GNU Octave

A high-level interactive language for numerical computations
Edition 9 for Octave version 9.1.0
March 2024

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg
Rik Wehbring

Copyright (©) 1996-2023 The Octave Project Developers

This is edition 9 of the Octave documentation, and is consistent with version 9.1.0 of Octave.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
Citing Octave in Publications. i e 5
How You Can Contribute to Octave. ... 6
Distributiono 6

1 A Brief Introduction to Octave 7
1.1 Running OCTaveot 7
1.2 Simple Exampleso e 7

1.2.1 Elementary Calculations.o 7
1.2.2 Creating a Matrix e e 8
1.2.3 Matrix Arithmetic.o 8
1.2.4 Solving Systems of Linear Equations......... ..., 8
1.2.5 Integrating Differential Equations..........o i i, 9
1.2.6 Producing Graphical Qutputo 10
1.2.7 Help and Documentation i 10
1.2.8 Editing What You Have Typed i 10
1.3 CONVENTIONS . -« vttt ittt ettt e e e e e e e et e e 11
1301 FOnts. .o e 11
1.3.2 Evaluation Notation..... ... i 11
1.3.3 Printing Notation ... e 11
1.3.4 Brror MesSSages .« o oo ettt et e e e e e e e 12
1.3.5 Format of Descriptionso 12
1.3.5.1 A Sample Function Description.............oooiiiiiiiiiiiii ... 12
1.3.5.2 A Sample Command Description...............oiiiiiiiiiiiiii... 13

2 Getting Started ... 15

2.1 Invoking Octave from the Command Line........... it 15
2.1.1 Command Line Optionsouiit e 15
2.1.2 Startup Files 19

2.2 QuUitting OCTAVEttt 20

2.3 Commands for Getting Help...... ..o e 21

2.4 Command Line Editing.o 26
2.4.1 Cursor MOBION ..ot 26
2.4.2 Killing and Yankingoo i 27
2.4.3 Commands for Changing Text 28
2.4.4 Letting Readline Type for You.........ooiii i 28
2.4.5 Commands for Manipulating the History.............. oo .. 29
2.4.6 Customizing readlineouutiutteitt et 33
2.4.7 Customizing the Prompt i 33
2.4.8 Diary and Echo Commands.......... ..., 35

2.5 How Octave Reports Errors e 36

ii

2.6 Executable Octave Programs 37
2.6.1 Passing Arguments to Executable Scripts........... L. 38
2.6.2 Dual-Purpose Executable Scripts and Octave Functions................... 38

2.7 Comments in Octave Programs....... i 39
2.7.1 Single Line Comments.ot 39
2.7.2 Block COMIMENTS . ..ottt ettt e et e et e 39
2.7.3 Comments and the Help System i i, 39

Data Typeso 41

3.1 Built-in Data Types. ..o e 41
3.1.1 Numeric ODJECtS ..ot 44
3.1.2 Missing Data. ... e 45
3.1.3 SErING ObJectS. .ottt 45
3.1.4 Data Structure ObJects.t 46
3.1.5 Cell Array ODJects ..ottt e e 46

3.2 User-defined Data Typesoon i e e 46

3.3 ODJECt SIZES. . oottt e 46

Numeric Data Types. ... 51

A1 MatTiCeS « oot e 52
4.1.1 Empty Matricesovoii e 95

A2 RO . o ot ettt 56

4.3 Single Precision Data Types. 58

4.4 Integer Data TyPes. ... e e 59
4.4.1 Integer Arithmetic.o e 62

4.5 Bit Manipulations. e 63

4.6 Logical Values. 65

4.7 Automatic Conversion of Data Types....... ..o, 66

4.8 Predicates for Numeric Objects.ot e 67

S I S . o 73

5.1 Escape Sequences in String Constantsouieeiiteeiiieenninenann. 73

5.2 Character ATTaYS.ttt e e

5.3 String OpPerationsttt e e e e 76
5.3.1 Common String Operations.oiiiiiiiii e, 7
5.3.2 Concatenating Stringso.uuiiii e e 79
5.3.3 Splitting and Joining Stringsc.oieiiiiiii i 83
5.3.4 Searching in Stringso 86
5.3.5 Searching and Replacing in Stringso i 92

5.4 Converting STTINGSottt e e 97
5.4.1 String encodingottt e 97
5.4.2 Numerical Data and Strings, 98
5.4.3 JSON data encoding/decoding.oouuuiuiiiniiiiniiinnnn... 107

5.5 Character Class FUNCHIONS . . o oottt e e 111

iii

6 Data Containersc..uuuiiiinnnn.. 115
6.1 SETUCHUTES .« v vttt ettt ettt e e e e e e et e e e 115
6.1.1 Basic Usage and Examples ... 115

6.1.2 SEIUCTUTE ATTAYS .« vt ottt ettt e e e e e e e 119

6.1.3 Creating STIUCTUTES . .« vttt e ettt e 120

6.1.4 Manipulating Structures. 123

6.1.5 Processing Data in Structureso 127

6.2 containers. Map.t 128
6.3 Cell ATTaYS . oottt e 129
6.3.1 Basic Usage of Cell Arraysot 129

6.3.2 Creating Cell ATTaysooiiii i e 131

6.3.3 Indexing Cell ATTaysuuirin e e 135

6.3.4 Cell Arrays of STringsooueii i 138

6.3.5 Processing Data in Cell ArTaysovuuuremiit i 139

6.4 Comma-Separated Lists 139
6.4.1 Comma-Separated Lists Generated from Cell Arrays..................... 140

6.4.2 Comma-Separated Lists Generated from Structure Arrays................ 141

7 Variables 143
7.1 Global Variables e 145
7.2 Persistent Variables i 146
7.3 Status of Variables e 148

8 EXPressionsS.oeiiii 157
8.1 Index EXPIeSSIONSttt e 157
8.1.1 Advanced Indexing...........oiiuiiii i 160

8.2 Calling Functionsouiii i e 165
8.2.1 Call by Value ... e 166

8.2.2 ReCUISION . o oo e 167

8.2.3 Access via Handle. 168

8.3 Arithmetic OPeratorsttt e e 168
8.4 Comparison OPEratorsttt e 172
8.5 Boolean ExXpressions e 174
8.5.1 Element-by-element Boolean Operators...............oooiiiiiiiiiaana... 174

8.5.2 Short-circuit Boolean Operators......... ..., 175

8.6 Assignment EXpressions.o.uiot it 177
8.7 Increment OPeratorsttt e 181
8.8 Operator Precedence. 182

9 Evaluation............ 185
9.1 Calling a Function by its Name........ ..o 186

9.2 Evaluation in a Different Context.ottt 187

v

10 Statements.......... 189
10.1 The if Statement.ot e 189
10.2 The switch Statement........ ... i 191

10.2.1 Notes for the C Programmer 192
10.3 The while Statement 193
10.4 The do-until Statementc.o it 194
10.5 The for Statemento 194

10.5.1 Looping Over Structure Elements i i, 195
10.6 The break Statement i 196
10.7 The continue Statement......... ... 197
10.8 The unwind_protect Statement.......... ..., 198
10.9 The try Statementou i 198
10.10 Continuation Lines. e e 199

11 Functions and Scripts...............iiiiiiiiiii.. 201
11.1 Introduction to Function and Script Filesoo i .. 201
11.2 Defining Functions. 201
11.3 Returning from a Function......... i i 204
11.4 Multiple Return Valueso e 205
11.5 Variable-length Return Lists ... i i 208
11.6 Variable-length Argument Lists o i i, 209
117 Ignoring Arguments.ttt 210
11.8 Default Arguments. e 212
11.9 Validating Arguments.ttt e 212

11.9.1 Validating the number of Arguments, 212

11.9.2 Validating the type of Argumentsc.o i, 213

11.9.3 Parsing Arguments.oouuiiuuti i 218
11.10 Function Fileso 220

11.10.1 Manipulating the Load Path o i, 223

11.10.2 Subfunctionsttt 227

11.10.3 Private FUnctions e 228

11.10.4 Nested Functions.o 228

11.10.5 Overloading and Autoloading, 231

11.10.6 Function Locking ..o e 232

11.10.7 Function Precedenceo, 233
1111 Script Files . .ot e e 234

11.11.1 Publish Octave Script Files......... e 235

11.11.2 Publishing Markup.ouiiii e 238

11.11.2.1 Using Publishing Markup in Script Files............, 238
11.11.2.2 Text Formattingo i e 239
11.11.2.3 SeCHIONS . o oottt e e e e 239
11.11.2.4 Preformatted Code. ... 240
11.11.2.5 Preformatted Texto 240
11.11.2.6 Bulleted Lists. ..o e 240
11.11.2.7 Numbered Lists. ... 240

11.11.2.8 Including File Contento, 241

11.11.2.9 Including Graphics...... ...t 241
11.11.2.10 Including URLSot e 241
11.11.2.11 Mathematical Equationso, 242
11.11.2.12 HTML Markup ..o e 242
11.11.2.13 LaTeX Markupovo i e 242
11.11.3 Jupyter Notebooks. 242
11.12 Function Handles and Anonymous Functions.............., 244
11.12.1 Function Handleso 244
11.12.2 Anonymous Functions. 246
11.13 Command Syntax and Function Syntax, 246
11.14 Organization of Functions Distributed with Octave......................... 248
12 Errorsand Warnings..................c.oiiiiiiiiin.. .. 251
12.1 Handling Errors.o 251
12.1.1 Raising Errorso e 251
12.1.2 Catching Errors. 254
12.1.3 Recovering From Errors........ .o 257
12.2 Handling Warningsttt e 258
12.2.1 TIssuing Warnings.ooonnnett e e 258
12.2.2 Enabling and Disabling Warnings ..., 267
13 Debugging........ ... 269
13.1 Entering Debug Mode. 269
13.2 Leaving Debug Mode 270
13.3 BreaKkpoints.o 270
13.4 Debug Mode. ... 274
13.5 Call Stack . ..o 275
13.6 Profilingo e 276
13.7 Profiler Example.o 278
14 Input and Output 283
14.1 Basic Input and Output. 283
14.1.1 Terminal Output.......oo e 283
14.1.1.1 Paging Screen Outputo 287
14.1.2 Terminal Input. ... 289
14.1.3 Simple File I/O ..o 290
14.1.3.1 Saving Data on Unexpected Exits 305

14.2 C-Style I/O FUunctionsouuuiu oo 306
14.2.1 Opening and Closing Files i 307
14.2.2 Simple Outputbot 309
14.2.3 Line-Oriented Inpub...... ..o e 310
14.2.4 Formatted Outpubc.uoiei e 311
14.2.5 Output Conversion for Matricesouuiiiiiiiii i 312
14.2.6 Output Conversion SYNtaXeeuit i, 313

14.2.7 Table of Output Conversionsouueeiiiiiiiii .. 314

vi

15

14.2.8 Integer CONVETSIONSttt e en 315
14.2.9 Floating-Point Conversions.ouiiiiiiiiiiiininnnenn. 315
14.2.10 Other Output COnversionst uit e, 316
14.2.11 Formatted Inputo e 317
14.2.12 Input Conversion SyNtaxooueueeente i 318
14.2.13 Table of Input Conversions.ouuteeiie e, 319
14.2.14 Numeric Input Conversions.oeeuuuit et 320
14.2.15 String Input Conversions............uuueteini e, 320
14.2.16 Binary I/O ..o 321
14.2.17 Temporary Fileso 323
14.2.18 End of File and Errors ...t 325
14.2.19 File PoSItioningvviiint i e e 326
Plotting 329
15.1 Introduction to Plotting.o i 329
15.2 High-Level Plottingo e 329
15.2.1 Two-Dimensional Plots....... ... i i 329
15.2.1.1 Axis Configurationo 362
15.2.1.2 Two-dimensional Function Plotting............. 373
15.2.1.3 Two-dimensional Geometric Shapes.............ccooiiiiiiiii .. 376
15.2.2 Three-Dimensional Plots....... ... oo i i 377
15.2.2.1 Aspect Ratio. ..o 403
15.2.2.2 Three-dimensional Function Plotting, 404
15.2.2.3 Three-dimensional Geometric Shapes............ ..., 408
15.2.3 Plot Annotations. e 409
15.2.4 Multiple Plots on One Pageo i 418
15.2.5 Multiple Plot Windows. ... 420
15.2.6 Manipulation of Plot Objects...... ..o 420
15.2.7 Manipulation of Plot Windows i 422
15.2.8 Use of the "interpreter" Propertycc i, 426
15.2.8.1 "none" Interpreter. e 426
15.2.8.2 Mtex" Interpretero 426
15.2.8.3 "latex" Interpretero e 429
15.2.9 Printing and Saving Plots ... i 430
15.2.10 Interacting with Plots.......... o i 441
15.2.11 Test Plotting Functionso, 442
15.3 Graphics Data Structures e 443
15.3.1 Introduction to Graphics Structures......... ..., 443
15.3.2 Graphics ODbJeCtS. ...t e 444
15.3.2.1 Creating Graphics Objects 445
15.3.2.2 Handle Functions.o 449
15.3.3 Graphics Object Properties. ... 455
15.3.3.1 Root Properties.ccoooiiiiii e 455
15.3.3.2 Figure Propertieso 457
15.3.3.3 Axes Propertiesot 465

15.3.3.4 Legend Properties.o 477

vii

15.3.3.5 Line Properties. ...t 480
15.3.3.6 Text Propertiesuuiiiiiii e e 483
15.3.3.7 Image Properties. 486
15.3.3.8 Patch Properties 489
15.3.3.9 Scatter Properties...... ... 495
15.3.3.10 Surface Properties. 499
15.3.3.11 Light Properties.o 505
15.3.3.12 Uimenu Properties........ ... 507
15.3.3.13 Uibuttongroup Propertieso, 510
15.3.3.14 Uicontextmenu Properties. ..., 513
15.3.3.15 Uipanel Properties ... 516
15.3.3.16 Uicontrol Properties.o 519
15.3.3.17 Uitable Properties.o 523
15.3.3.18 Uitoolbar Properties ... 527
15.3.3.19 Uipushtool Properties. ... 529
15.3.3.20 Uitoggletool Properties. ..., 532
15.3.4 Searching Properties 535
15.3.5 Managing Default Properties........ ... i 536
15.4 Advanced Plotting 538
1541 COlOTS « ottt e 538
15.4.2 TAne Styles. . ..o 538
15.4.3 Marker Styleso e 539
15.4.4 Callbacksot 539
15.4.5 Application-defined Data......... ..o 541
15.4.6 ODJECt GrOUPS vttt ettt et et e ettt ettt et e e 542
15.4.6.1 Data Sources in Object Groups..........c.ouiiiiiiiiiiiiiean.. 546
15.4.6.2 ATea SerieS. ...ttt e 547
15.4.6.3 Bar Series. 547
15.4.6.4 Contour GIrOUPS. . ..ottt e 548
15.4.6.5 Error Bar Series....... ..o i 549
15.4.6.6 LANe SEIiesottt e e e 550
15.4.6.7 QUIVET GTOUD « ettt et ettt e e e e e 551
15.4.6.8 Stalr GIrOUD ... vvtt ittt e 552
15.4.6.9 Stem SeTiesconntit i e 552
15.4.6.10 Surface Groupooiiiiii e 553
15.4.7 Transform GroUPS.ttt et e e e 554
15.4.8 Graphics ToolKitst 554
15.4.8.1 Customizing Toolkit Behavioro oL, 555
15.4.8.2 Hardware vs Software Renderingo i i 555
15.4.8.3 PreciSion ISSUES.ttt e 555

16 Matrix Manipulation.................................... 557
16.1 Finding Elements and Checking Conditions............ 557
16.2 Rearranging Matrices e 561
16.3 Special Utility Matriceso e 571

16.4 Famous MatriCes. . ..ottt e e e e e 583

viii

17 Arithmetic...... 593
17.1 Exponents and Logarithms. i 593
17.2 Complex Arithmetico e 595
17.3 TrigOnOmEtTY « ..ottt 596
17.4 Sums and Products 601
17.5 Utility Functions. ... e e 603
17.6 Special FUnctions e e 612
17.7 Rational Approximations.euueem e 624
17.8 Coordinate Transformations.o 625
17.9 Mathematical Constantsouuiimii i 627

18 Linear Algebra................. 631
18.1 Techniques Used for Linear Algebra 631
18.2 Basic Matrix Functions 631
18.3 Matrix Factorizations e 641
18.4 Functions of & Matrixt e 655
18.5 Specialized SOIVETSt 657

19 Vectorization and Faster Code Execution............. 671
19.1 Basic Vectorization i 671
19.2 Broadcasting.ot e 673

19.2.1 Broadcasting and Legacy Code...... ..o 676
19.3 Function Application.uuenrt e e e 677
19.4 Accumulation e 682
19.5 MemoizZationot e 684
19.6 Miscellaneous Techniquest e 686
19.7 Examples . ..o e 687

20 Nonlinear Equations 689
20,1 SOIVETS . vttt 689
20.2 MINIIIZETS . . o o vttt et e e e e e e e e e e e 693

21 Diagonal and Permutation Matrices................... 699
21.1 Creating and Manipulating Diagonal /Permutation Matrices.................. 699

21.1.1 Creating Diagonal Matricesoouuuiiiinii e 700

21.1.2 Creating Permutation Matrices........ ..., 700

21.1.3 Explicit and Implicit Conversions.ouviiiiiiireneennnnnnnn. 701
21.2 Linear Algebra with Diagonal/Permutation Matrices......................... 702

21.2.1 Expressions Involving Diagonal Matrices................ 702

21.2.2 Expressions Involving Permutation Matrices................. 703
21.3 Functions That Are Aware of These Matrices. 704

21.3.1 Diagonal Matrix Functions......... ... o i 704

21.3.2 Permutation Matrix Functions........... ... i i 704
21.4 Examples of USageottt e e e 704

21.5 Differences in Treatment of Zero Elements....... 705

ix

22 Sparse Matrices.uuuiiiiiiiii 707
22.1 Creation and Manipulation of Sparse Matrices............ ...t 707
22.1.1 Storage of Sparse Matrices 707
22.1.2 Creating Sparse MatriCes.t 708
22.1.3 Finding Information about Sparse Matrices............ ...t 714
22.1.4 Basic Operators and Functions on Sparse Matrices...................... 718
22.1.4.1 Sparse Functions ... 718

22.1.4.2 Return Types of Operators and Functions 719

22.1.4.3 Mathematical Considerations..............cooviiiiiinieiieean... 720

22.2 Linear Algebra on Sparse Matricesoouiiiiiiiiii i 728
22.3 Iterative Techniques Applied to Sparse Matrices................ooiiiiio... 738
22.4 Real Life Example using Sparse Matrices. ..., 746
23 Numerical Integration................................ ... 751
23.1 Functions of One Variable........ .. i 751
23.2 Orthogonal Collocationouuiieiii i 760
23.3 Functions of Multiple Variables........ ... 761
24 Differential Equations................................... 771
24.1 Ordinary Differential Equationso i, 771
24.2 Differential-Algebraic Equations........ ... 774
24.3 Matlab-compatible SOlvers.......... ... e e 782
25 Optimization................... 793
25.1 Linear Programmingoooouinni it 793
25.2 Quadratic Programmingo i 799
25.3 Nonlinear Programming........... ...t 801
25.4 Linear Least SQUATES.ttt e 803
26 Statistics i 809
26.1 Descriptive StatistiCs.ottt e e 809
26.2 Statistics on Sliding Windows of Data.......... ... o it 819
26.3 Basic Statistical Functions i 837
26.4 Correlation and Regression Analysis...... ..., 842
26.5 Distributions. e 845
26.6 Random Number Generation............ ..., 845

D A T 1= PP 847

28 Polynomial Manipulations.............................. 853
28.1 Evaluating Polynomials 853
28.2 Finding RoOOtSt 854
28.3 Products of Polynomials i 855
28.4 Derivatives / Integrals / Transforms............. i, 858
28.5 Polynomial Interpolation. ... 859
28.6 Miscellaneous FUnctions. e 869

