Navigation

Operators and Keywords

Function List:

C++ API

test_diag_perm.m File Reference


Functions

 !assert (A(perm,:), Prow *A)
 !invperm (perm)
 !assert (Prow\A, A(invperm,:))
 !assert (Prow'*A, A(invperm,:))
 !assert (A(:, perm), A *Pcol)
 !assert (A/Pcol, A(:, invperm))
 !assert (A *Pcol.', A(:, invperm))
 !assert (sum(A), full(ones(1, n)))
 !assert (sum(A, 2), full(ones(n, 1)))
 !assert (typeinfo(rand(n)*Pc),"matrix")
 !assert (typeinfo(Pr *rand(n)),"matrix")
 !assert (typeinfo(Ac *Pc),"sparse complex matrix")
 !assert (full(Ac *Pc), full(Ac)*Pc)
 !assert (full(Ac/Pc), full(Ac)/Pc)
 !assert (typeinfo(Pr *Ar),"sparse matrix")
 !assert (full(Pr *Ar), Pr *full(Ar))
 !assert (full(Pr\Ar), Pr\full(Ar))
 !assert (typeinfo(A *P1),"matrix")
 !assert (full(A *P1), full(A)*P1)
 !assert (typeinfo(P1 *A),"matrix")
 !assert (full(P1 *A), P1 *full(A))
 !assert (typeinfo(A1 *P),"matrix")
 !assert (full(A1 *P), full(A1)*P)
 !assert (typeinfo(P *A1),"matrix")
 !assert (full(P *A1), P *full(A1))
 !assert (typeinfo(A *P1),"sparse matrix")
 !assert (typeinfo(P1 *A),"sparse matrix")
 !assert (typeinfo(A1 *P),"sparse matrix")
 !assert (typeinfo(P *A1),"sparse matrix")
 !A (n, n-2)
 !A (3, 1)
 !assert (Pr *A *Pc, A(pr, pc))
 !assert (full(sP), full(P))
 !assert (size(find(sP), 1), n)
 !assert (all(V==1))
 !assert (Dr *A, repmat(scalefact, 1, n).*A)
 !assert (Dr\A, A./repmat(scalefact, 1, n))
 !scalefact (m-1)
 !Dr (m-1, m-1)=0
 !assert (A *Dc, repmat(scalefact, m, 1).*A)
 !assert (A/Dc, A./repmat(scalefact, m, 1))
 !scalefact (n-1)
 !Dc (n-1, n-1)=0
 !assert (typeinfo(D1D2),"complex diagonal matrix")
 !assert (diag(D1D2), d1+d2)
 !assert (diag(D1D2), d1.*d2)
 !assert (typeinfo(Dslice),"diagonal matrix")
 !assert (typeinfo(rand(8)*(3 *eye(8))),"matrix")
 !assert (typeinfo((3 *eye(8))*rand(8)),"matrix")
 !assert (typeinfo(sprand(8, 8,.5)*(3 *eye(8))),"sparse matrix")
 !assert (typeinfo(sprand(8, 8,.5)*(3 *eye(8))'),"sparse matrix")
 !assert (typeinfo(((3+2 *I())*eye(8))*sprand(8, 8,.5)),"sparse complex matrix")
 !assert (typeinfo(((3+2 *I())*eye(8))'*sprand(8, 8,.5)),"sparse complex matrix")
 !assert (typeinfo(sprand(8, 8,.5)*((3+2 *I())*eye(8)).'),"sparse complex matrix")
 !A (4, 1)
 !assert (Dr *A *Dc, A.*kron(dr, dc), eps)
 !Dr (n-1, n-1)=0
 !assert (full(Dr\A), full(A)./repmat(scalefact, 1, n))
 !assert (full(Dr\A), Dr\full(A))%!test%!n
 !assert (full(A/Dc), full(A)/Dc)%!test%!n
 !assert (typeinfo(A+D),"sparse matrix")%!assert(typeinfo(A-D)
 !assert (typeinfo(A-D),"sparse complex matrix")%!A
 !assert (typeinfo(D-A),"sparse complex matrix")%!test%!n
 !assert (full(A+D), full(A)+D)%!assert(full(A-D)
 full (A)-D)%!D
 !assert (full(D+A), D+full(A))%!A
 !A (6, 4)

