#include "SparseCmplxCHOL.h"
#include "SparsedbleCHOL.h"
#include "oct-spparms.h"
#include "sparse-util.h"
#include "oct-locbuf.h"
#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"
#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"
Functions | |
DEFUN_DLD (symbfact, args, nargout,"-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{r}] =} symbfact (@var{s}, @var{typ}, @var{mode})\n\ \n\ Performs a symbolic factorization analysis on the sparse matrix @var{s}.\n\ Where\n\ \n\ @table @asis\n\ @item @var{s}\n\ @var{s} is a complex or real sparse matrix.\n\ \n\ @item @var{typ}\n\ Is the type of the factorization and can be one of\n\ \n\ @table @code\n\ @item sym\n\ Factorize @var{s}. This is the default.\n\ \n\ @item col\n\ Factorize @code{@var{s}' * @var{s}}.\n\ @item row\n\ Factorize @code{@var{s} * @var{s}'}.\n\ @item lo\n\ Factorize @code{@var{s}'}\n\ @end table\n\ \n\ @item @var{mode}\n\ The default is to return the Cholesky factorization for @var{r}, and if\n\ @var{mode} is 'L', the conjugate transpose of the Cholesky factorization\n\ is returned. The conjugate transpose version is faster and uses less\n\ memory, but returns the same values for @var{count}, @var{h}, @var{parent}\n\ and @var{post} outputs.\n\ @end table\n\ \n\ The output variables are\n\ \n\ @table @asis\n\ @item @var{count}\n\ The row counts of the Cholesky factorization as determined by @var{typ}.\n\ \n\ @item @var{h}\n\ The height of the elimination tree.\n\ \n\ @item @var{parent}\n\ The elimination tree itself.\n\ \n\ @item @var{post}\n\ A sparse boolean matrix whose structure is that of the Cholesky\n\ factorization as determined by @var{typ}.\n\ @end table\n\ @end deftypefn") |
DEFUN_DLD | ( | symbfact | , | |
args | , | |||
nargout | ||||
) |