29 Interpolation.......... 871
29.1 One-dimensional Interpolation i i 871
29.2 Multi-dimensional Interpolation........ 875

30 Geometry 881
30.1 Delaunay Triangulation i 881

30.1.1 Plotting the Triangulation.......... .. . i, 883
30.1.2 Identifying Points in Triangulation o oL, 886
30.2 Voronol DIiagramis.ttt et e 888
30.3 Convex Hull o 892
30.4 Interpolation on Scattered Data.......... ... 894
30.5 Vector Rotation Matrices ... e 897

31 Signal Processing................. i, 901

32 Image Processing..............ccouiiiiiiiiiiiiin... 915
32.1 Loading and Saving Images 915
32.2 Displaying Images.ot e 921
32.3 Representing Images e e 923
32.4 Plotting on top of Images 934
32.5 C0lor CONMVETSION &ttt et ettt ettt e e 935

33 Audio Processing...............cooiiiiiiiiiiiin... 937
33.1 Audio File UtIlities . ..o e 937
33.2 Audio Device Informationc..iiiiiiii i 938
33.3 Audio Player.o 939

33.3.1 Playback. 940
33.3.2 Properties. . ..ot 941
33.4 Audio Recordero 941
33.4.1 ReCOTAINGottt e 942
33.4.2 Data Retrieval 943
33.4.3 Properties. .o 943

33.5 Audio Data Processing......... .o 944

xi

34 Object Oriented Programming 947
34.1 Creating a Classttt e e e 947
34.2 Class Methods e 949
34.3 Indexing ObJeCtS . .. vtt e 952

34.3.1 Defining Indexing And Indexed Assignment..................ccoooiu... 952
34.3.2 Indexed Assignment Optimization........, 956
34.4 Overloading ODbJectSottt e e 957
34.4.1 Function Overloadingt 957
34.4.2 Operator Overloadingouuiieii i e 958
34.4.3 Precedence of ODbJectS. . ..ot 959
34.5 Inheritance and Aggregation 960
34.6 classdef Classes ...ttt e 964
34.6.1 Creating a classdef Class........couuutiiiniiiiiniiii e, 964
34.6.2 Properties. . o 966
34.6.3 Methods 967
34.6.4 Inheritance. e 969
34.6.5 Value Classes vs. Handle Classes ..., 969

35 GUI Development 973
35.1 I/O DIalogS . . v ettt et e e e 973
35.2 Progress Bar. e 981
35.3 UL ELemMENtsottt e e e e 982
35.4 GUI Utility Functions. e 992
35.5 User-Defined Preferences......... ..o 995
35.6 Octave Workspace Windows. ..ottt 997

36 System Utilities...............coiiiiiiiii.. 999
36.1 Timing Utilities.o e e 999
36.2 Filesystem Utilities e 1012
36.3 File Archiving Utilities. e 1022
36.4 Networking Utilities e 1025

36.4.1 FTP ObjJects. oot e 1025

36.4.2 WWW ACCESS .« ettt et e e e e 1027

36.4.3 Base64 and Binary Data Transmission.............. ..o, 1031
36.5 Controlling SUbProCesSes.ttt e 1032
36.6 Process, Group, and User IDS. ... 1040
36.7 Environment Variables......... ... i 1041
36.8 Current Working Directoryo 1042
36.9 Password Database Functions........... ... o i i 1044
36.10 Group Database Functions..............oiiiiiiiiii e 1045
36.11 System Information........ ... i 1045

36.12 Hashing Functions......... ..o i e 1054

xii

37 Packages ... 1057
37.1 Installing and Removing Packages........... ... o i i, 1057
37.2 Using Packages . ..o e e 1062
37.3 Administrating Packages.o 1063
37.4 Creating Packages 1063

37.4.1 The DESCRIPTION Fileot e 1065
37.4.2 The INDEX File. ... e 1067
37.4.3 PKG_ADD and PKG_DEL Directivescoooiiiiiiiiinn.. 1068
37.4.4 Missing COMPONENTS . .. v vttt ettt et et e e eeee s 1068

Appendix A External Code Interface.................... 1069

AL OCt-FIles . oot 1070
A.1.1 Getting Started with Oct-Files..... ..o i 1070
A.1.2 Matrices and Arrays in Oct-Filesoo i, 1074
A.1.3 Character Strings in Oct-Files............ i i, 1077
A1.4 Cell Arrays in Oct-Fileso e 1079
A. 1.5 Structures in Oct-Files ... e 1079
A.1.6 Sparse Matrices in Oct-Files...........oo i 1081

A.1.6.1 Array and Sparse Class Differences............. 1081

A.1.6.2 Creating Sparse Matrices in Oct-Files............................. 1082

A.1.6.3 Using Sparse Matrices in Oct-Files...........ot 1085
A.1.7 Accessing Global Variables in Oct-Files................ 1086
A.1.8 Calling Octave Functions from Oct-Files........... 1087
A.1.9 Calling External Code from Oct-Files..........., 1088
A.1.10 Allocating Local Memory in Oct-Files, 1091
A.1.11 Input Parameter Checking in Oct-Files, 1091
A.1.12 Exception and Error Handling in Oct-Files........... 1092
A.1.13 Documentation and Testing of Oct-Files............ 1094

A2 Mex-FIles . o et 1095
A.2.1 Getting Started with Mex-Files....... ..., 1095
A.2.2 Working with Matrices and Arrays in Mex-Files........................ 1097
A.2.3 Character Strings in Mex-Files........ ... i i 1099
A.2.4 Cell Arrays with Mex-Files ... 1100
A.2.5 Structures with Mex-Files 1101
A.2.6 Sparse Matrices with Mex-Files........o i 1103
A.2.7 Calling Other Functions in Mex-Files 1106

A.3 Standalone Programs........ ... 1107

A4 Java Interface 1110
A.4.1 Making Java Classes Available....... i 1111
A.4.2 How to use Java from within Octave............ 1112
A43 Setup the JVM ... 1114
A.4.4 Java Interface Functions 1115

Appendix B Test and Demo Functions.................. 1123
B.1 Test FUnctionsooiiiii e 1123

B.2 Demonstration FUnctions e 1131

xiii

Appendix C Obsolete Functions 1135
Appendix D Known Causes of Trouble.................. 1141
D.1 Actual Bugs We Haven’t Fixed Yet ... 1141
D.2 Reporting Bugsttt e 1141
D.2.1 Have You Found a Bug? i 1141

D.2.2 Where to Report Bugs........ ..o 1142

D.2.3 How to Report Bugs. ... 1142

D.2.4 Sending Patches for Octave........ i 1143

D.3 How To Get Help with Octave....... ... 1144
D.4 How to Distinguish Between Octave and Matlab.............. 1144
Appendix E Installing Octave............................ 1147
E.1 Build Dependencies.o 1147
E.1.1 Obtaining the Dependencies Automatically.............. 1147

E.1.2 Build Tools. ... 1147

E.1.3 External Packages ... 1148

E.2 Running Configure and Make........ ..o i i 1151
E.3 Compiling Octave with 64-bit Indexing i i, 1155
E.4 Installation Problems. 1158
Appendix F Grammar and Parser....................... 1161
F.l1 KeywWords e 1161
B Parser . . e 1168

Appendix G GNU GENERAL PUBLIC LICENSE 1171

Concept Index ... 1183
Function Index......... 1189
Operator Index i, 1205

Graphics Properties Index 1207

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used
in several other undergraduate and graduate courses in the Chemical Engineering Depart-
ment at the University of Texas, and the math department at the University of Texas has
been using it for teaching differential equations and linear algebra as well. More recently,
Octave has been used as the primary computational tool for teaching Stanford’s online Ma-
chine Learning class (http://ml-class.org) taught by Andrew Ng. Tens of thousands of
students participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix G [Copying], page 1171). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Drew Abbot NVS Abhilash
Andy Adler Adam H. Aitkenhead Fernando Alvarruiz
Joakim Andén Giles Anderson Joel Andersson
Lachlan Andrew Pedro Angelo Damjan Angelovski
Muthiah Annamalai Markus Appel Leonardo Araujo
Branden Archer Willem Atsma Marco Atzeri
Ander Aurrekoetxea Shai Ayal Sahil Badyal

Jeff Bai Roger Banks Ben Barrowes
Alexander Barth David Bateman Heinz Bauschke
Miguel Bazdresch Julien Bect Stefan Beller
Roman Belov Markus Bergholz Karl Berry

Andreas Bertsatos Atri Bhattacharya FEthan Biery

http://ml-class.org

David Billinghurst
Gaél Bonithon
Richard Bovey

Max Brister

Clemens Buchacher
Marco Caliari

Juan Pablo Carbajal
Larrie Carr

Marco Cecchetti
Albert Chin-A-Young
Catalin Codreanu
Andre da Costa Barros
Richard Crozier
Jacob Dawid
Thomas D. Dean
Fabian Deutsch
Vivek Dogra

Carné Draug

John W. Eaton

Paul Eggert
Abdallah K. Elshamy
Rolf Fabian
Massimiliano Fasi
Kasper H. Filtenborg
Guillaume Flandin
Brad Froehle

Walter Gautschi
Fugenio Gianniti
Nicolo Giorgetti
Dave Goel

Tomislav Goles
Alexander Graf
Etienne Grossmann
Vaibhav Gupta
Patrick Hacker
Benjamin Hall

Gene Harvey

Oliver Heimlich
Martin Helm

Jordi Gutiérrez Hermoso
Christian Himpe

A. Scottedward Hodel
Tom Holroyd

Craig Hudson

John Hunt

Alan W. Irwin

Geoff Jacobsen

Don Bindner

Moritz Borgmann
John Bradshaw
Remy Bruno

Ansgar Burchard
Daniel Calvelo
Jean-Francois Cardoso
David Castelow
Corbin Champion
Sunghyun Cho

J. D. Cole

Martin Costabel

Jeff Cunningham
Jorge Barros de Abreu
Philippe Defert
Christos Dimitrakakis
John Donoghue
Sergey Dudoladov
Dirk Eddelbuettel
Stephen Eglen
Garrett Euler
Francesco Faccio
Stephen Fegan
Torsten Finke

Colin Foster

Castor Fu

Klaus Gebhardt
Hartmut Gimpel
Arun Giridhar
Michael Goffioul
Keith Goodman
Michael C. Grant
David Grundberg
Peter Gustafson
William P. Y. Hadisoeseno
Alexander Hansen
Seren Hauberg
Daniel Heiserer
Stefan Hepp

Israel Herraiz

Ryan Hinton

Julio Hoffimann
David Hoover
Christopher Hulbert
Stefan Husmann
Allan Jacobs
Vytautas Jancauskas

GNU Octave (version 9.1.0)

Jakub Bogusz

Paul Boven

Marcus Brinkmann
Stefan Brins
Antonius Burgers
John C. Campbell
Joao Cardoso
Vincent Cautaerts
Clinton Chee
Carsten Clark
Jacopo Corno
Michael Creel
Martin Dalecki
Carlo de Falco

Bill Denney

Pantxo Diribarne
David M. Doolin
Pascal A. Dupuis
Pieter Eendebak
Peter Ekberg
Edmund Grimley Evans
Gunnar Farnebéack
Ramon Garcia Fernandez
David Finkel

Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Michele Ginesi
Michael D. Godfrey
Glenn Golden
Brian Gough
Steffen Groot

Kyle Guinn

Kai Habel

Jaroslav Hajek
Kim Hansen

Dave Hawthorne
Piotr Held

Martin Hepperle
Yozo Hida

Roman Hodek
Richard Allan Holcombe
Kurt Hornik

Cyril Humbert
Teemu Ikonen
Marcel Jacobse
Andrew Janke

Preface

Nicholas R. Jankowski
Cai Jianming
Matthias Jiischke
Avinoam Kalma
Fotios Kasolis

Joel Keay

Lars Kindermann
Arno J. Klaassen
Geoffrey Knauth
Heine Kolltveit
Kacper Kowalik

Nir Krakauer

Artem Krosheninnikov
Ilya Kurdyukov
Philipp Kutin

Kai Labusch

Bill Lash

Friedrich Leisch
Thorsten Liebig
Timo Lindfors

Yu Liu

Sebastien Loisel
Massimo Lorenzin
Hoxide Ma
Jens-Uwe Mager
Alexander Mamonov
Axel Mathéi
Christoph Mayer
Ronald van der Meer
Ed Meyer

Petr Mikulik
Serviscope Minor
Stephen Montgomery-Smith
Kai P. Mueller
Hannes Miiller

Tain Murray
Carmen Navarrete
Al Niessner
Takuji Nishimura
Patrick Noffke
Krzesimir Nowak
Peter O’Gorman

Serkan Onder
Luis F. Ortiz

Ovéri

Mats Jansson
Steven G. Johnson
Atsushi Kajita
Mohamed Kamoun
Thomas Kasper
Mumit Khan
Aaron A. King
Alexander Klein
Hendrik Koerner
Peter Konowski
Endre Kozma
Aravindh Krishnamoorthy
Piotr Krzyzanowski
Tetsuro Kurita
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Michael Leitner
Torsten Lilge
Benjamin Lindner
David Livings
Andrej Lojdl

Emil Lucretiu
Colin Macdonald
Stefan Mahr
Ricardo Marranita
Makoto Matsumoto
Laurent Mazet
Markus Meisinger
Thorsten Meyer
Linton Miller
Stefan Monnier
Anthony Morast
Amod Mulay
Victor Munoz

Nicholas Musolino
Todd Neal

Felipe G. Nievinski
Akira Noda

Victor Norton
Michael O’Brien
Thorsten Ohl
Arno Onken

Carl Osterwisch

Scott Pakin

Robert Jenssen
Heikki Junes
Jarkko Kaleva
Lute Kamstra
Christof Kaufmann
Paul Kienzle

Erik Kjellson
Lasse Kliemann
Martin Kohler

Ken Kouno

Daniel Kraft
Oyvind Kristiansen
Volker Kuhlmann
Ben Kurtz

Rafael Laboissiere
Walter Landry
Maurice LeBrun
Johannes Leuschner
Jyh-miin Lin

Ross Lippert
Barbara Locsi

Erik de Castro Lopo
Yi-Hong Lyu
James Macnicol
Rob Mahurin
Orestes Mas
Tatsuro Matsuoka
G. D. McBain
Julio Hoffimann Mendes
Stefan Miereis
Mike Miller

Rafael Monteiro
Antoine Moreau
Armin Miller
PrasannaKumar
Muralidharan
Markus Miitzel
Philip Nienhuis
Rick Niles

Kai Noda

Eric Norum

Cillian O’Driscoll
Kai T. Ohlhus

Valentin Ortega-Clavero
Janne Olavi Paanajarvi

José Luis Garcia Pallero

Jason Alan Palmer
Rolando Pereira

Jim Peterson
Nicholas Piper

Hans Ekkehard Plesser
Nathan Podlich

Jef Poskanzer
Tejaswi D. Prakash
Pooja Rao

Balint Reczey

Lukas Reichlin
Reinhard Resch
Jason Riedy

Petter Risholm
Dmitry Roshchin
Fabio Rossi

David Rorich

Ryan Rusaw

Juhani Saastamoinen
Ben Sapp

Michel D. Schmid
Nicol N. Schraudolph
Ludwig Schwardt
Dmitri A. Sergatskov
Ahsan Ali Shahid
Robert T. Short
John Smith

Peter L. Sondergaard
Quentin H. Spencer
Imad-Eddine Srairi
Russell Standish
Doug Stewart

Judd Storrs

Ivan Sutoris

Ariel Tankus
Matthew Tennyhg
Georg Thimm
Andrew Thornton
Christophe Tournery
Karsten Trulsen
Utkarsh Upadhyay
Peter Van Wieren
Gregory Vanuxem
Sébastien Villemot
Steven Waldrip
Andreas Weber

Rik Wehbring

Gabriele Pannocchia
Per Persson
Johannes Pfeifer
Elias Pipping
Sergey Plotnikov
Orion Poplawski
Francesco Potorti
Jarno Rajahalme
James B. Rawlings
Joshua Redstone
Michael Reifenberger
Jens Restemeier

E. Joshua Rigler
Matthew W. Roberts
Peter Rosin

Mark van Rossum
Kevin Ruland

Olli Saarela

Radek Salac
Aleksej Saushev
Julian Schnidder
Sebastian Schubert
Thomas L. Scofield
Vanya Sergeev
Baylis Shanks
Paulo Silva

Julius Smith
Riidiger Sonderfeld
Christoph Spiel
Andreas Stahel
Ryan Starret

Jen Stewart
Thomas Stuart
John Swensen

Falk Tannh&user
Remi Thebault
Paul Thomas

Olaf Till

Thomas Treichl
David Turner

José Vallet

James R. Van Zandt
Mihas Varantsou
Marco Vitetta
Thomas Walter
Olaf Weber

Bob Weigel

GNU Octave (version 9.1.0)

Sylvain Pelissier
Primozz Peterlin
Danilo Piazzalunga
Robert Platt

Tom Poage

Ondrej Popp
Konstantinos Poulios
Eduardo Ramos
Eric S. Raymond
Andy Register
Ernst Reissner
Anthony Richardson
Sander van Rijn
Melvin Robinson
Andrew Ross

Joe Rothweiler
Kristian Rumberg
Toni Saarela

Mike Sander

Alois Schlogl
Sebastian Schops
Lasse Schuirmann
Daniel J. Sebald
Marko Seric

Andriy Shinkarchuck
Joseph P. Skudlarek
Shan G. Smith
Joerg Specht

David Spies
Richard Stallman
Brett Stewart
Jonathan Stickel
Bernardo Sulzbach
Daisuke Takago
Duncan Temple Lang
Kris Thielemans
Corey Thomasson
Petter Tomner
Abhinav Tripathi
Frederick Umminger
Stefan van der Walt
Risto Vanhanen
Ivana Varekova
Daniel Wagenaar
Jun Wang

Thomas Weber
Andreas Weingessel

Preface

Martin Weiser
Joachim Wiesemann

Michael Weitzel
Alexander Wilms

David Wells
Joe Winegarden

Georg Wiora
Fook Fah Yap
Serhiy Zahoriya
Federico Zenith

Sahil Yadav
Michele Zaffalon
Michael Zeising
Alex Zvoleff

Eddy Xiao

Sean Young
Johannes Zarl
Claudius Zingerli

Richard Zweig

Special thanks to the following people and organizations for supporting the development

of Octave:

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium

(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the https://octave.org domain name.

James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to

produce Octave.

Citing Octave in Publications

In view of the many contributions made by numerous developers over many years it is
common courtesy to cite Octave in publications when it has been used during the course of
research or the preparation of figures. The citation function can automatically generate

https://octave.org

6 GNU Octave (version 9.1.0)

a recommended citation text for Octave or any of its packages. See the help text below on
how to use citation.

citation

citation package
Display instructions for citing GNU Octave or its packages in publications.
When called without an argument, display information on how to cite the core GNU
Octave system.

When given a package name package, display information on citing the specific named
package. Note that some packages may not yet have instructions on how to cite them.

The GNU Octave developers and its active community of package authors have in-
vested a lot of time and effort in creating GNU Octave as it is today. Please give
credit where credit is due and cite GNU Octave and its packages when you use them.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See https://www.
octave.org/get-involved.html for detailed information.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at https://www.
octave.org/donate.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix D [Trouble], page 1141, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix G [Copying], page 1171.

To download a copy of Octave, please visit https://www.octave.org/download.html.

https://www.octave.org/get-involved.html
https://www.octave.org/get-involved.html
https://www.octave.org/donate
https://www.octave.org/donate
https://www.octave.org/download.html

1 A Brief Introduction to Octave

GNU Octave is a high-level language primarily intended for numerical computations. It is
typically used for such problems as solving linear and nonlinear equations, numerical linear
algebra, statistical analysis, and for performing other numerical experiments. It may also
be used as a batch-oriented language for automated data processing.