Variables

!test !n = 5
 !A = rand (n)
 !perm = randperm (n)
 !Prow = eye (n) (perm, :)
 !Pcol = eye (n) (:, perm)
 !P1 = eye (n) (:, randperm (n))
 !Pc = eye (n) (:, randperm (n))
 !Pr = eye (n) (randperm (n), :)
 !Ac = sprand (n-3, n, .5) + I () * sprand (n-3, n, .5)
 !Ar = sprand (n, n+2, .5)
 !A1 = 1
 !P = eye (n) (:, randperm (n))
 !pc = randperm (n)
 !pr = randperm (n)
 !sP = sparse (P)
!test !m = 7
 !scalefact = rand (m, 1)
 !Dr = diag (scalefact)
 !Dc = diag (scalefact)
 !mn = min (m, n)
 !d1 = rand (mn, 1) + I () * rand (mn, 1)
 !D1 = diag (d1, m, n)
 !d2 = rand (mn, 1)
 !D2 = diag (d2, m, n)
 !D1D2 = D1 + D2
 !d = rand (mn, 1)
 !D = diag (d, m, n)
 !Dslice = D (1:(m-3), 1:(n-2))
 !dr = rand (n, 1)
 !dc = rand (1, n)

Function Documentation

!A ( ,
 
)

!A ( ,
 
)

!A ( ,
 
)

!A ( ,
n-  2 
)

!assert ( full(D+A)  ,
D fullA 
)

!assert ( full(A+D ,
full(A)+  D 
)

!assert ( typeinfo(D-A)  ,
"sparse complex matrix"   
)

!assert ( typeinfo(A-D ,
"sparse complex matrix"   
)

!assert ( typeinfo(A+D ,
"sparse matrix"   
)

!assert ( full(A/Dc)  ,
full(A)/  Dc 
)

!assert ( full(Dr\A)  ,
Dr\  fullA 
)

!assert ( full(Dr\A)  ,
full(A)./repmat(scalefact, 1, n)   
)

!assert ( Dr *A *  Dc,
A.*  krondr, dc,
eps   
)

!assert ( typeinfo(sprand(8, 8,.5)*((3+2 *I())*eye(8)).')  ,
"sparse complex matrix"   
)

!assert ( typeinfo(((3+2 *I())*eye(8))'*sprand(8, 8,.5))  ,
"sparse complex matrix"   
)

!assert ( typeinfo(((3+2 *I())*eye(8))*sprand(8, 8,.5))  ,
"sparse complex matrix"   
)

!assert ( typeinfo(sprand(8, 8,.5)*(3 *eye(8))')  ,
"sparse matrix"   
)

!assert ( typeinfo(sprand(8, 8,.5)*(3 *eye(8)))  ,
"sparse matrix"   
)

!assert ( typeinfo((3 *eye(8))*rand(8))  ,
"matrix"   
)

!assert ( typeinfo(rand(8)*(3 *eye(8)))  ,
"matrix"   
)

!assert ( typeinfo(Dslice)  ,
"diagonal matrix"   
)

!assert ( diag(D1D2)  ,
d1.*  d2 
)

!assert ( diag(D1D2)  ,
d1+  d2 
)

!assert ( typeinfo(D1D2)  ,
"complex diagonal matrix"   
)

!assert ( A/  Dc,
A./  repmatscalefact, m, 1 
)

!assert ( A *  Dc,
repmat(scalefact, m, 1).*  A 
)

!assert ( Dr\  A,
A./  repmatscalefact, 1, n 
)

!assert ( Dr *  A,
repmat(scalefact, 1, n).*  A 
)

