDArray &a, double s)
ComplexNDArray conj(const ComplexNDArray &a)
static const Complex Complex_NaN_result(octave::numeric_limits< double >::NaN(), octave::numeric_limits< double >::NaN())
ComplexNDArray concat(NDArray &ra, ComplexNDArray &rb, const Array< octave_idx_type > &ra_idx)
std::istream & operator>>(std::istream &is, ComplexNDArray &a)
#define BSXFUN_STDREL_DEFS_MXLOOP(ARRAY)
#define BSXFUN_STDOP_DEFS_MXLOOP(ARRAY)
#define BSXFUN_OP_DEF_MXLOOP(OP, ARRAY, LOOP)
Array< T > & insert(const Array< T > &a, const Array< octave_idx_type > &idx)
Insert an array into another at a specified position.
T & xelem(octave_idx_type n)
Size of the specified dimension.
octave_idx_type numel(void) const
Number of elements in the array.
bool test_any(F fcn) const
Simpler calls.
T & elem(octave_idx_type n)
Size of the specified dimension.
Array< T > diag(octave_idx_type k=0) const
Get the kth super or subdiagonal.
const dim_vector & dims(void) const
Return a const-reference so that dims ()(i) works efficiently.
const T * fortran_vec(void) const
Size of the specified dimension.
bool is_shared(void)
Size of the specified dimension.
ComplexNDArray ifourier2d(void) const
ComplexNDArray fourier(int dim=1) const
boolNDArray any(int dim=-1) const
bool any_element_is_inf_or_nan(void) const
ComplexNDArray prod(int dim=-1) const
static void increment_index(Array< octave_idx_type > &ra_idx, const dim_vector &dimensions, int start_dimension=0)
static octave_idx_type compute_index(Array< octave_idx_type > &ra_idx, const dim_vector &dimensions)
ComplexNDArray cummax(int dim=-1) const
ComplexNDArray fourierNd(void) const
ComplexNDArray sumsq(int dim=-1) const
ComplexNDArray concat(const ComplexNDArray &rb, const Array< octave_idx_type > &ra_idx)
ComplexNDArray diag(octave_idx_type k=0) const
ComplexNDArray cumsum(int dim=-1) const
bool too_large_for_float(void) const
boolNDArray operator!(void) const
boolNDArray isnan(void) const
ComplexNDArray min(int dim=-1) const
ComplexNDArray & insert(const NDArray &a, octave_idx_type r, octave_idx_type c)
ComplexNDArray ifourier(int dim=1) const
ComplexNDArray diff(octave_idx_type order=1, int dim=-1) const
ComplexNDArray max(int dim=-1) const
ComplexNDArray ifourierNd(void) const
ComplexNDArray xsum(int dim=-1) const
bool all_integers(double &max_val, double &min_val) const
ComplexNDArray cumprod(int dim=-1) const
boolNDArray all(int dim=-1) const
boolNDArray isfinite(void) const
ComplexNDArray cummin(int dim=-1) const
ComplexNDArray sum(int dim=-1) const
boolNDArray isinf(void) const
ComplexNDArray fourier2d(void) const
bool any_element_is_nan(void) const
bool all_elements_are_real(void) const
Template for N-dimensional array classes with like-type math operators.
Vector representing the dimensions (size) of an Array.
octave_idx_type ndims(void) const
Number of dimensions.
static int fft(const double *in, Complex *out, size_t npts, size_t nsamples=1, octave_idx_type stride=1, octave_idx_type dist=-1)
static int fftNd(const double *, Complex *, const int, const dim_vector &)
static int ifftNd(const Complex *, Complex *, const int, const dim_vector &)
static int ifft(const Complex *in, Complex *out, size_t npts, size_t nsamples=1, octave_idx_type stride=1, octave_idx_type dist=-1)
bool xtoo_large_for_float(double x)
void octave_write_complex(std::ostream &os, const Complex &c)
bool mx_inline_all_finite(size_t n, const T *x)
T mx_inline_xsum(const T *v, octave_idx_type n)
void mx_inline_div2(size_t n, R *r, const X *x)
void mx_inline_any(const T *v, bool *r, octave_idx_type l, octave_idx_type n, octave_idx_type u)
void mx_inline_cummin(const T *v, T *r, octave_idx_type n)
void mx_inline_cumprod(const T *v, T *r, octave_idx_type n)
void mx_inline_cumsum(const T *v, T *r, octave_idx_type n)
void mx_inline_not(size_t n, bool *r, const X *x)
void mx_inline_max(const T *v, T *r, octave_idx_type n)
void mx_inline_all(const T *v, bool *r, octave_idx_type m, octave_idx_type n)
void mx_inline_prod(const T *v, T *r, octave_idx_type l, octave_idx_type n, octave_idx_type u)
void mx_inline_cummax(const T *v, T *r, octave_idx_type n)
bool mx_inline_all_real(size_t n, const std::complex< T > *x)
T mx_inline_sumsq(const T *v, octave_idx_type n)
bool mx_inline_any_nan(size_t n, const T *x)
T mx_inline_sum(const T *v, octave_idx_type n)
void mx_inline_min(const T *v, T *r, octave_idx_type n)
void mx_inline_diff(const T *v, T *r, octave_idx_type n, octave_idx_type order)
void mx_inline_mul2(size_t n, R *r, const X *x)
void mx_inline_pow(size_t n, R *r, const X *x, const Y *y)
#define NDND_BOOL_OPS(ND1, ND2)
#define NDS_BOOL_OPS(ND, S)
#define NDND_CMP_OPS(ND1, ND2)
#define SND_BOOL_OPS(S, ND)
#define NDS_CMP_OPS(ND, S)
#define SND_CMP_OPS(S, ND)
#define MINMAX_FCNS(T, S)
void err_nan_to_logical_conversion(void)
std::complex< double > Complex
octave_int< T > pow(const octave_int< T > &a, const octave_int< T > &b)
const octave_base_value const Array< octave_idx_type > & ra_idx
octave_value::octave_value(const Array< char > &chm, char type) return retval