The current version of Octave executes in a graphical user interface (GUI). The GUI
hosts an Integrated Development Environment (IDE) which includes a code editor with
syntax highlighting, built-in debugger, documentation browser, as well as the interpreter
for the language itself. A command-line interface for Octave is also available.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual, see Appendix G [Copying], page 1171.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 9.1.0.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. This starts the
graphical user interface. The central window in the GUI is the Octave command-line inter-
face. In this window Octave displays an initial message and then a prompt indicating it is
ready to accept input. If you have chosen the traditional command-line interface then only
the command prompt appears in the same window that was running a shell. In either case,
you can immediately begin typing Octave commands.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL and
then pressing c. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, we recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’) are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation ("), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of

8 GNU Octave (version 9.1.0)

the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

e = -1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp (i*pi)

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A =[1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave uses standard mathematical notation with the advantage over low-level languages
that operators may act on scalars, vector, matrices, or N-dimensional arrays. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A x B

and to form the matrix product ATA, type the command

octave:6> A' * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\D
This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

Chapter 1: A Brief Introduction to Octave 9

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H,; + O, — H,0O

The equation above is not accurate. The Law of Conservation of Mass requires that the num-
ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

z1Hy + 2,05 — Hy0
H: 2x,4+0xy —2
O 0$1+2$2—>1

The solution in Octave is found in just three steps.
[2, 0; 0, 21;

[2;11;

AND

octave:1> A
octave:2> b
octave:3> x

1.2.5 Integrating Differential Equations
Octave has built-in functions for solving nonlinear differential equations of the form

% = f(x,t), z(t =tg) = xg
For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k = 1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1) = r*x(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);
>

> endfunction
Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)';

10 GNU Octave (version 9.1.0)

it is easy to integrate the set of differential equations:
octave:4> x = 1lsode ("f", x0, t);
The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55—64.

1.2.6 Producing Graphical Output

To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

Octave will automatically create a separate window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print foo.pdf

will create a file called foo.pdf that contains a rendering of the current plot in Portable
Document Format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. The name of this function may not always be obvious, but a good place to start is to
type help —-1list. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function (described in Section 2.3 [Getting Help],
page 21).

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.
The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual, see Section 2.3 [Getting Help], page 21.

1.2.8 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of

Chapter 1: A Brief Introduction to Octave 11

input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual,
see Section 2.4 [Command Line Editing], page 26.

1.3 Conventions

This section explains the notation conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form:
foo —-bar --baz. Specific keys on your keyboard appear in this font or form: RET.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=’. For example:

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.

In some cases, matrix values that are returned by expressions are displayed like this

(1, 2; 3, 4] == [1, 3; 2, 4]
= [1,0;0, 1]

and in other cases, they are displayed like this

eye (3)

= 0
0
1

O O -
O = O

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ¢ 4’. The value that is returned

12 GNU Octave (version 9.1.0)

by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: Invalid input argument

1.3.5 Format of Descriptions

Functions and commands are described in this manual in a uniform format. The first line
of a description contains the name of the item followed by its arguments, if any. If there
are multiple ways to invoke the function then each allowable form is listed.

The description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

After all of the calling forms have been enumerated, the next line is a concise one-sentence
summary of the function.

After the summary there may be documentation on the inputs and outputs, examples
of function usage, notes about the algorithm used, and references to related functions.

Here is a description of an imaginary function foo:

Chapter 1: A Brief Introduction to Octave 13

foo (x)
foo (x, y)
foo (x, y, ...)
Subtract x from y, then add any remaining arguments to the result.

The input x must be a numeric scalar, vector, or array.
The optional input y defaults to 19 if it is not supplied.
Example:

foo (1, [3, 51, 3, 9)
= [14, 16 1]
foo (5)
= 14

More generally,
foo (w, x, y, ...)

x-w+y+ ...

See also: bar

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

1.3.5.2 A Sample Command Description

Commands are functions that may be called without surrounding their arguments in paren-
theses. Command descriptions have a format similar to function descriptions. For example,
here is the description for Octave’s diary command:

14 GNU Octave (version 9.1.0)

diary

diary on

diary off

diary filename

[status, diaryfile] = diary
Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.

With no input or output arguments, diary toggles the current diary state.

If output arguments are requested, diary ignores inputs and returns the current
status. The boolean status indicates whether recording is on or off, and diaryfile is
the name of the file where the session is stored.

See also: history, evalc.

15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--built-in-docstrings-file filename
Specify the name of the file containing documentation strings for the built-in
functions of Octave. This value is normally correct and should only need to be
specified in extraordinary situations.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

-—doc-cache-file filename
Specify the name of the documentation cache file to use. The value
of filename specified on the command line will override any value of
OCTAVE_DOC_CACHE_FILE found in the environment, but not any commands in
the system or user startup files that use the doc_cache_file function.

—--echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless —-persist is also specified.

—--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that
call the EXEC_PATH function.

--gui Start the graphical user interface (GUI).

16 GNU Octave (version 9.1.0)

--help
-h Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in
the environment, but not any commands in the system or user startup files that
call the IMAGE_PATH function.

--info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive
-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer.

--line-editing
Force readline use for command-line editing.

--no-gui Disable the graphical user interface (GUI) and use the command line interface
(CLI) instead. This is the default behavior, but this option may be useful to
override a previous —--gui.

-—no-history
-H Disable recording of command-line history.

--no-init-file
Don’t read the initialization files ~/.octaverc and .octaverc.

--no-init-path
Don’t initialize the search path for function files to include default locations.

--no-line-editing
Disable command-line editing.

--no-site-file
Don’t read the site-wide octaverc initialization files.

--no-window-system
-W Disable use of a windowing system including graphics. This forces a strictly
terminal-only environment.

--norc
-f Don’t read any of the system or user initialization files at startup. This is
equivalent to using both of the options --no-init-file and —-no-site-file.

Chapter 2: Getting Started 17

--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after -—eval or reading from a file named on the com-
mand line.

-—-silent

--quiet

-q Don’t print the usual greeting and version message at startup.

--texi-macros-file filename
Specify the name of the file containing Texinfo macros for use by makeinfo.

-—-traditional

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

PS1 = ">> "

PS2 = un
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
optimize_diagonal _matrix = false
optimize_permutation_matrix = false
optimize_range = false
fixed_point_format = true
history_timestamp_format_string = "%%-— %D %I:%M %p —-%%"
print_empty_dimensions = false
print_struct_array_contents = true
save_default_options = "-mat-binary"

struct_levels_to_print 0

and disable the following warnings

Octave:abbreviated-property-match
Octave:colon-nonscalar-argument
Octave:data-file-in-path

Octave:empty-index
Octave:function-name-clash
Octave:possible-matlab-short-circuit-operator

Note that this does not enable the Octave:language-extension warning,
which you might want if you want to be told about writing code that works in
Octave but not MATLAB (see [warning], page 259, [warning_ids]|, page 261).

--verbose
-V Turn on verbose output.

18 GNU Octave (version 9.1.0)
--version

-v Print the program version number and exit.

file Execute commands from file. Exit when done unless --persist is also specified.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

args

= argv ()
Return the command line arguments passed to Octave.

For example, if you invoked Octave using the command

octave --no-line-editing --silent
argv would return a cell array of strings with the elements ——no-line-editing and
--silent.
If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 37, for an example
of how to create an executable Octave script.

See also: [program_name|, page 18, [cmdline_options|, page 18.

opt_struct = cmdline_options ()

name

name

Return a structure containing detailed information about the command line argu-
ments passed to Octave.

Programming Note: This function provides copious amounts of information about
Octave’s parsing of command line options and may be more useful for debugging
Octave rather than for general use.

See also: [argv], page 18, [program_name|, page 18.

= program_name ()
Return the filename component of the value returned by program_invocation_name.

See also: [program_invocation_name|, page 18, [argv], page 18.

= program_invocation_name ()

Return the string that was typed at the shell prompt to run Octave.

The string may include path components as well as the program filename.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs]|, page 37, for an example of how to create
an executable Octave script.

See also: [program_name|, page 18, [argv], page 18.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());
arg_list = argv O;
for i = l:nargin

printf (" %s", arg_list{il});

endfor
printf ("\n");

Chapter 2: Getting Started 19

See Section 6.3.3 [Indexing Cell Arrays|, page 135, for an explanation of how to retrieve

objects from cell arrays, and Section 11.2 [Defining Functions|, page 201, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is /usr/local). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default is
/usr/local), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

config-dir/octave/octaverc
where config-dir is the platform-dependent location for user local configu-
ration files (e.g., $XDG_CONFIG_HOME on many Unix-like operating systems or
%APPDATAY on Windows).

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ~/.octaverc. Any use of the cd command in the ~/.octaverc file will
affect the directory where Octave searches for .octaverc.

If you start Octave in your home directory, commands from the file
~/.octaverc will only be executed once.

startup.m
This file is used to make personal changes to the default Octave environment. It
is executed for MATLAB compatibility, but ~/.octaverc is the preferred location
for configuration changes.

A message will be displayed as each of the startup files is read if you invoke Octave with
the --verbose option but without the ——silent option.

The startup files are always processed in the system’s locale charset (independent of
the m-file encoding that is set, for example, in the GUI properties). In other words, the

20 GNU Octave (version 9.1.0)

system’s locale charset is in effect until a user manually sets the m-file encoding (e.g., in one
of the startup files) and triggers re-parsing of any relevant m-files. Octave can be forced to
use a new encoding with the function mfile_encoding:

mfile_encoding ("utf-8"); # set new encoding
clear ("functions"); # re-parse all .m files in the new encoding

This changes the encoding that is used to interpret all subsequently run startup and
m-files (not including the currently executing file).

2.2 Quitting Octave

Shutdown is initiated with the exit or quit commands (they are equivalent). Similar
to startup, Octave has a shutdown process that can be customized by user script files.
During shutdown Octave will search for the script file finish.m in the function load path.
Commands to save all workspace variables or cleanup temporary files may be placed there.
Additional functions to execute on shutdown may be registered with atexit.

quit

quit cancel

quit force

quit ("cancel")

quit ("force")

quit (status)

quit (status, "force")

exit (...)
Quit the current Octave session.
If the optional integer value status is supplied, pass that value to the operating system
as Octave’s exit status. The default value is zero.

When exiting, Octave will attempt to run the m-file finish.m if it exists. User
commands to save the workspace or clean up temporary files may be placed in that
file. Alternatively, another m-file may be scheduled to run using atexit. If an error
occurs while executing the finish.m file, Octave does not exit and control is returned
to the command prompt.

If the optional argument "cancel" is provided, Octave does not exit and control is
returned to the command prompt. This feature allows the finish.m file to cancel
the quit process.

If the user preference to request confirmation before exiting, Octave will display a
dialog and give the user an option to cancel the exit process.

If the optional argument "force" is provided, no confirmation is requested, and the
execution of the finish.m file is skipped.

Programming Note: exit is an alias for quit and can be used interchangeably.
See also: [atexit|, page 20.
atexit (fcn)

atexit (fcn, true)
atexit (fcn, false)

Chapter 2: Getting Started 21

status = atexit (fcn, false)
Register a function to be called when Octave exits.

For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);

will remove the function from the list and Octave will not call 1last_words when it
exits.

The optional output status is only available when unregistering a function. The value
is true if the unregistering was successful and false otherwise.

Programming Note: atexit only removes the first occurrence of a function from the
list; if a function was placed in the list multiple times with atexit, it must also be
removed from the list multiple times.

See also: [quit|, page 20.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.10 [Function Files|, page 220, for more information about how to document the
functions you write.

help name
help --list
help .

help

help_text = help (...)
Display the help text for name.

For example, the command help help prints a short message describing the help
command.

Given the single argument --1list, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

Given the single argument ., list all operators available in the current session of
Octave.

If invoked without any arguments, help displays instructions on how to access help
from the command line.

22

GNU Octave (version 9.1.0)

The help command can provide information about most operators, but name must
be enclosed by single or double quotes to prevent the Octave interpreter from acting
on name. For example, help "+" displays help on the addition operator.

See also: [doc], page 22, [lookfor], page 22, [which], page 154, [info], page 23.

doc function_name

doc

Display documentation for the function function_name directly from an online version
of the printed manual, using the GNU Info browser.

If invoked without an argument, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the online version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 21.

lookfor str

lookfor -all str

[fcn, helplstr] = lookfor (str)

[fcn, helplstr] = lookfor ("-all", str)

Search for the string str in the documentation of all functions in the current function
search path.

By default, lookfor looks for str in just the first sentence of the help string for each
function found. The entire help text of each function can be searched by using the
"-all" argument. All searches are case insensitive.

When called with no output arguments, lookfor prints the list of matching functions
to the terminal. Otherwise, the output argument fcns contains the function names
and helplstr contains the first sentence from the help string of each function.

Programming Note: The ability of lookfor to correctly identify the first sentence
of the help text is dependent on the format of the function’s help. All Octave core
functions are correctly formatted, but the same can not be guaranteed for external
packages and user-supplied functions. Therefore, the use of the "-all" argument
may be necessary to find related functions that are not a part of Octave.

The speed of lookup is greatly enhanced by having a cached documentation file. For
more information, see [doc_cache_create], page 25.

See also: |help], page 21, [doc|, page 22, [which|, page 154, [path]|, page 225,
[doc_cache_create], page 25.

To see what is new in the current release of Octave, use the news function.

news
news

package

Display the current NEWS file for Octave or an installed package.

When called without an argument, display the NEWS file for Octave.

When given a package name package, display the current NEWS file for that package.

See also: [ver|, page 1048, [pkg], page 1057.

Chapter 2: Getting Started 23

info ()
Display contact information for the GNU Octave community.

warranty ()
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file ()

old_val = info_file (new_val)

old_val = info_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave info file.
The default value is octave-home/share/info/octave.info, in which octave-home
is the root directory of the Octave installation. The default value may be overrid-
den by the environment variable OCTAVE_INFO_FILE, or the command line argument
--info-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_program]|, page 23, [doc|, page 22, [help], page 21, [makeinfo_program],
page 23.

val = info_program ()

old_val = info_program (new_val)

old_val = info_program (new_val, "local")
Query or set the internal variable that specifies the name of the info program to run.
The default value is info. The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument --info-program
NAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_file], page 23, [doc|, page 22, [help|, page 21, [makeinfo_program],
page 23.

val = makeinfo_program ()

old_val = makeinfo_program (new_val)

old_val = makeinfo_program (new_val, "local")
Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands.

The default value is makeinfo.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [texi_macros_file|, page 24, [info_file], page 23, [info_program], page 23, [doc],
page 22, [help], page 21.

24 GNU Octave (version 9.1.0)

val = texi_macros_file ()

old_val = texi_macros_file (new_val)

old_val = texi_macros_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing Tex-
info macros that are prepended to documentation strings before they are passed to
makeinfo.

The default value is octave-home/share/octave/version/etc/macros.texi, in
which octave-home is the root directory of the Octave installation, and version
is the Octave version number. The default value may be overridden by the
environment variable OCTAVE_TEXI_MACROS_FILE, or the command line argument
-—texi-macros—-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [makeinfo_program|, page 23.

val = doc_cache_file ()

old_val = doc_cache_file (new_val)

old_val = doc_cache_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave documentation
cache file.

A cache file significantly improves the performance of the lookfor command. The
default value is octave-home/share/octave/version/etc/doc-cache, in which
octave-home is the root directory of the Octave installation, and version is the Octave
version number. The default value may be overridden by the environment variable
OCTAVE_DOC_CACHE_FILE, or the command line argument --doc-cache-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [doc_cache_create], page 25, [lookfor|, page 22, [info_program], page 23,

[doc], page 22, [help], page 21, [makeinfo_program|, page 23.

)

See also: [lookfor|, page 22.

val = built_in_docstrings_file ()

old_val = built_in_docstrings_file (new_val)

old_val = built_in_docstrings_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing doc-
strings for built-in Octave functions.

The default value 1is octave-home/share/octave/version/etc/built-in-
docstrings, in which octave-home is the root directory of the Octave installation,
and version is the Octave version number. The default value may be overridden by
the environment variable OCTAVE_BUILT_IN_DOCSTRINGS_FILE, or the command
line argument --built-in-docstrings-file FNAME.

Note: This variable is only used when Octave is initializing itself. Modifying it during
a running session of Octave will have no effect.

Chapter 2: Getting Started 25

val = suppress_verbose_help_message ()

old_val = suppress_verbose_help_message (new_val)

old_val = suppress_verbose_help_message (new_val, "local")
Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-
mentation. They are documented here for completeness and because they may occasionally
be useful for users.

doc_cache_create (out_file, directory)

doc_cache_create (out_file)

doc_cache_create ()
Generate documentation cache for all functions in directory.
A documentation cache is generated for all functions in directory which may be a
single string or a cell array of strings. The cache is used to speed up the function
lookfor.
The cache is saved in the file out_file which defaults to the value doc-cache if not
given.
If no directory is given (or it is the empty matrix), a cache for built-in functions,
operators, and keywords is generated.

See also: [doc_cache_file], page 24, [lookfor|, page 22, [path], page 225.

[text, format] = get_help_text (name)
Return the raw help text of function name.

The raw help text is returned in text and the format in format. The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text_from_file], page 25.

[text, format] = get_help_text_from_file (fname)
Return the raw help text from the file fname.

The raw help text is returned in text and the format in format. The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text], page 25.

text = get_first_help_sentence (name)

text = get_first_help_sentence (name, max_len)

[text, status] = get_first_help_sentence (...)
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_len, which defaults to 80. If the text

26 GNU Octave (version 9.1.0)

must be truncated the last three characters of the text are replaced with "..." to
indicate that more text was available.

The optional output argument status returns the status reported by makeinfo. If
only one output argument is requested, and status is nonzero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
- ans = Return the first sentence of a function's help text.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type
C-a, hold down CTRL and then press a. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press u. Depending on the keyboard, the META key may be labeled
ALT or even WINDOWS. If your terminal does not have a META key, you can still type Meta
characters using two-character sequences starting with ESC. Thus, to enter M-u, you would
type ESC u. The ESC character sequences are also allowed on terminals with real Meta keys.
In the following sections, Meta characters such as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
C-f Move forward one character.
BACKSPACE

Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
c-d Delete the character underneath the cursor.
M-f Move forward a word.
M-b Move backward a word.
C-a Move to the start of the line.

C-e Move to the end of the line.

Chapter 2: Getting Started 27

C-1 Clear the screen, reprinting the current line at the top.

C-_

c-/ Undo the last action. You can undo all the way back to an empty line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.

clc ()
home ()
Clear the terminal screen and move the cursor to the upper left corner.

Programming Note: home is an alias for clc and can be used interchangeably.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

28 GNU Octave (version 9.1.0)

2.4.3 Commands for Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C—q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type for You
The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char ()

old_val = completion_append_char (new_val)

old_val = completion_append_char (new_val, "local")
Query or set the internal character variable that is appended to successful command-
line completion attempts.

The default value is " " (a single space).
When called from inside a function with the "local" option, the variable is changed

locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

completion_list = completion_matches ("hint")

Generate possible word completions for Octave given the character sequence hint.
This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. For example:

completion_matches ("sine")

=

sinetone

sinewave

Chapter 2: Getting Started 29

Programming Note: The current command number in Octave is not incremented
when this function is called. This is a feature, not a bug.

2.4.5 Commands for Manipulating the History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M—< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the

history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history

history optil

H = history ()

H = history (optl, ...)
If invoked with no arguments, history displays a list of commands that you have
executed.

Valid options are:

n
-n Display only the most recent n lines of history.

-c Clear the history list.

-q Don’t number the displayed lines of history. This is useful for cutting and

pasting commands using the X Window System.

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ~/.octave_hist).

30 GNU Octave (version 9.1.0)

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ~/.octave_hist).

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

If invoked with a single output argument, the history will be saved to that argument
as a cell string and will not be output to screen.

