#include "ov.h"
#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "utils.h"
#include "oct-locbuf.h"
#include "ov-re-mat.h"
#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"
#include "oct-sparse.h"
Classes | |
struct | CMK_Node |
Defines | |
#define | Q_empty(Q, N, qh, qt) ((qh) == (qt)) |
#define | LEFT(i) (((i) << 1) + 1) |
#define | RIGHT(i) (((i) << 1) + 2) |
#define | PARENT(i) (((i) - 1) >> 1) |
#define | H_empty(H, h) ((h) == 0) |
Functions | |
DEFUN_DLD (symrcm, args,,"-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} symrcm (@var{S})\n\ Symmetric reverse Cuthill-McKee permutation of @var{S}.\n\ Return a permutation vector @var{p} such that\n\ @code{@var{S} (@var{p}, @var{p})} tends to have its diagonal elements\n\ closer to the diagonal than @var{S}. This is a good preordering for LU\n\ or Cholesky factorization of matrices that come from 'long, skinny'\n\ problems. It works for both symmetric and asymmetric @var{S}.\n\ \n\ The algorithm represents a heuristic approach to the NP-complete\n\ bandwidth minimization problem. The implementation is based in the\n\ descriptions found in\n\ \n\ E. Cuthill, J. McKee: Reducing the Bandwidth of Sparse Symmetric\n\ Matrices. Proceedings of the 24th ACM National Conference, 157--172\n\ 1969, Brandon Press, New Jersey.\n\ \n\ Alan George, Joseph W. H. Liu: Computer Solution of Large Sparse\n\ Positive Definite Systems, Prentice Hall Series in Computational\n\ Mathematics, ISBN 0-13-165274-5, 1981.\n\ \n\ @seealso{colperm, colamd, symamd}\n\ @end deftypefn") |
#define H_empty | ( | H, | |||
h | ) | ((h) == 0) |
#define LEFT | ( | i | ) | (((i) << 1) + 1) |
#define PARENT | ( | i | ) | (((i) - 1) >> 1) |
#define Q_empty | ( | Q, | |||
N, | |||||
qh, | |||||
qt | ) | ((qh) == (qt)) |
#define RIGHT | ( | i | ) | (((i) << 1) + 2) |
DEFUN_DLD | ( | symrcm | , | |
args | ||||
) |