The Octave format for sparse matrices is identical to the mex format in that it is a compressed column sparse format. Also, in both implementations sparse matrices are required to be two-dimensional. The only difference of importance to the programmer is that the real and imaginary parts of the matrix are stored separately.
The mex-file interface, in addition to using mxGetM
, mxGetN
,
mxSetM
, mxSetN
, mxGetPr
, mxGetPi
, mxSetPr
,
and mxSetPi
, also supplies the following functions.
mwIndex *mxGetIr (const mxArray *ptr); mwIndex *mxGetJc (const mxArray *ptr); mwSize mxGetNzmax (const mxArray *ptr); void mxSetIr (mxArray *ptr, mwIndex *ir); void mxSetJc (mxArray *ptr, mwIndex *jc); void mxSetNzmax (mxArray *ptr, mwSize nzmax);
mxGetNzmax
gets the maximum number of elements that can be stored in the
sparse matrix. This is not necessarily the number of nonzero elements in the
sparse matrix. mxGetJc
returns an array with one additional value than
the number of columns in the sparse matrix. The difference between consecutive
values of the array returned by mxGetJc
define the number of nonzero
elements in each column of the sparse matrix. Therefore,
mwSize nz, n; mwIndex *Jc; mxArray *m; … n = mxGetN (m); Jc = mxGetJc (m); nz = Jc[n];
returns the actual number of nonzero elements stored in the matrix in
nz
. As the arrays returned by mxGetPr
and mxGetPi
only
contain the nonzero values of the matrix, we also need a pointer to the rows of
the nonzero elements, and this is given by mxGetIr
. A complete example
of the use of sparse matrices in mex-files is given by the file
mysparse.c shown below.
#include "mex.h" void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { mwSize m, n, nz; mxArray *v; mwIndex i; double *pr, *pi; double *pr2, *pi2; mwIndex *ir, *jc; mwIndex *ir2, *jc2; if (nrhs != 1 || ! mxIsSparse (prhs[0])) mexErrMsgTxt ("ARG1 must be a sparse matrix"); m = mxGetM (prhs[0]); n = mxGetN (prhs[0]); nz = mxGetNzmax (prhs[0]); if (mxIsComplex (prhs[0])) { mexPrintf ("Matrix is %d-by-%d complex sparse matrix", m, n); mexPrintf (" with %d elements\n", nz); pr = mxGetPr (prhs[0]); pi = mxGetPi (prhs[0]); ir = mxGetIr (prhs[0]); jc = mxGetJc (prhs[0]); i = n; while (jc[i] == jc[i-1] && i != 0) i--; mexPrintf ("last nonzero element (%d, %d) = (%g, %g)\n", ir[nz-1]+ 1, i, pr[nz-1], pi[nz-1]); v = mxCreateSparse (m, n, nz, mxCOMPLEX); pr2 = mxGetPr (v); pi2 = mxGetPi (v); ir2 = mxGetIr (v); jc2 = mxGetJc (v); for (i = 0; i < nz; i++) { pr2[i] = 2 * pr[i]; pi2[i] = 2 * pi[i]; ir2[i] = ir[i]; } for (i = 0; i < n + 1; i++) jc2[i] = jc[i]; if (nlhs > 0) plhs[0] = v; } else if (mxIsLogical (prhs[0])) { mxLogical *pbr, *pbr2; mexPrintf ("Matrix is %d-by-%d logical sparse matrix", m, n); mexPrintf (" with %d elements\n", nz); pbr = mxGetLogicals (prhs[0]); ir = mxGetIr (prhs[0]); jc = mxGetJc (prhs[0]); i = n; while (jc[i] == jc[i-1] && i != 0) i--; mexPrintf ("last nonzero element (%d, %d) = %d\n", ir[nz-1]+ 1, i, pbr[nz-1]); v = mxCreateSparseLogicalMatrix (m, n, nz); pbr2 = mxGetLogicals (v); ir2 = mxGetIr (v); jc2 = mxGetJc (v); for (i = 0; i < nz; i++) { pbr2[i] = pbr[i]; ir2[i] = ir[i]; } for (i = 0; i < n + 1; i++) jc2[i] = jc[i]; if (nlhs > 0) plhs[0] = v; } else { mexPrintf ("Matrix is %d-by-%d real sparse matrix", m, n); mexPrintf (" with %d elements\n", nz); pr = mxGetPr (prhs[0]); ir = mxGetIr (prhs[0]); jc = mxGetJc (prhs[0]); i = n; while (jc[i] == jc[i-1] && i != 0) i--; mexPrintf ("last nonzero element (%d, %d) = %g\n", ir[nz-1]+ 1, i, pr[nz-1]); v = mxCreateSparse (m, n, nz, mxREAL); pr2 = mxGetPr (v); ir2 = mxGetIr (v); jc2 = mxGetJc (v); for (i = 0; i < nz; i++) { pr2[i] = 2 * pr[i]; ir2[i] = ir[i]; } for (i = 0; i < n + 1; i++) jc2[i] = jc[i]; if (nlhs > 0) plhs[0] = v; } }
A sample usage of mysparse
is
sm = sparse ([1, 0; 0, pi]); mysparse (sm) ⇒ Matrix is 2-by-2 real sparse matrix with 2 elements last nonzero element (2, 2) = 3.14159