See also: [edit_history], page 30, [run_history], page 30.

edit_history
edit_history cmd_number
edit_history first last
Edit the history list using the editor named by the variable EDITOR.

The commands to be edited are first copied to a temporary file. When you exit
the editor, Octave executes the commands that remain in the file. It is often more
convenient to use edit_history to define functions rather than attempting to enter
them directly on the command line. The block of commands is executed as soon as
you exit the editor. To avoid executing any commands, simply delete all the lines
from the buffer before leaving the editor.

When invoked with no arguments, edit the previously executed command; With one
argument, edit the specified command cmd_number; With two arguments, edit the
list of commands between first and last. Command number specifiers may also be
negative where -1 refers to the most recently executed command. The following are
equivalent and edit the most recently executed command.

edit_history

edit_history -1

When using ranges, specifying a larger number for the first command than the last
command reverses the list of commands before they are placed in the buffer to be
edited.

See also: [run_history|, page 30, [history|, page 29.

run_history
run_history cmd_number
run_history first last
Run commands from the history list.
When invoked with no arguments, run the previously executed command;
With one argument, run the specified command cmd_number;
With two arguments, run the list of commands between first and last. Command

number specifiers may also be negative where -1 refers to the most recently executed
command. For example, the command

run_history
OR
run_history -1
executes the most recent command again. The command
run_history 13 169

Chapter 2: Getting Started 31

executes commands 13 through 169.

Specifying a larger number for the first command than the last command reverses the
list of commands before executing them. For example:

disp (1)
disp (2)
run_history -1 -2
=

2

1

See also: [edit_history|, page 30, [history], page 29.
Octave also allows you customize the details of when, where, and how history is saved.

val = history_save ()

old_val = history_save (new_val)

old_val = history_save (new_val, "local")
Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history_control], page 31, [history_file], page 31, [history_size|, page 32,

9

[history_timestamp_format_string], page 32.

val = history_control ()

old_val = history_control (new_val)
Query or set the internal variable that specifies how commands are saved to the
history list.

The default value is an empty character string, but may be overridden by the envi-
ronment variable 0CTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of history_save.

See also: |history_file], page 31, [history_size|, page 32, [history_timestamp_format_string] Jj
page 32, [history_save|, page 31.

val = history_file ()

old_val = history_file (new_val)
Query or set the internal variable that specifies the name of the file used to store
command history.

32

GNU Octave (version 9.1.0)

All future commands issued during the current Octave session will be written to this
new file (if the current setting of history_save allows for this).

The default value is $DATA/octave/history, where $DATA is the platform-specific
location for (roaming) user data files (e.g., $XDG_DATA_HOME or, if that is not set,
~/.local/share on Unix-like operating systems or %APPDATAY, on Windows). The
default value may be overridden by the environment variable OCTAVE_HISTFILE.

Programming Notes:

If you want to permanently change the location of Octave’s history file you need to
issue the history_file command in every new Octave session. This can be achieved
by using Octave’s .octaverc startup file.

If you also want to read the saved history commands of past Octave sessions from
this different history file, then you need to use the additional command history -r
after setting the new value of the history file. Example code in Octave’s startup file
to do this might look like this:

history_file ("“/new/.octave_hist");

if (exist (history_file ()))

history ("-r", history_file());
endif

See also: [|history]|, page 29, [history_control], page 31, [history_save|, page 31,
[history_size], page 32, [history_timestamp_format_string], page 32.

val = history_size ()
old_val = history_size (new_val)

Query or set the internal variable that specifies how many entries to store in the
history file.

The default value is 1000, but may be overridden by the environment variable
OCTAVE_HISTSIZE.

See also: [history_file], page 31, [history_timestamp_format_string|, page 32,

[history_save], page 31.

)

val = history_timestamp_format_string ()
old_val = history_timestamp_format_string (new_val)
old_val = history_timestamp_format_string (new_val, "local")

Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits.
The format string is passed to strftime. The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERQHOST>"
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.
See also: [strftime], page 1001, [history_file], page 31, [history_size|, page 32,
[history_save], page 31.

val = EDITOR ()
old_val = EDITOR (new_val)

Chapter 2: Getting Started 33

old_val = EDITOR (new_val, "local")
Query or set the internal variable that specifies the default text editor.

The default value is taken from the environment variable EDITOR when Octave starts.
If the environment variable is not initialized, EDITOR will be set to "emacs".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [edit], page 221, [edit_history], page 30.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ~/.inputrc.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

readline_read_init_file ()
readline_read_init_file (file)
Read the readline library initialization file file.

If file is omitted, read the default initialization file (normally ~/.inputrc).
See Section “Readline Init File” in GNU Readline Library, for details.

See also: [readline_re_read_init_file|, page 33.

readline_re_read_init_file ()
Re-read the last readline library initialization file that was read.

See Section “Readline Init File” in GNU Readline Library, for details.

See also: [readline_read_init_file], page 33.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

‘At’ The time.

‘\d’ The date.

“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

A\w’ The current working directory.

AW The basename of the current working directory.

“A\u’ The username of the current user.

34 GNU Octave (version 9.1.0)

‘\h’ The hostname, up to the first <.’.

‘\H’ The hostname.

A#' The command number of this command, counting from when Octave starts.

AL The history number of this command. This differs from ‘\# by the number of
commands in the history list when Octave starts.

¢’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AN A backslash.

val = PS1 ()

old_val = PS1 (new_val)

old_val

PS1 (new_val, "local")
Query or set the primary prompt string.

When executing interactively, Octave displays the primary prompt when it is ready
to read a command.
The default value of the primary prompt string is 'octave:\#> '. To change it, use
a command like

PS1 ('\u@\H> ')
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 73.

You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,

PS1 ('\[\033[01;31m\]\s:\#> \[\033[0m\]")
will give the default Octave prompt a red coloring.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS2], page 34, [PS4], page 35.

val = PS2 ()
old_val = PS2 (new_val)

old_val

PS2 (new_val, "local")
Query or set the secondary prompt string.

The secondary prompt is printed when Octave is expecting additional input to com-
plete a command. For example, if you are typing a for loop that spans several lines,
Octave will print the secondary prompt at the beginning of each line after the first.
The default value of the secondary prompt string is "> ".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS1], page 34, [PS4], page 35.

Chapter 2: Getting Started 35

val = PS4 ()

old_val = PS4 (new_val)

old_val = PS4 (new_val, "local")
Query or set the character string used to prefix output produced when echoing com-
mands is enabled.

The default value is "+ ". See Section 2.4.8 [Diary and Echo Commands], page 35,
for a description of echoing commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [echol, page 35, [PS1], page 34, [PS2], page 34.
2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

diary

diary on

diary off

diary filename

[status, diaryfile] = diary
Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.

With no input or output arguments, diary toggles the current diary state.

If output arguments are requested, diary ignores inputs and returns the current
status. The boolean status indicates whether recording is on or off, and diaryfile is
the name of the file where the session is stored.

See also: |history], page 29, [evalc|, page 185.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo
echo on
echo off
echo on all
echo off all
echo function on
echo function off
Control whether commands are displayed as they are executed.

36 GNU Octave (version 9.1.0)

Valid options are:

on Enable echoing of commands as they are executed in script files.

off Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

function on
Enable echoing of commands as they are executed in the named function.

function off
Disable echoing of commands as they are executed in the named function.

With no arguments, echo toggles the current echo state.

See also: [PS4], page 35.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,
octave:13> function z = £ (x, y) z = x ||| 2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function z = £ (x, y) z = x ||| y; endfunction

For most parse errors, Octave uses a caret (‘°’) to mark the point on the line where it
was unable to make sense of your input. In this case, Octave generated an error message
because the keyword for the logical or operator (||) was misspelled. It marked the error
at the third ‘|’ because the code leading up to this was correct but the final ‘|’ was not
understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,
you type

octave:13> £ ()
Octave will respond with

error: “x' undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

Chapter 2: Getting Started 37

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function £. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘#!” script mechanism. You can do this on GNU systems and on many Unix systems?.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
hello, containing the following lines:

#! octave-interpreter-name -qf

a sample Octave program

printf ("Hello, world!\n");
(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!” appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full filename of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

38 GNU Octave (version 9.1.0)

them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s “/.octaverc file. See Section 2.1 [Invoking
Octave from the Command Line], page 15.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"

which will produce an error message. Unfortunately, it is not possible for Octave to deter-
mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!” mechanism.

2.6.1 Passing Arguments to Executable Scripts

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave
script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf

printf ("%s", program_name ());

arg_list = argv O;

for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.6.2 Dual-Purpose Executable Scripts and Octave Functions

To write m-files that can act as executable programs when called from the shell or as normal
functions when called from within Octave, use default input arguments initialized with the
argv function.

If a function is called from the shell Octave will not pass any input parameters to the
function and therefore the default argument is used. But when a function is called from the
interpreter any arguments are passed to the function and these override the default.

Additionally, the file must end with the extension .m so that the interpreter will recognize
it as an Octave function. Finally, the output from argv is a cell array of strings. It may be
necessary to convert this to a numeric value with str2double or str2num before processing.

As a complete example, consider the following code located in the file mysin.m.

#! /bin/octave -qf
function retval = mysin (x = str2double (argv(){end}))
retval = sin (%)
endfunction
This can be called from the shell with

mysin.m 1.5

Chapter 2: Getting Started 39

or from Octave with

mysin (1.5)

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown

Count down for main rocket engines

disp (3);

disp (2);

disp (1);

disp ("Blast Off!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘#} or ‘%{ and ‘%} markers. For example,

function quick_countdown
Count down for main rocket engines
disp (3);
#{
disp (2);
disp (1);
#3}
disp ("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from '3' to "Blast Off" as the lines "disp (2);"
and "disp (1) ;" won’t be executed.

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help]|, page 21) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function £ below,

40 GNU Octave (version 9.1.0)

function xdot = f (x, t)

usage: f (x, t)

side functions for a set of nonlinear

#
#
This function defines the right-hand
#
differential equatioms.

r = 0.25;

endfunction
the command help f produces the output
usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.
Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments|, page 39) and not block comments for the initial help text.

41

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
so it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[External Code Interface|, page 1069, for more information about Octave’s dynamic linking
capabilities. Section 3.2 [User-defined Data Types|, page 46, describes what you must do
to define a new data type for Octave.

typestr = typeinfo (expr)
cstr = typeinfo ()
Return the type of the expression expr, as a string.

If expr is omitted, return a cell array of strings containing all the currently installed
data types.

See also: [class|, page 41, [isa], page 41.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

classname = class (obj)

cls = class (s, classname)

cls = class (s, classname, parentl, ...)
Return the class of the object obj, or create a class with fields from structure s and
name (string) classname.

Additional arguments name a list of parent classes from which the new class is derived.
See also: [typeinfo|, page 41, [isa, page 41.

tf = isa (obj, classname)
Return true if obj is an object from the class classname.

classname may also be one of the following class categories:
"float" Floating point value comprising classes "double" and "single".
"integer"

Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
"numeric"

Numeric value comprising either a floating point or integer value.

42 GNU Octave (version 9.1.0)

If classname is a cell array of string, a logical array of the same size is returned,
containing true for each class to which obj belongs to.

See also: [class|, page 41, [typeinfo], page 41.
y = cast (x, "type")

= cast (x, "like", var)
Convert x to data type type.

<
|

The input x may be a scalar, vector, or matrix of a class that is convertible to the
target class (see below).

If a variable var is specified after "1like", x is converted to the same data type and
sparsity attribute. If var is complex, x will be complex, too.

var may be and type may name any of the following built-in numeric classes:

"double"
"single"
"logical"
"char"

n int8 n
"int1l6"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"

The value x may be modified to fit within the range of the new type.

Examples:
cast (-5, "uint8")
= 0
cast (300, "int8")
= 127

Programming Note: This function relies on the object x having a conversion method
named type. User-defined classes may implement only a subset of the full list of types
shown above. In that case, it may be necessary to call cast twice in order to reach the
desired type. For example, the conversion to double is nearly always implemented,
but the conversion to uint8 might not be. In that case, the following code will work:

cast (cast (user_defined_val, "double"), "uint8")

See also: [typecast], page 42, [int8], page 59, [uint8], page 59, [int16], page 59, [uint16],
page 60, [int32], page 60, [uint32], page 60, [int64], page 60, [uint64], page 60, [double],
page 51, [single], page 58, [logical], page 65, [char], page 81, [class], page 41, [typeinfo],
page 41.

y = typecast (x, "class")
Return a new array y resulting from interpreting the data of x in memory as data of
the numeric class class.

Chapter 3: Data Types 43

Both the class of x and class must be one of the built-in numeric classes:

"logical"

"char"

n int8 n

"int16"

"int32"

"int64"

"uint8"

"uint16"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are only used with class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double will be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class.

If the input is a row vector, the return value is a row vector, otherwise it is a column
vector.

If the bit length of x is not divisible by that of class, an error occurs.
An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);
typecast (x, "uint8")
= [1, 0, 255, 255]

See also: [cast], page 42, [bitpack], page 43, [bitunpack], page 44, [swapbytes|, page 43.
y = swapbytes (x)

Swap the byte order on values, converting from little endian to big endian and vice
versa.

For example:

swapbytes (uint16 (1:4))
= 256 512 768 1024

See also: [typecast|, page 42, [cast], page 42.
y = bitpack (x, class)

Return a new array y resulting from interpreting the logical array x as raw bit patterns
for data of the numeric class class.

class must be one of the built-in numeric classes:

44 GNU Octave (version 9.1.0)

"double"

"single"

"double complex"

"single complex"

"Char“

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc.

The result is a row vector if x is a row vector, otherwise it is a column vector.
See also: [bitunpack], page 44, [typecast], page 42.

y = bitunpack (x)
Return a logical array y corresponding to the raw bit patterns of x.
x must belong to one of the built-in numeric classes:

"double"
"single"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"

The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack], page 43, [typecast|, page 42.
3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251 x 1073% t0 1.7977 x 103%® can be stored, and the relative precision is approximately
2.2204 x 107!%. The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions]|, page 157.

Chapter 3: Data Types 45

See Chapter 4 [Numeric Data Types|, page 51, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of

NaN.

val
val
val
val
val
val

tf

= NA

= NA (n)

= NA (n, m)

= NA (n, m, k, ...)

= NA (..., "like", var)
= NA (..., class)

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.

Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.

When called with no arguments, return a scalar with the value ‘NA’.

When called with a single argument, return a square matrix with the dimension
specified.

When called with more than one scalar argument the first two arguments are taken as
the number of rows and columns and any further arguments specify additional matrix
dimensions.

If a variable var is specified after "like", the output val will have the same data
type, complexity, and sparsity as var.

The optional argument class specifies the return type and may be either "double" or
"single".

See also: [isnal, page 45.

isna (x)

Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not.

For example:

isna ([13, Inf, NA, NaN])
j [O, O, 1’ O]

See also: [isnan], page 558, [isinf], page 558, [isfinite], page 559.

3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings|, page 73, for more information.

46 GNU Octave (version 9.1.0)

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Structures], page 115, for more information.

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.3 [Cell Arrays|, page 129, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ov.h, ops.h, and related files from Octave’s src
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return —1 for structure arguments.

n = ndims (4)
Return the number of dimensions of A.

For any array, the result will always be greater than or equal to 2. Trailing singleton
dimensions are not counted, i.e., trailing dimensions d greater than 2 for which size

(4, d) = 1.
ndims (ones (4, 1, 2, 1))
- 3

See also: [size|, page 47.

nc = columns (4)
Return the number of columns of A.

This is equivalent to size (4, 2).
See also: [rows|, page 46, [size], page 47, [length], page 47, [numel], page 47, [isscalar],
page 69, [isvector], page 69, [ismatrix|, page 68.
nr = rows (4)
Return the number of rows of A.
This is equivalent to size (4, 1).

See also: [columns], page 46, [size], page 47, [length], page 47, [numel], page 47,
[isscalar], page 69, [isvector], page 69, [ismatrix|, page 68.

Chapter 3: Data Types 47

n = numel (4)
numel (4, idx1, idx2, ...)
Return the number of elements in the object A.

fn]
I

Optionally, if indices idx1, idx2, . .. are supplied, return the number of elements that
would result from the indexing

A(idx1, idx2, ...)
Note that the indices do not have to be scalar numbers. For example,
a=1;
b = ones (2, 3);
numel (a, b)

will return 6, as this is the number of ways to index with b. Or the index could be

the string ":" which represents the colon operator. For example,
A = ones (5, 3);
numel (4, 2, ":")

will return 3 as the second row has three column entries.
This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.

See also: [size], page 47, [length|, page 47, [ndims|, page 46.

n = length (4)
Return the length of the object A.
The length is 0 for empty objects, 1 for scalars, and the number of elements for
vectors. For matrix or N-dimensional objects, the length is the number of elements
along the largest dimension (equivalent to max (size (4))).

See also: [numel], page 47, [size|, page 47.
sz = size (4)
dim_sz = size (4, dim)
dim_sz = size (4, di, d2, ...)

[rows, cols, ..., dim_N_sz] = size (...)
Return a row vector with the size (number of elements) of each dimension for the
object A.

When given a second argument, dim, return the size of the corresponding dimension.
If dim is a vector, return each of the corresponding dimensions. Multiple dimensions
may also be specified as separate arguments.

With a single output argument, size returns a row vector. When called with multiple
output arguments, size returns the size of dimension N in the Nth argument. The
number of rows, dimension 1, is returned in the first argument, the number of columns,
dimension 2, is returned in the second argument, etc. If there are more dimensions
in A than there are output arguments, size returns the total number of elements in
the remaining dimensions in the final output argument. If the requested dimension
dim is greater than the number of dimensions in A, size returns 1 (not 0).

Example 1: single row vector output

size ([1, 2; 3, 4; 5, 6])
= [3, 2]

48

tf

tf

GNU Octave (version 9.1.0)

Example 2: number of elements in 2nd dimension (columns)
size ([1, 2; 3, 4; 5, 6], 2)

= 2
Example 3: number of output arguments == number of dimensions
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2
Example 4: number of output arguments < number of dimensions
[nr, remainder] = size (ones (2, 3, 4, 5))
= nr = 2

= remainder = 60
Example 5: number of elements in dimension > number of actual dimensions
sz4 = size (ones (2, 3), 4)
= sz4 =1
See also: [numel|, page 47, [ndims|, page 46, [length], page 47, [rows], page 46,
[columns], page 46, [size_equal], page 49, [common_size], page 559.
isempty (4)
Return true if A is an empty object (any one of its dimensions is zero).

See also: [isnull], page 48, [isa], page 41.

isnull (x)

Return true if x is a special null array, string, or single quoted string.

Indexed assignment with such a null value on the right-hand side should delete array
elements. This function is used in place of isempty when overloading the indexed
assignment method (subsasgn) for user-defined classes. isnull is used to distinguish
between these two cases:

A(I) =[]

and

Xx=1[1; A(D =X

In the first assignment, the right-hand side is [] which is a special null value. As

long as the index I is not empty, this code should delete elements from A rather than
perform assignment.

In the second assignment, the right-hand side is empty (because X is [1), but it is
not null. This code should assign the empty value to elements in A.

An example from Octave’s built-in char class demonstrates the interpreter behavior
when isnull is used correctly.

str = "Hello World";

nm = "Wally";

str(7:end) = nm # indexed assignment
= str = Hello Wally

str(7:end) = "" # indexed deletion

= str = Hello
See also: [isempty], page 48, [isindex], page 162.

Chapter 3: Data Types 49

sz = sizeof (val)
Return the size of val in bytes.

See also: [whos|, page 149.
TF = size_equal (4, B)

TF = size_equal (4, B, ...)
Return true if the dimensions of all arguments agree.

Trailing singleton dimensions are ignored. When called with a single argument, or no
argument, size_equal returns true.

See also: [size], page 47, [numel], page 47, [ndims|, page 46, [common_size|, page 559.
B = squeeze (4)
Remove singleton dimensions from A and return the result.