!assert ( all(V==1)   ) 

!assert ( size(find(sP), 1)  ,
 
)

!assert ( full(sP)  ,
full(P)   
)

!assert ( Pr *A *  Pc,
A(pr, pc  
)

!assert ( typeinfo(P *A1)  ,
"sparse matrix"   
)

!assert ( typeinfo(A1 *P)  ,
"sparse matrix"   
)

!assert ( typeinfo(P1 *A)  ,
"sparse matrix"   
)

!assert ( typeinfo(A *P1)  ,
"sparse matrix"   
)

!assert ( full(P *A1)  ,
P *  fullA1 
)

!assert ( typeinfo(P *A1)  ,
"matrix"   
)

!assert ( full(A1 *P)  ,
full(A1)*  P 
)

!assert ( typeinfo(A1 *P)  ,
"matrix"   
)

!assert ( full(P1 *A)  ,
P1 *  fullA 
)

!assert ( typeinfo(P1 *A)  ,
"matrix"   
)

!assert ( full(A *P1)  ,
full(A)*  P1 
)

!assert ( typeinfo(A *P1)  ,
"matrix"   
)

!assert ( full(Pr\Ar)  ,
Pr\  fullAr 
)

!assert ( full(Pr *Ar)  ,
Pr *  fullAr 
)

!assert ( typeinfo(Pr *Ar)  ,
"sparse matrix"   
)

!assert ( full(Ac/Pc)  ,
full(Ac)/  Pc 
)

!assert ( full(Ac *Pc)  ,
full(Ac)*  Pc 
)

!assert ( typeinfo(Ac *Pc)  ,
"sparse complex matrix"   
)

!assert ( typeinfo(Pr *rand(n))  ,
"matrix"   
)

!assert ( typeinfo(rand(n)*Pc)  ,
"matrix"   
)

!assert ( sum(A, 2)  ,
full(ones(n, 1))   
)

!assert ( sum(A)  ,
full(ones(1, n))   
)

!assert ( A *Pcol.'  ,
A(:, invperm)   
)

!assert ( A/  Pcol,
A(:, invperm)   
)

!assert ( A(:, perm)  ,
A *  Pcol 
)

!assert ( Prow'*  A,
A(invperm,:)   
)

!assert ( Prow\  A,
A(invperm,:)   
)

!assert ( A(perm,:)  ,
Prow *  A 
)

!Dc ( n-  1,
n-  1 
) [pure virtual]

!Dr ( n-  1,
n-  1 
) [pure virtual]

!Dr ( m-  1,
m-  1 
) [pure virtual]

!invperm ( perm   ) 

!scalefact ( n-  1  ) 

!scalefact ( m-  1  ) 

full (  ) 


Variable Documentation

!A = rand (n)

!A1 = 1

!Ac = sprand (n-3, n, .5) + I () * sprand (n-3, n, .5)

!Ar = sprand (n, n+2, .5)

!D = diag (d, m, n)

!d = rand (mn, 1)

!D1 = diag (d1, m, n)

!d1 = rand (mn, 1) + I () * rand (mn, 1)

!D1D2 = D1 + D2

!D2 = diag (d2, m, n)

!d2 = rand (mn, 1)

!dc = rand (1, n)

!Dc = diag (scalefact)

!dr = rand (n, 1)

!Dr = diag (scalefact)

!Dslice = D (1:(m-3), 1:(n-2))

!test !m = 7

!mn = min (m, n)

!test !n = 5

!P = eye (n) (:, randperm (n))

!P1 = eye (n) (:, randperm (n))

!pc = randperm (n)

!Pc = eye (n) (:, randperm (n))

!Pcol = eye (n) (:, perm)

!perm = randperm (n)

!pr = randperm (n)

!Pr = eye (n) (randperm (n), :)

!Prow = eye (n) (perm, :)

!scalefact = rand (m, 1)

!sP = sparse (P)