Note that for compatibility with MATLAB, all objects have a minimum of two dimen-
sions and row vectors are left unchanged.

See also: [reshape|, page 564.

o1

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number. Note that by
default numeric constants are represented within Octave by IEEE 754 double precision
(binary64) floating-point format (complex constants are stored as pairs of binary64 values).
It is, however, possible to represent real integers as described in Section 4.4 [Integer Data
Types|, page 59.

If the numeric constant is a real integer, it can be defined in decimal, hexadecimal,
or binary notation. Hexadecimal notation starts with ‘Ox’ or ‘0X’, binary notation starts
with ‘Ob’ or ‘OB’, otherwise decimal notation is assumed. As a consequence, ‘Ob’ is not a
hexadecimal number, in fact, it is not a valid number at all.

For better readability, digits may be partitioned by the underscore separator ‘_’, which is
ignored by the Octave interpreter. Here are some examples of real-valued integer constants,
which all represent the same value and are internally stored as binary64:

42 # decimal notation
0x2A # hexadecimal notation
0b101010 # binary notation
0b10_1010 # underscore notation

round (42.1) # also binary64

In decimal notation, the numeric constant may be denoted as decimal fraction or even
in scientific (exponential) notation. Note that this is not possible for hexadecimal or binary
notation. Again, in the following example all numeric constants represent the same value:

.105
1.05e-1
.00105e+2

Unlike most programming languages, complex numeric constants are denoted as the
sum of real and imaginary parts. The imaginary part is denoted by a real-valued numeric
constant followed immediately by a complex value indicator (‘i’, ‘j’, ‘I’, or ‘J’ which rep-
resents /—1). No spaces are allowed between the numeric constant and the complex value
indicator. Some examples of complex numeric constants that all represent the same value:

3 + 423

3 + 42j

3 + 421

3 + 427

3.0 + 42.01

3.0 + 0x2Ai

3.0 + 0b10_10101
0.3el + 420e-1i

y = double (x)
Convert x to double precision type.

See also: [single|, page 58.

52 GNU Octave (version 9.1.0)

z = complex (x)
complex (re, im)
Return a complex value from real arguments.

N
I

With 1 real argument x, return the complex result x + 0i.

With 2 real arguments, return the complex result re + imi. complex can often be
more convenient than expressions such as a + bxi. For example:
complex ([1, 2], [3, 4])
= [1+3i 2+4i]

See also: [real], page 596, [imag], page 596, [iscomplex|, page 68, [abs], page 595, [arg],
page 595.

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
12
“= 13 4

results in the matrix
Elements of a matrix may be arbitrary expressions, provided that the dimensions all
make sense when combining the various pieces. For example, given the above matrix, the
expression
[a, al

produces the matrix

ans =

1 2 1 2

3 4 3 4

but the expression
[a, 1]

produces the error
error: number of rows must match (1 != 2) near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a=1[12
34]
will work. However, some possible sources of confusion remain. For example, in the expres-
sion
[1-11]
the ‘=’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]

Chapter 4: Numeric Data Types 53

the ‘-’ is treated as a unary operator and the result is the vector [1, -1 1. Similarly, the
expression
[sin (pi)]
will be parsed as
[sin, (pi)]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi)) 1
Whitespace surrounding the single quote character (‘'’, used as a transpose operator

and for delimiting character strings) can also cause confusion. Given a = 1, the expression

[1a']
results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression

[1a']
produces the error message

parse error:
syntax error

>> [1 a ']

~

because not doing so would cause trouble when parsing the valid expression
[a '"foo']
For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

max_numel = sizemax ()
Return the largest value allowed for the size of an array.

If Octave is compiled with 64-bit indexing, the result is of class int64, otherwise it is
of class int32. The maximum array size is slightly smaller than the maximum value
allowable for the relevant class as reported by intmax.

See also: [intmax], page 60.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

54 GNU Octave (version 9.1.0)

val = output_precision ()

old_val = output_precision (new_val)

old_val = output_precision (new_val, "local")
Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

Note that regardless of the value set for output_precision, the number of digits
of precision displayed is limited to 16 for double precision values and 7 for single
precision values. Also, calls to the format function that change numeric display can
also change the set value for output_precision.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 284, [fixed_point_format], page 55.

It is possible to achieve a wide range of output styles by using different values of output_
precision. Reasonable combinations can be set using the format function. See Section 14.1
[Basic Input and Output], page 283.

val = split_long_rows ()

old_val = split_long_rows (new_val)

old_val = split_long_rows (new_val, "local")
Query or set the internal variable that controls whether rows of a matrix may be split
when displayed to a terminal window.

If the rows are split, Octave will display the matrix in a series of smaller pieces, each
of which can fit within the limits of your terminal width and each set of rows is labeled
so that you can easily see which columns are currently being displayed. For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format]|, page 284.
Octave automatically switches to scientific notation when values become very large or

very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,

Chapter 4: Numeric Data Types 55

you can use the function fixed_point_format. But doing so is not recommended, because
it can produce output that can easily be misinterpreted.

val = fixed_point_format ()

old_val = fixed_point_format (new_val)

old_val = fixed_point_format (new_val, "local")
Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values.

The scaled format prints a scaling factor on the first line of output chosen such that
the largest matrix element can be written with a single leading digit. For example:

fixed_point_format (true)
logspace (1, 7, 5)'
ans =

1.0e+07 *

0.00000
0.00003
0.00100
0.03162
1.00000

Notice that the first value appears to be 0 when it is actually 1. Because of the
possibility for confusion you should be careful about enabling fixed_point_format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 284, [output_precision|, page 53.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Real-
ization of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume
38, Number 5, May 1993. Briefly, given a scalar s, an m x n matrix M,,,, and an m X n
empty matrix [|,,«, (with either one or both dimensions equal to zero), the following are
true:

$ [Jmxn = [Imxn - 5 = [Jmxn
Umoxn 4 Hmxn = [

[Joxm - me” = [Joxn
m><n ano = meo

meO []Oxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[]’. The built-in variable print_empty_dimensions controls this behavior.

56 GNU Octave (version 9.1.0)

val = print_empty_dimensions ()

old_val = print_empty_dimensions (new_val)

old_val = print_empty_dimensions (new_val, "local")
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]1’.

For example, the expression
zeros (3, 0)

will print
ans = [](3x0)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 284.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions]|, page 177.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1:5
defines the set of values [1, 2, 3, 4, 5], and the range
1:3:5

defines the set of values [1, 4 1.

Although a range constant specifies a row vector, Octave does not normally convert range
constants to vectors unless it is necessary to do so. This allows you to write a constant like
1 : 10000 without using 80,000 bytes of storage on a typical workstation.

A common example of when it does become necessary to convert ranges into vectors
occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas

x=0:0.1:1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression
y=00:0.1:1];

defines y to be of type matrix and occupies 88 bytes of memory.

This space saving optimization may be disabled using the function optimize_range.

Chapter 4: Numeric Data Types 57

val = optimize_range ()
old_val = optimize_range (new_val)
old_val = optimize_range (new_val, "local")
Query or set whether a special space-efficient format is used for storing ranges.

The default value is true. If this option is set to false, Octave will store ranges as full
matrices.

When called from inside a function with the "local" option, the setting is changed
locally for the function and any subroutines it calls. The original setting is restored
when exiting the function.

See also: [optimize_diagonal_matrix|, page 699, [optimize_permutation_matrix],
page 699.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values. This can be useful in some contexts. For example:

x is some predefined range or vector or matrix or array
x(1:2:end) += 1; # increment all odd-numbered elements
x(2:2:end) -= 1; # decrement all even-numbered elements

The above code works correctly whether x has an odd number of elements or not, so no
need to treat the two cases differently.

Octave uses floating point arithmetic to compute the values in the range. As a result,
defining ranges with floating-point values can result in pitfalls like these:

a=-2
b=(0.3-0.2-0.1)
x=a:b
Due to floating point rounding, b may or may not equal zero exactly, and if it does not,
it may be above zero or below zero, hence the final range x may or may not include zero as
its final value. Similarly:

x =1.80: 0.05 : 1.90
y =1.85 : 0.05 : 1.90

is not as predictable as it looks. As of Octave 8.3, the results obtained are that x has three
elements (1.80, 1.85, and 1.90), and y has only one element (1.85 but not 1.90). Thus, when
using floating points in ranges, changing the start of the range can easily affect the end of
the range even though the ending value was not touched in the above example.

To avoid such pitfalls with floating-points in ranges, you should use one of the following
patterns. This change to the previous code:

x = (0:2) * 0.05 + 1.80
y = (0:1) * 0.05 + 1.85

makes it much safer and much more repeatable across platforms, compilers, and compiler
settings. If you know the number of elements, you can also use the linspace function (see
Section 16.3 [Special Utility Matrices|, page 571), which will include the endpoints of a
range. You can also make judicious use of round, floor, ceil, fix, etc. to set the limits
and the increment without getting interference from floating-point rounding. For example,
the earlier example can be made safer and much more repeatable with one of the following:

58 GNU Octave (version 9.1.0)

a = -2

b = round ((0.3 - 0.2 - 0.1) * 1el2) / lel2 # rounds to 12 digits
¢ = floor (0.3 - 0.2 - 0.1) # floors as integer
d = floor ((0.3 - 0.2 - 0.1) * 1lel2) / 1lel2 # floors at 12 digits
x=a:b

y=a:c

z=a:d

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2x(1:1e7) - 1;

will produce the same result as 1:2:2e7-1, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as 1:0:1 is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ones (1, 10) produces a range, while ones (10, 1) does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

y = single (x)
Convert x to single precision type.

See also: [double], page 51.

for example:

sngl = single (rand (2, 2))
= sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
= single

Many functions can also return single precision values directly. For example

Chapter 4: Numeric Data Types 59

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.
In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.
float = rand (2, 2)
= float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.
tf = isinteger (x)

Return true if x is an integer object (int8, uint8, int16, etc.).

Note that isinteger (14) is false because numeric constants in Octave are double

precision floating point values.

See also: [isfloat], page 68, [ischar]|, page 75, [islogical|, page 68, [isstring], page 75,

[isnumeric], page 68, [isa], page 41.

y = int8 (x)
Convert x to 8-bit integer type.
See also: [uint8], page 59, [int16], page 59, [uint16], page 60, [int32], page 60, [uint32],
page 60, [int64], page 60, [uint64], page 60.

y = uint8 (x)
Convert x to unsigned 8-bit integer type.
See also: [int8], page 59, [int16], page 59, [uint16], page 60, [int32], page 60, [uint32],
page 60, [int64], page 60, [uint64], page 60.

y = int16 (x)

Convert x to 16-bit integer type.

See also: [int8], page 59, [uint8], page 59, [uint16], page 60, [int32], page 60, [uint32],
page 60, [int64], page 60, [uint64], page 60.

60

GNU Octave (version 9.1.0)

uint16 (x)
Convert x to unsigned 16-bit integer type.

See also: [int8], page 59, [uint8|, page 59, [int16], page 59, [int32], page 60, [uint32],
page 60, [int64], page 60, [uint64], page 60.

int32 (x)

Convert x to 32-bit integer type.

See also: [int8], page 59, [uint8], page 59, [int16], page 59, [uint16], page 60, [uint32],
page 60, [int64], page 60, [uint64], page 60.

uint32 (x)

Convert x to unsigned 32-bit integer type.

See also: [int8], page 59, [uint8], page 59, [int16], page 59, [uint16], page 60, [int32],
page 60, [int64], page 60, [uint64], page 60.

int64 (x)

Convert x to 64-bit integer type.

See also: [int8], page 59, [uint8], page 59, [int16], page 59, [uint16], page 60, [int32],
page 60, [uint32], page 60, [uint64], page 60.

uint64 (x)

Convert x to unsigned 64-bit integer type.

See also: [int8], page 59, [uint8], page 59, [int16], page 59, [uint16], page 60, [int32],
page 60, [uint32], page 60, [int64], page 60.

Imax = intmax ()

Imax
Imax

intmax ("type")
intmax (var)
Return the largest integer that can be represented by a specific integer type.

The input is either a string "type" specifying an integer type, or it is an existing
integer variable var.

Possible values for type are

"int8" signed 8-bit integer.
"int16" signed 16-bit integer.
"int32" signed 32-bit integer.
"int64" signed 64-bit integer.
"uint8" unsigned 8-bit integer.
"uint16" unsigned 16-bit integer.
"uint32" unsigned 32-bit integer.

"uint64" unsigned 64-bit integer.

Chapter 4: Numeric Data Types 61

The default for type is "int32".
Example Code - query an existing variable

x = int8 (1);
intmax (x)
= 127

See also: [intmin|, page 61, [flintmax]|, page 61.

Imin = intmin ()
Imin = intmin ("type")
Imin = intmin (var)
Return the smallest integer that can be represented by a specific integer type.

The input is either a string "type" specifying an integer type, or it is an existing
integer variable var.

Possible values for type are

"int8" signed 8-bit integer.
"int16" signed 16-bit integer.
"int32" signed 32-bit integer.
"int64" signed 64-bit integer.
"uint8" unsigned 8-bit integer.
"uint16" unsigned 16-bit integer.
"uint32" unsigned 32-bit integer.
"uint64" unsigned 64-bit integer.

The default for type is "int32".
Example Code - query an existing variable

x = int8 (1);
intmin (x)
= -128

See also: [intmax], page 60, [flintmax]|, page 61.

Imax = flintmax ()
Imax = flintmax ("double")
Imax = flintmax ("single")

Imax = flintmax (var)
Return the largest integer that can be represented consecutively in a floating point
value.

The input is either a string specifying a floating point type, or it is an existing floating
point variable var.

The default type is "double", but "single" is a valid option. On IEEE 754 compat-
ible systems, flintmax is 25 for "double" and 22! for "single".

62 GNU Octave (version 9.1.0)

Example Code - query an existing variable
x = single (1);
flintmax (x)
= 16777216

See also: [intmax], page 60, [realmax], page 630, [realmin|, page 630.
4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 — 20
when using unsigned integers. Octave makes sure that the result of integer computations is
the integer that is closest to the true result. So, the result of 10 — 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32 (5) ./ int32 (8) is 1.

C = idivide (4, B, op)
Integer division with different rounding rules.
The standard behavior of integer division such as 4 ./ B is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the
fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate A ./ B with the fractional part rounded towards zero.
"round" Calculate A ./ B with the fractional part rounded towards the nearest
integer.
"floor" Calculate A ./ B with the fractional part rounded towards negative infin-
ity.
"ceil" Calculate A ./ B with the fractional part rounded towards positive infin-
ity.
If op is not given it defaults to "fix". An example demonstrating these rounding
rules is
idivide (int8 ([-3, 3]), int8 (4), "fix")
= 0 0
idivide (int8 ([-3, 3]), int8 (4), "round")
= -1 1
idivide (int8 ([-3, 3]), int8 (4), "floor")
= -1 0

idivide (int8 ([-3, 3]), int8 (4), "ceil")
= 0 1

Chapter 4: Numeric Data Types 63

See also: [ceil], page 603, [floor], page 603, [fix]|, page 603, [round], page 604, [ldivide],
page 170, [rdivide], page 171.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

B = bitset (4, n)
B = bitset (A, n, val)
Set or reset bit(s) at position n of the unsigned integers in A.

The least significant bit is n = 1. val = 0 resets bits and val = 1 sets bits. If no val
is specified it defaults to 1 (set bit). All inputs must be the same size or scalars.

Example 1: Set multiple bits

x = bitset (1, 3:5)
= X =

dec2bin (x)
=
00101
01001
10001

Example 2: Reset and set bits

x = bitset ([15 14], 1, [0 11)
= x =

14 15

See also: [bitand], page 64, [bitor|, page 64, [bitxor|, page 64, [bitget], page 63,
[bitcmp], page 64, [bitshift], page 65, [intmax], page 60, [flintmax], page 61.

b = bitget (4, n)
Return the bit value at position(s) n of the unsigned integers in A.
The least significant bit is n = 1.
bitget (100, 8:-1:1)
=01 1 0 0 1 0 O

See also: [|bitand], page 64, [bitor], page 64, [bitxor|, page 64, [bitset], page 63,
[bitcmp], page 64, [bitshift], page 65, [intmax], page 60, [flintmax], page 61.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to

64 GNU Octave (version 9.1.0)

each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as

bitget (100 * ones (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the
floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit manip-
ulation, particularly when forming masks, Octave supplies two utility functions: flintmax
for floating point integers, and intmax for integer objects (uint8, int64, etc.).

Octave also includes the basic bitwise ’and’, ’or’, and ’exclusive or’ operators.

z = bitand (x, y)
Return the bitwise AND of non-negative integers.
x, y must be in the range [0,intmax]
See also: [bitor|, page 64, [bitxor|, page 64, [bitset|, page 63, [bitget], page 63,
[bitemp], page 64, [bitshift], page 65, [intmax], page 60, [flintmax], page 61.
z = bitor (x, y)
Return the bitwise OR of non-negative integers x and y.
See also: [bitor|, page 64, [bitxor|, page 64, [bitset|, page 63, [bitget], page 63,
[bitcmp], page 64, [bitshift], page 65, [intmax], page 60, [flintmax], page 61.
z = bitxor (x, y)

Return the bitwise XOR of non-negative integers x and y.

See also: [bitand], page 64, [bitor], page 64, [bitset], page 63, [bitget], page 63,
[bitcmp], page 64, [bitshift], page 65, [intmax], page 60, [flintmax], page 61.

The bitwise 'not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise 'not” operator is bitcmp.

C = bitcmp (4, k)
Return the k-bit complement of integers in A.
If k is omitted k = log2 (flintmax) + 1 is assumed.
bitcmp (7,4)
= 8
dec2bin (11)
= 1011
dec2bin (bitcmp (11, 6))
= 110100

See also: [bitand], page 64, [bitor], page 64, [bitxor], page 64, [bitset], page 63, [bitget],
page 63, [bitcmp]|, page 64, [bitshift], page 65, [flintmax], page 61.

Chapter 4: Numeric Data Types 65

Octave also includes the ability to left-shift and right-shift values bitwise.

B = bitshift (4, k)
bitshift (4, k, n)
Return a k bit shift of n-digit unsigned integers in A.

s}
I

A positive k leads to a left shift; A negative value to a right shift.
If n is omitted it defaults to 64. n must be in the range [1,64].
bitshift (eye (3), 1)

OO!\)u
O N O
N O O

bitshift (10, [-2, -1, 0, 1, 2])

= 2 5 10 20 40
See also: [bitand], page 64, [bitor], page 64, [bitxor|, page 64, [bitset], page 63, [bitget],
page 63, [bitcmp], page 64, [intmax]|, page 60, [flintmax], page 61.

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:

bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1,1, 1, 1, 1, 1, 1].

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. See [Logical Indexing], page 159.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.

TF = logical (x)
Convert the numeric object x to logical type.

66

val
val
val
val

val =

val
val
val

GNU Octave (version 9.1.0)

Any nonzero values will be converted to true (1) while zero values will be converted
to false (0). The non-numeric value NaN cannot be converted and will produce an
€rror.

Compatibility Note: Octave accepts complex values as input, whereas MATLAB issues
an error.

See also: [double], page 51, [single], page 58, [char|, page 81.

= true (x)
true (n, m)
true (n, m, k, ...)

true (..., "like", var)

Return a matrix or N-dimensional array whose elements are all logical 1.

If invoked with a single scalar integer argument, return a square matrix of the specified
size.

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

If a logical variable var is specified after "1ike", the output val will have the same
sparsity as var.

See also: [false], page 66.

false (x)
false (n, m)
false (n, m, k, ...)

false (..., "like", var)

Return a matrix or N-dimensional array whose elements are all logical 0.

If invoked with a single scalar integer argument, return a square matrix of the specified
size.

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

If a logical variable var is specified after "1ike", the output val will have the same
sparsity as var.

See also: [true|, page 66.

4.7 Automatic Conversion of Data Types

Many operators and functions can work with mixed data types. For example,

uint8 (1) + 1

= 2

single (1) + 1

= 2

min (single (1), 0)

= 0

Chapter 4: Numeric Data Types 67

where the results are respectively of types uint8, single, and single respectively. This is done
for MATLAB compatibility. Valid mixed operations are defined as follows:

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

When functions expect a double but are passed other types, automatic conversion is
function-dependent:

a = det (int8 ([1 2; 3 4]1))

= a= -2
class (a)
= double

a = eig (int8 ([1 2; 3 41))

= error: eig: wrong type argument 'int8 matrix'
When two operands are both integers but of different widths, then some cases convert
them to the wider bitwidth, and other cases throw an error:

a = min (int8 (100), int16é (200))
= 100

class (a)
= int16

int8 (100) + int16 (200)
= error: binary operator '+' not implemented
for 'int8 scalar' by 'intl6 scalar' operations
For two integer operands, they typically need to both be signed or both be unsigned.
Mixing signed and unsigned usually causes an error, even if they are of the same bitwidth.
min (int16 (100), uinti16 (200))
= error: min: cannot compute min (int16 scalar, uint16 scalar)
In the case of mixed type indexed assignments, the type is not changed. For example,
x = ones (2, 2);
x(1, 1) = single (2)
= x =2 1
1 1

where x remains of the double precision type.

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation

68

GNU Octave (version 9.1.0)

of abs returns the absolute value of the input if it is a real number, and the length of the

input

if it is a complex number.

function a = abs (%)

if (isreal (x))

a = sign (x) .* x;
elseif (iscomplex (x))

a = sqrt (real(x)."2 + imag(x)."2);
endif

endfunction

The following functions are available for determining the type of a variable.

tf =

tf =

tf =

isnumeric (x)

Return true if x is a numeric object, i.e., an integer, real, or complex array.

Logical and character arrays are not considered to be numeric.

See also: [isinteger|, page 59, [isfloat], page 68, [isreal], page 68, [iscomplex|, page 68,
[ischar|, page 75, [islogical], page 68, [isstring], page 75, [iscell], page 130, [isstruct],
page 123, [isal], page 41.

islogical (x)

= isbool (x)

Return true if x is a logical object.

Programming Note: isbool is an alias for islogical and can be used interchange-
ably.

See also: [ischar|, page 75, [isfloat], page 68, [isinteger|, page 59, [isstring], page 75,
[isnumeric], page 68, [isa], page 41.

isfloat (x)

Return true if x is a floating-point numeric object.

Objects of class double or single are floating-point objects.

See also: [isinteger], page 59, [ischar], page 75, [islogical|, page 68, [isnumeric]|, page 68,
[isstring], page 75, [isa], page 41.

isreal (x)

Return true if x is a non-complex matrix or scalar.

For compatibility with MATLAB, this includes logical and character matrices.

See also: [iscomplex], page 68, [isnumeric|, page 68, [isa], page 41.

iscomplex (x)

Return true if x is a complex-valued numeric object.

See also: [isreal], page 68, [isnumeric|, page 68, [ischar|, page 75, [isfloat], page 68,
[islogical], page 68, [isstring], page 75, [isa, page 41.

ismatrix (x)

Return true if x is a 2-D array.

A matrix is an array of any type where ndims (x) == 2 and for which size (x)
returns [M, N] with non-negative M and N.

Chapter 4: Numeric Data Types 69

tf

tf

tf

tf

tf

tf
tf
tf
tf

See also: [isscalar], page 69, [isvector], page 69, [iscell], page 130, [isstruct], page 123,
[issparse], page 714, [isa], page 41.

isvector (x)
Return true if x is a vector.

A vector is a 2-D array of any type where one of the dimensions is equal to 1 (either
1xN or Nx1). As a consequence of this definition, a 1x1 object (a scalar) is also a
vector.

See also: [isscalar], page 69, [ismatrix]|, page 68, [iscolumn], page 69, [isrow|, page 69,
[size], page 47.

isrow (x)

Return true if x is a row vector.

A row vector is a 2-D array of any type for which size (x) returns [1, N] with

non-negative N.

See also: [iscolumn], page 69, [isscalar], page 69, [isvector], page 69, [ismatrix],
page 68, [size], page 47.

iscolumn (x)
Return true if x is a column vector.

A column vector is a 2-D array of any type for which size (x) returns [N, 1] with
non-negative N.

See also: [isrow]|, page 69, [isscalar|, page 69, [isvector]|, page 69, [ismatrix]|, page 68,
[size], page 47.

isscalar (x)

Return true if x is a scalar.

A scalar is a single-element object of any type for which size (x) returns [1, 1].
See also: [isvector], page 69, [ismatrix], page 68, [size|, page 47.

issquare (x)

Return true if x is a 2-D square array.

A square array is a 2-D array of any type for which size (x) returns [N, N] where
N is a non-negative integer.

See also: [isscalar|, page 69, [isvector], page 69, [ismatrix|, page 68, [size|, page 47.

issymmetric (4)

issymmetric (4, tol)
issymmetric (4, "skew")
issymmetric (4, "skew", tol)

Return true if A is a symmetric or skew-symmetric numeric matrix within the toler-
ance specified by tol.

The default tolerance is zero (uses faster code).

The type of symmetry to check may be specified with the additional input "nonskew"
(default) for regular symmetry or "skew" for skew-symmetry.

70

tf
tf

tf =

tf

tf
tf

tf

GNU Octave (version 9.1.0)

Background: A matrix is symmetric if the transpose of the matrix is equal to the
original matrix: A== A.'. If a tolerance is given then symmetry is determined by
norm (A - A.', Inf) / norm (4, Inf) < tol.

A matrix is skew-symmetric if the transpose of the matrix is equal to the negative
of the original matrix: A ==-4.'. If a tolerance is given then skew-symmetry is
determined by norm (4 + A.', Inf) / norm (4, Inf) < tol.

See also: [ishermitian], page 70, [isdefinite], page 70.

ishermitian (4)

ishermitian (4, tol)

ishermitian (4, "skew")

ishermitian (4, "skew", tol)

Return true if A is a Hermitian or skew-Hermitian numeric matrix within the tolerance
specified by tol.

The default tolerance is zero (uses faster code).

The type of symmetry to check may be specified with the additional input "nonskew"
(default) for regular Hermitian or "skew" for skew-Hermitian.

Background: A matrix is Hermitian if the complex conjugate transpose of the matrix
is equal to the original matrix: 4 == A'. If a tolerance is given then the calculation is
norm (A - A', Inf) / norm (4, Inf) < tol.

A matrix is skew-Hermitian if the complex conjugate transpose of the matrix is equal
to the negative of the original matrix: A== -A'. If a tolerance is given then the
calculation is norm (4 + A', Inf) / norm (4, Inf) < tol.

See also: [issymmetric], page 69, [isdefinite], page 70.

isdefinite (4)

isdefinite (4, tol)

Return true if A is symmetric positive definite numeric matrix within the tolerance
specified by tol.

If tol is omitted, use a tolerance of 100 * eps * norm (4, "fro").

Background: A positive definite matrix has eigenvalues which are all greater than
zero. A positive semi-definite matrix has eigenvalues which are all greater than or
equal to zero. The matrix A is very likely to be positive semi-definite if the following
two conditions hold for a suitably small tolerance tol.

isdefinite (4) = 0

isdefinite (4 + 5*tol, tol) = 1

See also: [issymmetric], page 69, [ishermitian], page 70.
isbanded (4, lower, upper)

Return true if A is a numeric matrix with entries confined between lower diagonals
below the main diagonal and upper diagonals above the main diagonal.

lower and upper must be non-negative integers.

See also: [isdiag], page 71, [istril], page 71, [istriu], page 71, [bandwidth], page 632.

Chapter 4: Numeric Data Types 71

tf = isdiag (4)
Return true if A is a diagonal numeric matrix which is defined as a 2-D array where
all elements above and below the main diagonal are zero.

See also: [isbanded|, page 70, [istril], page 71, [istriu], page 71, [diag], page 571,
[bandwidth], page 632.

tf = istril (4)
Return true if A is a lower triangular numeric matrix.

A lower triangular matrix has nonzero entries only on the main diagonal and below.

See also: [istriu], page 71, [isbanded], page 70, [isdiag], page 71, [tril], page 569,
[bandwidth], page 632.

tf = istriu (4)
Return true if A is an upper triangular numeric matrix.

An upper triangular matrix has nonzero entries only on the main diagonal and above.

See also: [isdiag|, page 71, [isbanded], page 70, [istril], page 71, [triu], page 569,
[bandwidth], page 632.

tf = isprime (x)
Return a logical array which is true where the elements of x are prime numbers and
false where they are not.

A prime number is conventionally defined as a positive integer greater than 1 (e.g.,
2, 3, ...) which is divisible only by itself and 1. Octave extends this definition to
include both negative integers and complex values. A negative integer is prime if its
positive counterpart is prime. This is equivalent to isprime (abs (x)).

If class (x) is complex, then primality is tested in the domain of Gaussian integers
(https://en.wikipedia.org/wiki/Gaussian_integer). Some non-complex inte-
gers are prime in the ordinary sense, but not in the domain of Gaussian integers. For
example, 5 = (14 27) % (1 — 2¢) shows that 5 is not prime because it has a factor other
than itself and 1. Exercise caution when testing complex and real values together in
the same matrix.

Examples:
isprime (1:6)
= 01 1 0 1 O

isprime ([i, 2, 3, 5])
= 0 0 1 O

Programming Note: isprime is suitable for all x in the range abs(x) < 2. Cast
inputs larger than flintmax to uint64.

For larger inputs, use ‘sym’ if you have the Symbolic package installed and loaded:

isprime (sym ('58745389709258902525390450') + (0:4))
= 01 00 0

Compatibility Note: MATLAB does not extend the definition of prime numbers and
will produce an error if given negative or complex inputs.

See also: [primes]|, page 611, [factor], page 609, [gcd], page 609, [lem], page 610.

https://en.wikipedia.org/wiki/Gaussian_integer

72

GNU Octave (version 9.1.0)

tf = isuniform (v)
[tf, delta] = isuniform (v)

Return true if the real vector v is uniformly spaced and false otherwise.

A vector is uniform if the mean difference (delta) between all elements is the same to
within a tolerance of 4 * eps (max (abs (v))).

The optional output delta is the uniform difference between elements. If the vector is
not uniform then delta is NaN. delta is of the same class as v for floating point inputs
and of class double for integer, logical, and character inputs.

Programming Notes: The output is always false for the special cases of an empty
input or a scalar input. If any element is NaN then the output is false. If delta is
smaller than the calculated relative tolerance then an absolute tolerance of eps is
used.

See also: [linspace], page 576, [colon], page 956.

If instead of knowing properties of variables, you wish to know which variables are

defined and to gather other information about the workspace itself, see Section 7.3 [Status
of Variables|, page 148.

73

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions
"parrot"
'parrot’
represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.
Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops], page 168) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.
Strings can be concatenated using the notation for defining matrices. For example, the
expression
["foo" , "bar" , "baz"]
produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 51, for more information about creating matrices.
While strings can in principle store arbitrary content, most functions expect them to be
UTF-8 encoded Unicode strings.
Furthermore, it is possible to create a string without actually writing a text. The function

blanks creates a string of a given length consisting only of blank characters (ASCII code
32).

str = blanks (n)
Return a string of n blanks.

For example:
blanks (10);
whos ans
=
Attr Name Size Bytes Class

ans 1x10 10 char
See also: [repmat|, page 573.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:
double ("\n")
= 10
double ('\n')
= [92 110]
Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

74 GNU Octave (version 9.1.0)

\" Represents a literal double-quote character, ‘"’.

\' Represents a literal single-quote character, ‘'’

\O Represents the null character, control-Q, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

\nnn Represents the octal value nnn, where nnn are one to three digits between 0

and 7. For example, the code for the ASCII ESC (escape) character is ‘\033’.

\xhh. .. Represents the hexadecimal value hh, where hh are hexadecimal digits (‘0
through ‘9’ and either ‘A’ through ‘F’ or ‘a’ through ‘f’). Like the same construct
in ANSI C, the escape sequence continues until the first non-hexadecimal digit
is seen. However, using more than two hexadecimal digits produces undefined
results.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,

'T can''t escape'

= I can't escape

In scripts the two different string types can be distinguished if necessary by using is_
dg_string and is_sq_string.

tf = is_dq_string (x)
Return true if x is a double-quoted character string.

See also: [is_sq_string|, page 74, [ischar], page 75.

tf = is_sq_string (x)
Return true if x is a single-quoted character string.

See also: [is_dq_string], page 74, [ischar|, page 75.

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

Chapter 5: Strings 75

The easiest way to create a character matrix is to put several strings together into a
matrix.

collection = ["String #1"; "String #2" 1;
This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

tf = ischar (x)
Return true if x is a character array.

See also: [isfloat], page 68, [isinteger], page 59, [islogical], page 68, [isnumeric], page 68,
[isstring], page 75, [iscellstr]|, page 138, [isa], page 41.

tf = isstring (s)
Return true if s is a string array.

A string array is a data type that stores strings (row vectors of characters) at each
element in the array. It is distinct from character arrays which are N-dimensional
arrays where each element is a single 1x1 character. It is also distinct from cell arrays
of strings which store strings at each element, but use cell indexing ‘{}’ to access
elements rather than string arrays which use ordinary array indexing ‘().

Programming Note: Octave does not yet implement string arrays so this function will
always return false.

See also: [ischar], page 75, [iscellstr], page 138, [isfloat], page 68, [isinteger]|, page 59,
[islogical], page 68, [isnumeric|, page 68, [isa], page 41.

To test if an object is a string (i.e., a 1xN row vector of characters and not a character
matrix) you can use the ischar function in combination with the isrow function as in the
following example:

ischar (collection)
=1

ischar (collection) && isrow (collection)
= 0

ischar ("my string") && isrow ("my string")
= 1

One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string_fill_char function.

val = string_fill_char ()

old_val = string_fill_char (new_val)

old_val = string_fill_char (new_val, "local")
Query or set the internal variable used to pad all rows of a character matrix to the
same length.

76 GNU Octave (version 9.1.0)

The value must be a single character and the default is " " (a single space). For
example:
string fill_char ("X");
["these"; "are"; "strings"]
= "theseXX"
"areXXXX"
"strings"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Another useful function to control the text justification in this case is the strjust
function.

str = strjust (s)

str = strjust (s, pos)
Return the text, s, justified according to pos, which may be "left", "center", or
"right".
If pos is omitted it defaults to "right".

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:
strjust (["a"; "ab"; "abc"; "abcd"l)
=
n all
n abll
n abcll
"abcd"

See also: [deblank]|, page 77, [strrep], page 92, [strtrim], page 77, [untabify], page 78.

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.3.4 [Cell Arrays of Strings|, page 138.

5.3 String Operations

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " ") = "_*
= quote =

First_things_first,_but_not_necessarily_in_that_order
For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

Chapter 5: Strings 77

5.3.1 Common String Operations

The following functions are useful to perform common String operations.

y = lower (s)
y = tolower (s)
Return a copy of the string or cell string s, with each uppercase character replaced
by the corresponding lowercase one; non-alphabetic characters are left unchanged.
For example:

lower ("MiXeD cAsE 123")
= "mixed case 123"

Programming Note: tolower is an alias for lower and either name can be used in

Octave.

See also: [upper|, page 77.

y = upper (s)

y = toupper (s)
Return a copy of the string or cell string s, with each lowercase character replaced by
the corresponding uppercase one; non-alphabetic characters are left unchanged.

For example:

upper ("MiXeD cAsE 123")
= "MIXED CASE 123"

Programming Note: toupper is an alias for upper and either name can be used in
Octave.

See also: [lower|, page 77.
s = deblank (s)
Remove trailing whitespace and nulls from s.

If s is a matrix, deblank trims each row to the length of the longest string. If s is a
cell array of strings, operate recursively on each string element.

Examples:
deblank (" abc ")
= " abc"
deblank ([" abc o def ")
: [Il abc n ; n def ll]

See also: [strtrim|, page 77.
s = strtrim (s)
Remove leading and trailing whitespace from s.

If s is a matrix, strtrim trims each row to the length of longest string. If s is a cell
array of strings, operate recursively on each string element.

For example:

78 GNU Octave (version 9.1.0)

strtrim (" abc ")
= "abc"

strtrim ([" abc e def ")
: [Il abc n ; n def ||]

See also: [deblank], page 77.

s = strtrunc (s, n)
Truncate the character string s to length n.

If s is a character matrix, then the number of columns is adjusted.

If s is a cell array of strings, then the operation is performed on each cell element and
the new cell array is returned.

str = untabify (t)

str = untabify (t, tw)

str = untabify (t, tw, deblank)
Replace TAB characters in t with spaces.

The input, t, may be either a 2-D character array, or a cell array of character strings.
The output is the same class as the input.
The tab width is specified by tw, and defaults to eight.
If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.
The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")');

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);

fprintf (fid, "%s\n", text{:1});

fclose (fid);

See also: [strjust], page 76, [strsplit], page 84, [deblank], page 77.

newstr = do_string_escapes (string)
Convert escape sequences in string to the characters they represent.
Escape sequences begin with a leading backslash ('\') followed by 1-3 characters
(.e.g., "\n" => newline).

See also: [undo_string_escapes|, page 78.

newstr = undo_string_escapes (string)
Convert special characters in string back to their escaped forms.

For example, the expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).

Chapter 5: Strings 79

This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

See also: [do_string_escapes|, page 78.

5.3.2 Concatenating Strings

Strings can be concatenated using matrix notation (see Chapter 5 [Strings|, page 73,
Section 5.2 [Character Arrays|, page 74) which is often the most natural method. For
example:

fullname = [fname ".txt"];

email = ["<" user "@" domain ">"];
In each case it is easy to see what the final string will look like. This method is also the
most efficient. When using matrix concatenation the parser immediately begins joining the
strings without having to process the overhead of a function call and the input validation
of the associated function.

The newline function can be used to join strings such that they appear as multiple lines
of text when displayed.

¢ = newline
Return the character corresponding to a newline.

This is equivalent to "\n".
Example Code

joined_string = [newline "linel" newline "line2"]
=

linel

line2

See also: [strcat], page 82, [strjoin|, page 86, [strsplit], page 84.

In addition, there are several other functions for concatenating string objects which
can be useful in specific circumstances: char, strvcat, strcat, and cstrcat. Finally,
the general purpose concatenation functions can be used: see [cat], page 563, [horzcat],
page 563, and [vertcat|, page 563.

e All string concatenation functions except cstrcat convert numerical input into charac-
ter data by taking the corresponding UTF-8 character for each element (or multi-byte
sequence), as in the following example:

char ([98, 97, 110, 97, 110, 971)
= banana
For conversion between locale encodings and UTF-8, see [unicode2native], page 97, and
[native2unicode], page 97.

80 GNU Octave (version 9.1.0)

e char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char ("an apple", "two pears")
= an apple
two pears

strcat ("oc", "tave", " is", " good", " for you")
= octave is good for you

e char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.

char ("orange", ngreenn, ||||, uredu)
= orange
green

red

strvcat ("orange", "green", "", "red")
= orange
green
red

e All string concatenation functions except cstrcat also accept cell array data (see
Section 6.3 [Cell Arrays|, page 129). char and strvcat convert cell arrays into char-
acter arrays, while strcat concatenates within the cells of the cell arrays:

char ({"red", ngreenu, nn, “blue"})
= red
green

blue

strcat ({"abc"; "ghi"}, {"def"; "jk1"})
=
{
[1,1] = abcdef
[2,1] = ghijkl

}

e strcat removes trailing white space in the arguments (except within cell arrays), while
cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat (["diril";"directory2"], ["/";"/"], ["filel";"file2"])
= diril/filel
directory2/file2

cstrcat (["thirteen apples"; "a banana"], [" 5$";" 1$"]1)
= thirteen apples 5%
a banana 1%

Chapter 5: Strings 81

aaQaa

QaaQaa

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays],
page 74).

char (4)
char (4, ...)
char (str1, str2, ...)

char (cell_array)
Create a string array from one or more numeric matrices, character matrices, or cell
arrays.

Arguments are concatenated vertically. The returned values are padded with blanks
as needed to make each row of the string array have the same length. Empty input
strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

char ([97, 98, 991, "", {"98", "99", 100}, "stri", ["ha", "1f"])
= ["abc "
ll98 n
ll99 n
lld n
"stri"
"half"]

See also: [strvcat], page 81, [cellstr], page 138.

strvcat (4)
strvcat (4, ...)
strvcat (strl, str2, ...)

strvcat (cell_array)
Create a character array from one or more numeric matrices, character matrices, or
cell arrays.

Arguments are concatenated vertically. The returned values are padded with blanks
as needed to make each row of the string array have the same length. Unlike char,
empty strings are removed and will not appear in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

82 GNU Octave (version 9.1.0)

strvcat ([97, 98, 991, "", {"98", "99", 100}, "strl", ["ha", "1f"1)
= ["abc "
"98 n
|I99 n
Ild n
"stri"
"half"]

See also: [char|, page 81, [strcat], page 82, [cstrcat], page 82.

str = strcat (s1, s2, ...)
Return a string containing all the arguments concatenated horizontally.

If the arguments are cell strings, strcat returns a cell string with the individual cells
concatenated. For numerical input, each element is converted to the corresponding
ASCII character. Trailing white space for any character string input is eliminated be-
fore the strings are concatenated. Note that cell string values do not have whitespace
trimmed.

For example:

strcat ("|", " leading space is preserved", "|")
= | leading space is preserved]|

strcat ("|", "trailing space is eliminated ", "[|")
= |trailing space is eliminated|

strcat ("homogeneous space |", " ", "| is also eliminated")
= homogeneous space || is also eliminated

s = ["ab"; "cde" 1;
strcat (s, s, s)
=
"ababab "
"cdecdecde"
s ={ "ab"; "cd " };
strcat (s, s, s)
=
{
[1,1] = ababab
[2,1] cd cd cd

}
See also: [cstrcat], page 82, [char], page 81, [strvcat], page 81.

str = cstrcat (s1, s2, ...)
Return a string containing all the arguments concatenated horizontally with trailing
white space preserved.

For example:

cstrcat ("ab ", "ed")
= "ab cd"

Chapter 5: Strings 83

s = ["ab"; "cde" 1;
cstrcat (s, s, s)

= "ab ab ab "

"cdecdecde"

See also: [strcat], page 82, [char], page 81, [strvcat], page 81.

5.3.3 Splitting and Joining Strings

str = substr (s, offset)

substr (s, offset, len)
Return the substring of s which starts at character number offset and is len characters
long.

Position numbering for offsets begins with 1. If offset is negative, extraction starts
that far from the end of the string.

If len is omitted, the substring extends to the end of s. A negative value for Ilen
extracts to within len characters of the end of the string

Examples:

substr ("This is a test string", 6, 9)
= "is a test"

substr ("This is a test string", -11)
= '"test string"

substr ("This is a test string", -11, -7)
= "test"

This function is patterned after the equivalent function in Perl.

[tok, rem] = strtok (str)

[tok, rem] strtok (str, delim)
Find all characters in the string str up to, but not including, the first character which
is in the string delim.

str may also be a cell array of strings in which case the function executes on every
individual string and returns a cell array of tokens and remainders.

Leading delimiters are ignored. If delim is not specified, whitespace is assumed.

If rem is requested, it contains the remainder of the string, starting at the first de-
limiter.

Examples:

strtok ("this is the life")
= "this"

[tok, rem] = strtok ("14*27+31", "+-x/")
=

tok

rem

14
*27+31

See also: [index]|, page 90, [strsplit], page 84, [strchr|, page 90, [isspace], page 112.

84

[cstr]
[cstr]
[cstr]
[cstr,

GNU Octave (version 9.1.0)

= strsplit (str)

= strsplit (str, del)
strsplit (..., name, value)
matches] = strsplit (...)

Split the string str using the delimiters specified by del and return a cell string array
of substrings.

If a delimiter is not specified the string is split at whitespace {" ", "\f", "\n",
"\r", "\t", "\v"}. Otherwise, the delimiter, del must be a string or cell array of
strings. By default, consecutive delimiters in the input string s are collapsed into one
resulting in a single split.

Supported name/value pair arguments are:

collapsedelimiters which may take the value of true (default) or false.

delimitertype which may take the value of "simple" (default) or
"regularexpression". A simple delimiter matches the text exactly as written.
Otherwise, the syntax for regular expressions outlined in regexp is used.

The optional second output, matches, returns the delimiters which were matched in
the original string.

Examples with simple delimiters:

strsplit ("a b c")

=
{
[1,1] = a
[1,2] =D
[1,3] = ¢
}
strsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a foo b,bar c", {" ", ",", "foo", "bar"})
=
{
[1,1] = a
[1,2] = Db
[1,3] = ¢
}
strsplit ("a,,b, c", {",", " "}, "collapsedelimiters", false)
=

{

Chapter 5: Strings 85

[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢

Examples with regularexpression delimiters:

strsplit ("a foo b,bar c", ',|\sl|foolbar', ...
"delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,,b, c¢", '[, 1', "collapsedelimiters", false, ...
"delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] =
[1,3] =b
[1,4] =
[1,5] = ¢
}
strsplit ("a,\t,b, c", {',', '\s'}, "delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,\t,b, c", {',', ' ', '\t'}, "collapsedelimiters", false)
=
{
[1,1] = a
[1,2] =
[1,3] =
[1,4] = b
[1,5] =
[1,6] = ¢
}

See also: [ostrsplit], page 85, [strjoin|, page 86, [strtok], page 83, [regexp], page 93.

[cstr] = ostrsplit (s, sep)
[cstr] = ostrsplit (s, sep, strip_empty)
Split the string s using one or more separators sep and return a cell array of strings.

Consecutive separators and separators at boundaries result in empty strings, unless
strip_empty is true. The default value of strip_empty is false.

2-D character arrays are split at separators and at the original column boundaries.

86 GNU Octave (version 9.1.0)

Example:
ostrsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = ¢
}
ostrsplit (["a,b" ; "cde"]l, ",")
=
{
[1,1] = a
[1,2] = b
[1,3] = cde
}

See also: [strsplit], page 84, [strtok], page 83.

str = strjoin (cstr)
str = strjoin (cstr, delimiter)
Join the elements of the cell string array, cstr, into a single string.

If no delimiter is specified, the elements of cstr are separated by a space.

If delimiter is specified as a string, the cell string array is joined using the string.
Escape sequences are supported.

If delimiter is a cell string array whose length is one less than cstr, then the elements of
cstr are joined by interleaving the cell string elements of delimiter. Escape sequences
are not supported.
strjoin ({'Octave','Scilab','Lush', 'Yorick'}, '*')
= 'OctavexScilab*Lush*Yorick'

See also: [strsplit], page 84.

5.3.4 Searching in Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

GNU = "GNU's Not UNIX";
spaces = (GNU == " ")
= spaces =
0 0 0 0 0 1 0 0 0 1 0 0 0 0

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

tf = strcmp (strl, str2)
Return 1 if the character strings strl and str2 are the same, and 0 otherwise.

Chapter 5: Strings 87

tf

tf

tf

If either strl or str2 is a cell array of strings, then an array of the same size is
returned, containing the values described above for every member of the cell array.
The other argument may also be a cell array of strings (of the same size or with only
one element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi], page 87, [strncmp]|, page 87, [strncmpi|, page 87.

strncmp (strl, str2, n)
Return 1 if the first n characters of strings strl and str2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)
= 1

If either strl or str2 is a cell array of strings, then an array of the same size is
returned, containing the values described above for every member of the cell array.
The other argument may also be a cell array of strings (of the same size or with only
one element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]

Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 87, [strcmp], page 86, [strcmpi], page 87.

strcmpi (strl, str2)
Return 1 if the character strings strl and str2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either strl or str2 is a cell array of strings, then an array of the same size is
returned, containing the values described above for every member of the cell array.
The other argument may also be a cell array of strings (of the same size or with only
one element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

Caution: National alphabets are not supported.

See also: [strcmp], page 86, [strncmp|, page 87, [strncmpi], page 87.

strncmpi (strl, str2, n)
Return 1 if the first n character of s1 and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either strl or str2 is a cell array of strings, then an array of the same size is
returned, containing the values described above for every member of the cell array.
The other argument may also be a cell array of strings (of the same size or with only
one element), char matrix or character string.

88

GNU Octave (version 9.1.0)

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 87, [stremp]|, page 86, [strempi], page 87.

)

Despite those comparison functions, there are more specialized function to find the index

position of a search pattern within a string.

retval = startsWith (str, pattern)

retval

startsWith (str, pattern, "IgnoreCase", ignore_case)
Check whether string(s) start with pattern(s).

Return an array of logical values that indicates which string(s) in the input str (a
single string or cell array of strings) begin with the input pattern (a single string or
cell array of strings).

If the value of the parameter "IgnoreCase" is true, then the function will ignore the
letter case of str and pattern. By default, the comparison is case sensitive.

Examples:

one string and one pattern while considering case
startsWith ("hello", "he")
= 1

one string and one pattern while ignoring case
startsWith ("hello", "HE", "IgnoreCase", true)
= 1

multiple strings and multiple patterns while considering case
startsWith ({"lab work.pptx", "data.txt", "foundations.ppt"},
{"1ab", "data"})
= 1 1 0

multiple strings and one pattern while considering case
startsWith ({"DATASHEET.ods", "data.txt", "foundations.ppt"},
"data", "IgnoreCase", false)
= 0 1 0

multiple strings and one pattern while ignoring case
startsWith ({"DATASHEET.ods", "data.txt", "foundations.ppt"},
"data", "IgnoreCase", true)
= 1 1 0

See also: [endsWith|, page 88, [regexp|, page 93, [strncmp]|, page 87, [strncmpi],
page 87.

retval = endsWith (str, pattern)
retval = endsWith (str, pattern, "IgnoreCase", ignore_case)

Check whether string(s) end with pattern(s).

Chapter 5: Strings 89

<
I

Return an array of logical values that indicates which string(s) in the input str (a
single string or cell array of strings) end with the input pattern (a single string or cell
array of strings).

If the value of the parameter "IgnoreCase" is true, then the function will ignore the
letter case of str and pattern. By default, the comparison is case sensitive.

Examples:

one string and one pattern while considering case
endsWith ("hello", "lo")
= 1

one string and one pattern while ignoring case
endsWith ("hello", "LO", "IgnoreCase", true)
= 1

multiple strings and multiple patterns while considering case
endsWith ({"tests.txt", "mydoc.odt", "myFunc.m", "results.pptx"},
{".docx", ".odt", ".txt"})
= 1 1 0 O

multiple strings and one pattern while considering case
endsWith ({"TESTS.TXT", "mydoc.odt", "result.txt", "myFunc.m"},
".txt", "IgnoreCase", false)
= 0 0 1 O

multiple strings and one pattern while ignoring case
endsWith ({"TESTS.TXT", "mydoc.odt", "result.txt", "myFunc.m"},
".txt", "IgnoreCase", true)
= 1 0 1 O

See also: [startsWith], page 88, [regexp|, page 93, [strncmp], page 87, [strncmpi],
page 87.

= findstr (s, t)

findstr (s, t, overlap)
This function is obsolete. Use strfind instead.

Return the vector of all positions in the longer of the two strings s and t where an
occurrence of the shorter of the two starts.

If the optional argument overlap is true (default), the returned vector can include
overlapping positions. For example:

findstr ("ababab", "a")

= [1, 3, 5];
findstr ("abababa", "aba", 0)
= [1, 5]

Caution: findstr is obsolete. Use strfind in all new code.

See also: [strfind], page 90, [strmatch], page 91, [stremp], page 86, [strncmp], page 87,
[strempi], page 87, [strncmpi], page 87, [find], page 559.

90

idx
idx
idx
[j-’

n=

idx

idx =

idx
idx
idx

GNU Octave (version 9.1.0)

= strchr (str, chars)

strchr (str, chars, n)

strchr (str, chars, n, direction)

jl = strchr (...)

Search through the string str for occurrences of characters from the set chars.

The return value(s), as well as the n and direction arguments behave identically as in
find.

This will be faster than using regexp in most cases.

See also: [find], page 559.
index (s, t)
index (s, t, direction)

Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found.

s may also be a string array or cell array of strings.
For example:

index ("Teststring", "t")
= 4

If direction is "first", return the first element found. If direction is "last", return

the last element found.

See also: [find], page 559, [rindex], page 90.

rindex (s, t)

Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found.

s may also be a string array or cell array of strings.

For example:

rindex ("Teststring", "t")
= 6

The rindex function is equivalent to index with direction set to "last".

See also: [find], page 559, [index], page 90.

= unicode_idx (str)
Return an array with the indices for each UTF-8 encoded character in str.

unicode_idx ("adbc")
= [1, 2, 2, 3, 4]

strfind (str, pattern)

= strfind (cellstr, pattern)

= strfind (..., "overlaps", val)

= strfind (..., "forcecelloutput", val)

Search for pattern in the string str and return the starting index of every such occur-
rence in the vector idx.

If there is no such occurrence, or if pattern is longer than str, or if pattern itself is
empty, then idx is the empty array [].

Chapter 5: Strings 91

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern
(false). The default is true.

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above.

The optional argument "forcecelloutput" forces idx to be returned as a cell array
of vectors. The default is false.

Examples:

strfind ("abababa", "aba'")

= [1, 3, 5]
strfind ("abababa", "aba", "overlaps", false)
= [1, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")

=
{
[1,1] =
1 3 5
[1,2] = [1(1x0)
[1,3] = [1(1x0)
}
strfind ("abababa", "aba", "forcecelloutput", true)
=
{
[1,1] =
1 3 5
}

See also: [regexp|, page 93, [regexpi|, page 96, [find], page 559.

idx = strmatch (s, 4)
idx = strmatch (s, 4, "exact")
This function is obsolete. Use an alternative such as strncmp or strcmp instead.

Return indices of entries of A which begin with the string s.
The second argument A must be a string, character matrix, or a cell array of strings.

If the third argument "exact" is not given, then s only needs to match A up to the
length of s. Trailing spaces and nulls in s and A are ignored when matching.

For example:

92

GNU Octave (version 9.1.0)

strmatch ("apple", "apple juice")

= 1
strmatch ("apple", ["apple "; "apple juice"; "an apple"])
= [1; 2]
strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")
= [1]

Caution: strmatch is obsolete (and can produce incorrect results in MATLAB when
used with cell arrays of strings. Use strncmp (normal case) or strcmp ("exact" case)
in all new code. Other replacement possibilities, depending on application, include
regexp or validatestring.

See also: [strncmp|, page 87, [stremp], page 86, [regexp], page 93, [strfind], page 90,
[validatestring], page 213.

5.3.5 Searching and Replacing in Strings

newstr = strrep (str, ptn, rep)
newstr = strrep (cellstr, ptn, rep)
newstr = strrep (..., "overlaps", val)

Replace all occurrences of the pattern ptn in the string str with the string rep and
return the result.

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern

(false). The default is true.

s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

Example:

strrep ("This is a test string", "is", "&4$")
= "Th&%$ &%$ a test string"

See also: [regexprep], page 96, [strfind], page 90.

newstr = erase (str, ptn)

Delete all occurrences of ptn within str.
str and ptn can be ordinary strings, cell array of strings, or character arrays.

Examples

Chapter 5: Strings 93

string, single pattern
erase ("Hello World!", " World")
= "Hello!"

cellstr, single pattern
erase ({"Hello", "World!"}, "World")
:> {llHelloll’ II!II}

string, multiple patterns
erase ("The Octave interpreter is fabulous",
{"interpreter ", "The "})
= "Octave is fabulous"

cellstr, multiple patterns
erase ({"The ", "Octave interpreter ", "is fabulous"},
{"interpreter ", "The "})
= {"", "Octave ", "is fabulous"}

Programming Note: erase deletes the first instance of a pattern in a string when
there are overlapping occurrences. For example:

erase ("abababa", "aba")
i llb"
For processing overlaps, see [strrep], page 92.

See also: [strrep|, page 92, [regexprep], page 96.

[s, e, te, m, t, nm, sp] = regexp (str, pat)
[...] = regexp (str, pat, "optl", ...)
Regular expression string matching.

Search for pat in UTF-8 encoded str and return the positions and substrings of any
matches, or empty values if there are none.

The matched pattern pat can include any of the standard regex operators, including:
Match any character

* + 7 {} Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{n} Match exactly n times

{n,} Match n or more times

{m,n} Match between m and n times
(...1["...]

List operators. The pattern will match any character listed between " ["
and "]". If the first character is """ then the pattern is inverted and any
character except those listed between brackets will match.

94

O (72
I

~$

GNU Octave (version 9.1.0)

Escape sequences defined below can also be used inside list operators.
For example, a template for a floating point number might be [-+.\d]+.

Grouping operator. The first form, parentheses only, also creates a token.

Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

Anchoring operators. Requires pattern to occur at the start (7) or end
($) of the string.

In addition, the following escaped characters have special meaning.

\d
\D
\s
\S
\w
\W
\<
\>
\B

Match any digit

Match any non-digit

Match any whitespace character
Match any non-whitespace character
Match any word character

Match any non-word character
Match the beginning of a word
Match the end of a word

Match within a word

Implementation Note: For compatibility with MATLAB, escape sequences in pat (e.g.,
"\n" => newline) are expanded even when pat has been defined with single quotes.
To disable expansion use a second backslash before the escape sequence (e.g., "\\n")
or use the regexptranslate function.

The outputs of regexp default to the order given below

5
e
te
m
t

nm

sp

The start indices of each matching substring

The end indices of each matching substring

The extents of each matched token surrounded by (...) in pat
A cell array of the text of each match

A cell array of the text of each token matched

A structure containing the text of each matched named token, with
the name being used as the fieldname. A named token is denoted by
(7<name>...).

A cell array of the text not returned by match, i.e., what remains if you
split the string based on pat.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

'start’ S
'end' e

Chapter 5: Strings 95

'tokenExtents' te

'match'’ m

'tokens' t

'names' nm

'split' sp
Additional arguments are summarized below.
‘once’ Return only the first occurrence of the pattern.
‘matchcase’

Make the matching case sensitive. (default)
Alternatively, use (7-1) in the pattern.

‘ignorecase’
Ignore case when matching the pattern to the string.
Alternatively, use (?7i) in the pattern.

‘stringanchors’
Match the anchor characters at the beginning and end of the string.

(default)
Alternatively, use (?-m) in the pattern.

‘lineanchors’
Match the anchor characters at the beginning and end of the line.
Alternatively, use (?m) in the pattern.

‘dotall’ The pattern . matches all characters including the newline character.
(default)
Alternatively, use (?s) in the pattern.

‘dotexceptnewline’
The pattern . matches all characters except the newline character.
Alternatively, use (7-s) in the pattern.

‘literalspacing’
All characters in the pattern, including whitespace, are significant and
are used in pattern matching. (default)

Alternatively, use (7-x) in the pattern.

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#’.

Alternatively, use (7x) in the pattern.
‘noemptymatch’

Zero-length matches are not returned. (default)
‘emptymatch’

Return zero-length matches.

regexp ('a', 'bx', 'emptymatch') returns [1 2] because there are
zero or more 'b' characters at positions 1 and end-of-string.

96

GNU Octave (version 9.1.0)

Stack Limitation Note: Pattern searches are done with a recursive function which can
overflow the program stack when there are a high number of matches. For example,

regexp (repmat ('a', 1, 1e5), '(a)+")

may lead to a segfault. As an alternative, consider constructing pattern searches that
reduce the number of matches (e.g., by creatively using set complement), and then
further processing the return variables (now reduced in size) with successive regexp
searches.

Octave’s regexp implementation is based on the Perl Compatible Regular Expres-
sions library (https://www.pcre.org/). For a more comprehensive list of regexp
operator syntax see the "PCRE Syntax quick-reference summary".

See also: [regexpi], page 96, [strfind], page 90, [regexprep], page 96.

[s, e, te, m, t, nm, sp] = regexpi (str, pat)

.

.] = regexpi (str, pat, "opti", ...)

Case insensitive regular expression string matching.

Search for pat in UTF-8 encoded str and return the positions and substrings of any
matches, or empty values if there are none. See [regexp|, page 93, for details on the
syntax of the search pattern.

See also: [regexp], page 93.

outstr = regexprep (string, pat, repstr)
outstr = regexprep (string, pat, repstr, "optl", ...)

str

Replace occurrences of pattern pat in string with repstr.
The pattern is a regular expression as documented for regexp. See [regexp|, page 93.
All strings must be UTF-8 encoded.

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep ("Bill Dunn", '(\w+) (\w+)', '$2, $1')
returns "Dunn, Bill"

Options in addition to those of regexp are
‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

Implementation Note: For compatibility with MATLAB, escape sequences in pat (e.g.,
"\n" => newline) are expanded even when pat has been defined with single quotes.
To disable expansion use a second backslash before the escape sequence (e.g., "\\n")
or use the regexptranslate function.

See also: [regexp]|, page 93, [regexpi|, page 96, [strrep], page 92.

= regexptranslate (op, s)
Translate a string for use in a regular expression.

This may include either wildcard replacement or special character escaping.

https://www.pcre.org/
https://www.pcre.org/current/doc/html/pcre2syntax.html

Chapter 5: Strings 97

The behavior is controlled by op which can take the following values

"wildcard"
The wildcard characters ., *, and 7 are replaced with wildcards that are

appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")
= '.*\.m'

"escape" The characters $.7[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
= '12\.5'

See also: [regexp|, page 93, [regexpi], page 96, [regexprep], page 96.
5.4 Converting Strings
Octave offers several kinds of conversion functions for Strings.

5.4.1 String encoding

native_bytes = unicode2native (utf8_str, codepage)
native_bytes = unicode2native (utf8_str)
Convert UTF-8 string utf8_str to byte stream using codepage.

The character vector utf8_str is converted to a byte stream native_bytes using the
code page given by codepage. The string codepage must be an identifier of a valid code
page. Examples for valid code pages are "IS0-8859-1", "Shift-JIS", or "UTF-16".
For a list of supported code pages, see https://www.gnu.org/software/libiconv.
If codepage is omitted or empty, the system default codepage is used.

If any of the characters cannot be mapped into the codepage codepage, they are
replaced with the appropriate substitution sequence for that codepage.

See also: [native2unicode], page 97.

utf8_str = native2unicode (native_bytes, codepage)
utf8_str = native2unicode (native_bytes)
Convert byte stream native_bytes to UTF-8 using codepage.

The numbers in the vector native_bytes are rounded and clipped to integers between
0 and 255. This byte stream is then mapped into the code page given by the string
codepage and returned in the string utf8_str. Octave uses UTF-8 as its internal en-
coding. The string codepage must be an identifier of a valid code page. Examples
for valid code pages are "IS0-8859-1", "Shift-JIS", or "UTF-16". For a list of
supported code pages, see https://www.gnu.org/software/libiconv. If codepage
is omitted or empty, the system default codepage is used.

If native_bytes is a string vector, it is returned as is.

See also: [unicode2native|, page 97.

https://www.gnu.org/software/libiconv
https://www.gnu.org/software/libiconv

98 GNU Octave (version 9.1.0)

5.4.2 Numerical Data and Strings

Apart from the string concatenation functions (see Section 5.3.2 [Concatenating Strings],
page 79) which cast numerical data to the corresponding UTF-8 encoded characters, there
are several functions that format numerical data as strings. mat2str and num2str convert
real or complex matrices, while int2str converts integer matrices. int2str takes the real
part of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output]
page 311, [sprintf], page 311).

)

= mat2str (x, n)
= mat2str (x, n, "class")
Format real, complex, and logical matrices as strings.

S
S

The returned string may be used to reconstruct the original matrix by using the eval
function.

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n(1) defines the
precision of the real part and n(2) defines the precision of the imaginary part. The
default for n is 15.

If the argument "class" is given then the class of x is included in the string in such
a way that eval will result in the construction of a matrix of the same class.

mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2])
= "[-0.3333+0.14i;0.3333-0.14i]"

mat2str ([-1/3 +i/7; 1/3 -i/7 1, [4 2]1)
= "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"

mat2str (inti16 ([1 -1]), "class")
= "int16([1 -1])"

mat2str (logical (eye (2)))
= "[true false;false truel]"

isequal (x, eval (mat2str (x)))
=1

See also: [sprintf], page 311, [num2str], page 98, [int2str], page 99.

9

str = num2str (x)

str = num2str (x, precision)

str = num2str (x, format)
Convert a number (or array) to a string (or a character array).
The optional second argument may either give the number of significant digits (pre-
cision) to be used in the output or a format template string (format) as in sprintf
(see Section 14.2.4 [Formatted Output], page 311). num2str can also process complex
numbers.
Examples:

num2str (123.456)

Chapter 5: Strings 99

= 123.456

num2str (123.456, 4)
= 123.5

s = num2str ([1, 1.34; 3, 3.56], "/5.1f")

= s =
1.0 1.3
3.0 3.6
whos s
= Variables in the current scope:
Attr Name Size Bytes Class
s 2x8 16 char

Total is 16 elements using 16 bytes

num2str (1.234 + 27.31i)
= 1.234+27.31

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 311).

Programming Notes:
For MATLAB compatibility, leading spaces are stripped before returning the string.
Integers larger than flintmax may not be displayed correctly.

For complex x, the format string may only contain one output conversion specification
and nothing else. Otherwise, results will be unpredictable.

Any optional format specified by the programmer is used without modification. This
is in contrast to MATLAB which tampers with the format based on internal heuristics.

See also: [sprintf], page 311, [int2str]|, page 99, [mat2str]|, page 98.

str = int2str (n)
Convert an integer (or array of integers) to a string (or a character array).

int2str (123)
= 123

s = int2str ([1, 2, 3; 4, 5, 6])

= s =
1 2 3
4 5 6
whos s
= Variables in the current scope:
Attr Name Size Bytes Class
s 2x7 14 char

Total is 14 elements using 14 bytes

100 GNU Octave (version 9.1.0)

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output], page 311).

Programming Notes:

Non-integers are rounded to integers before display. Only the real part of complex
numbers is displayed.

See also: [sprintf]|, page 311, [num2str], page 98, [mat2str], page 98.

d = str2double (str)
Convert a string to a real or complex number.

The string must be in one of the following formats where a and b are real numbers
and the complex unit is 'i' or 'j':

e a+bi

e a+ b*i

e a+i*b

e bi+a

e b*i+a

e i*b+a

If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate
optional arguments and 'd' indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

str may be a character string, character matrix, or cell array. For character arrays
the conversion is repeated for every row, and a double or complex array is returned.
Empty rows in s are deleted and not returned in the numeric array. For cell arrays
each character string element is processed and a double or complex array of the same
dimensions as str is returned.

For unconvertible scalar or character string input str2double returns a NaN. Simi-
larly, for character array input str2double returns a NaN for any row of s that could
not be converted. For a cell array, str2double returns a NaN for any element of s
for which conversion fails. Note that numeric elements in a mixed string/numeric cell
array are not strings and the conversion will fail for these elements and return NaN.

Programming Note: str2double can replace str2num, is more efficient, and avoids
the security risk of using eval on unknown data.

See also: [str2num], page 100.

X = str2num (s)
[x, state] = str2num (s)
Convert the string (or character array) s to a number (or an array).

Examples:

str2num ("3.141596")
= 3.141596

str2num (["1, 2, 3"; "4, 5, 6"])
=1 2 3
4 5 6

Chapter 5: Strings 101

The optional second output, state, is logically true when the conversion is successful.
If the conversion fails the numeric output, x, is empty and state is false.

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double for a safer and faster
conversion.

For cell array of strings use str2double.

See also: [str2double], page 100, [eval], page 185.

d = bin2dec (str)

bstr
bstr

Return the decimal number corresponding to the binary number represented by the
string str.
For example:
bin2dec ("1110")
= 14
Spaces are ignored during conversion and may be used to make the binary number
more readable.
bin2dec ("1000 0001")
= 129
If str is a string matrix, return a column vector with one converted number per row
of str; Invalid rows evaluate to NalN.
If str is a cell array of strings, return a column vector with one converted number per
cell element in str.

See also: [dec2bin], page 101, [base2dec|, page 103, [hex2dec], page 102.

dec2bin (d)

= dec2bin (d, len)

Return a string of ones and zeros representing the conversion of the integer d to a
binary number.

If d is a matrix or cell array, return a string matrix with one row for each element in
d, padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

For negative elements of d, return the binary value of the two’s complement. The
result is padded with leading ones to 8, 16, 32, or 64 bits as appropriate for the
magnitude of the input. Positive input elements are padded with leading zeros to the
same width.

Examples:

dec2bin (14)
= "1110"

dec2bin (-14)
= "11110010"
Programming tip: dec2bin discards any fractional part of the input. If you need the
fractional part to be converted too, call dec2base with a nonzero number of decimal

102 GNU Octave (version 9.1.0)

places. You can also use fix or round on fractional inputs to ensure predictable
rounding behavior.

See also: [bin2dec|, page 101, [dec2base], page 102, [dec2hex], page 102.

)

hstr = dec2hex (d)

hstr = dec2hex (d, len)
Return a string representing the conversion of the integer d to a hexadecimal (basel6)
number.

If d is negative, return the hexadecimal complement of d.

If d is a matrix or cell array, return a string matrix with one row for each element in
d, padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

Examples:

dec2hex (2748)
= "ABC"

dec2hex (-2)

= "FE"
Programming tip: dec2hex discards any fractional part of the input. If you need the
fractional part to be converted too, call dec2base with a nonzero number of decimal
places. You can also use fix or round on fractional inputs to ensure predictable

rounding behavior.

See also: [hex2dec], page 102, [dec2base], page 102, [dec2bin], page 101.

d = hex2dec (str)
Return the integer corresponding to the hexadecimal number represented by the string
str.

For example:
hex2dec ("12B")
= 299
hex2dec ("12b")
= 299
If str is a string matrix, return a column vector with one converted number per row
of str; Invalid rows evaluate to NalN.

If str is a cell array of strings, return a column vector with one converted number per
cell element in str.

See also: [dec2hex], page 102, [base2dec], page 103, [bin2dec], page 101.

str = dec2base (d, base)
str = dec2base (d, base, len)
str = dec2base (d, base, len, decimals)
Return a string of symbols in base base corresponding to the value d.

dec2base (123, 3)
= "11120"

Chapter 5: Strings 103

If d is negative, then the result will represent d in complement notation. For example,
negative binary numbers are in twos-complement, and analogously for other bases.

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Whitespace (spaces, tabs, newlines, , etc.) may not be used as a symbol.
dec2base (123, "aei")
= "eeeia"

The optional third argument, len, specifies the minimum number of digits in the
integer part of the result. If this is omitted, then dec2base uses enough digits to
accommodate the input.

The optional fourth argument, decimals, specifies the number of digits to represent
the fractional part of the input. If this is omitted, then it is set to zero, and dec2base
returns an integer output for backward compatibility.

dec2base (100%*pi, 16)

= "13A"
dec2base (100*pi, 16, 4)
= "013A"

dec2base (100%*pi, 16, 4, 6)
= "013A.28C59D"
dec2base (-100*pi, 16)

= "EC6"
dec2base (-100*pi, 16, 4)
= "FEC6"

dec2base (-100*pi, 16, 4, 6)
= "FEC5.D73A63"

Programming tip: When passing negative inputs to dec2base, it is best to explicitly
specify the length of the output required.

See also: [base2dec], page 103, [dec2bin], page 101, [dec2hex], page 102.

d = base2dec (str, base)
Convert str from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)
= 123

If str is a string matrix, return a column vector with one value per row of str. If a
row contains invalid symbols then the corresponding value will be NaN.

If str is a cell array of strings, return a column vector with one value per cell element
in str.

If base is a string, the characters of base are used as the symbols for the digits of str.
Space () may not be used as a symbol.

base2dec ("yyyzx", "xyz")
= 123

See also: [dec2base], page 102, [bin2dec], page 101, [hex2dec], page 102.

104 GNU Octave (version 9.1.0)

s = num2hex (n)
s = num2hex (n, "cell")
Convert a numeric array to an array of hexadecimal strings.

For example:

num2hex ([-1, 1, e, Inf])

= "b££0000000000000
3££0000000000000
4005bf0a8b145769
7££0000000000000"

If the argument n is a single precision number or vector, the returned string has a
length of 8. For example:

num2hex (single ([-1, 1, e, Inf]))
= "b£f800000

3£800000

402d£854

7£800000"

With the optional second argument "cell", return a cell array of strings instead of
a character array.

See also: [hex2num], page 104, [hex2dec|, page 102, [dec2hex], page 102.

fn]
[

= hex2num (s)
hex2num (s, class)
Typecast a hexadecimal character array or cell array of strings to an array of numbers.

[n]
I

By default, the input array is interpreted as a hexadecimal number representing a
double precision value. If fewer than 16 characters are given the strings are right
padded with '0' characters.

Given a string matrix, hex2num treats each row as a separate number.

hex2num (["4005bf0a8b145769"; "4024000000000000"]1)
= [2.7183; 10.000]

The optional second argument class may be used to cause the input array to be
interpreted as a different value type. Possible values are

Option Characters

"int8" 2
"uint8" 2
"int16" 4
"uint16" 4
"int32" 8§
"uint32" 8
"int64" 16
"uint64" 16
"char" 2
"single" 8

"double" 16

Chapter 5: Strings 105

[a,
[a,
[a,
[a,
[a,

For example:

hex2num (["402df854"; "41200000"], "single")
= [2.7183; 10.000]

See also: [num2hex|, page 104, [hex2dec|, page 102, [dec2hex], page 102.

..] = strread (str)

..] = strread (str, format)

..] = strread (str, format, format_repeat)

..] = strread (str, format, propl, valuel, ...)

.] = strread (str, format, format_repeat, propl, valuel,

)

This function is obsolete. Use textscan instead.

Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

hs The word is parsed as a string.

hE

%n The word is parsed as a number and converted to double.
%d

yAl The word is parsed as a number and converted to int32.
YA

YA

hxs The word is skipped.

For %s and %d, %f, %n, %u and the associated %*s ... specifiers an
optional width can be specified as %Ns, etc. where N is an integer > 1.
For %f, format specifiers like %N.Mf are allowed.

literals In addition the format may contain literal character strings; these will be
skipped during reading.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

By default, format is "%£f", meaning that numbers are read from str. This will do if
str contains only numeric fields.
For example, the string
str = "\
Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"
can be read using

[a, b, c] = strread (str, "%s %s %f");

106

GNU Octave (version 9.1.0)

Optional numeric argument format_repeat can be used for limiting the number of
items read:

-1 (default) read all of the string until the end.

N Read N times nargout items. 0 (zero) is an acceptable value for for-
mat_repeat.

The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.

e "shell" Everything from # characters to the nearest end-of-line is
skipped.

e "c" Everything between /* and */ is skipped.

e "c++" Everything from // characters to the nearest end-of-line is
skipped.

e "matlab" Everything from % characters to the nearest end-of-line is
skipped.

e user-supplied. Two options: (1) One string, or 1x1 cell string: Skip
everything to the right of it; (2) 2x1 cell string array: Everything
between the left and right strings is skipped.

"delimiter"
Any character in value will be used to split str into words (default value
= any whitespace). Note that whitespace is implicitly added to the set
of delimiter characters unless a "%s" format conversion specifier is sup-
plied; see "whitespace" parameter below. The set of delimiter characters
cannot be empty; if needed Octave substitutes a space as delimiter.

"emptyvalue"
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then default is zero.

"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between,
as a single delimiter. Consecutive delimiter series need not be vertically
"aligned".

"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"returnonerror"
If value true (1, default), ignore read errors and return normally. If false
(0), return an error.

Chapter 5: Strings 107

"whitespace"

Any character in value will be interpreted as whitespace and trimmed; the
string defining whitespace must be enclosed in double quotes for proper
processing of special characters like "\t". In each data field, multiple
consecutive whitespace characters are collapsed into one space and leading
and trailing whitespace is removed. The default value for whitespace is
" \b\r\n\t" (note the space). Whitespace is always added to the set of
delimiter characters unless at least one "%s" format conversion specifier is
supplied; in that case only whitespace explicitly specified in "delimiter"
is retained as delimiter and removed from the set of whitespace characters.
If whitespace characters are to be kept as-is (in e.g., strings), specify an
empty value (i.e., "") for "whitespace"; obviously, whitespace cannot be
a delimiter then.

When the number of words in str doesn’t match an exact multiple of the number of
format conversion specifiers, strread’s behavior depends on the last character of str:

last character = "\n"
Data columns are padded with empty fields or NaN so that all columns
have equal length

last character is not "\n"
Data columns are not padded; strread returns columns of unequal length

See also: [textscan], page 299, [sscanf], page 317.
5.4.3 JSON data encoding/decoding

JavaScript Object Notation, in short JSON, is a very common human readable and struc-
tured data format. GNU Octave supports encoding and decoding this format with the
following two functions.

JSON_txt = jsonencode (object)
JSON_txt = jsonencode (..., "ConvertInfAndNaN", TF)
JSON_txt = jsonencode (..., "PrettyPrint", TF)
Encode Octave data types into JSON text.
The input object is an Octave variable to encode.
The output JSON_txt is the JSON text that contains the result of encoding object.
If the value of the option "ConvertInfAndNaN" is true then NaN, NA, -Inf, and Inf

values will be converted to "null" in the output. If it is false then they will remain
as their original values. The default value for this option is true.

If the value of the option "PrettyPrint" is true, the output text will have indenta-
tions and line feeds. If it is false, the output will be condensed and written without
whitespace. The default value for this option is false.

Programming Notes:
e Complex numbers are not supported.
e classdef objects are first converted to structs and then encoded.

e To preserve escape characters (e.g., "\n"), use single-quoted strings.

108

GNU Octave (version 9.1.0)

e Every character after the null character ("\0") in a double-quoted string will be

dropped during encoding.

e Encoding and decoding an array is not guaranteed to preserve the dimensions of
the array. In particular, row vectors will be reshaped to column vectors.

e Encoding and decoding is not guaranteed to preserve the Octave data type be-
cause JSON supports fewer data types than Octave. For example, if you encode
an int8 and then decode it, you will get a double.

This table shows the conversions from Octave data types to JSON data types:

Octave data type
logical scalar
logical vector

logical array
numeric scalar
numeric vector

numeric array

NaN, NA, Inf, -Inf

when "ConvertInfAndNaN" = true
NaN, NA, Inf, -Inf

when "ConvertInfAndNaN" = false
empty array

character vector

character array

empty character array

cell scalar

cell vector

cell array

struct scalar

struct vector

struct array

classdef object

Examples:

jsonencode ([1, NaN; 3, 4])
= [[1,null], [3,4]]

JSON data type

Boolean

Array of Boolean, reshaped to row
vector

nested Array of Boolean

Number

Array of Number, reshaped to row
vector

nested Array of Number

Ilnullll

"NaN", "NaN", "Infinity",
"-Infinity"

n [] "

String

Array of String

nn

Array

Array, reshaped to row vector

Array, flattened to row vector

Object

Array of Object, reshaped to row vector
nested Array of Object

Object

jsonencode ([1, NaN; 3, 4], "ConvertInfAndNaN", false)

= [[1,NaN], [3,4]]

Escape characters inside a single—quoted string

jsonencode ('\0\a\b\t\n\v\f\r')
= "\\0\\a\\b\\t\\n\\v\\£\\r"

Chapter 5: Strings 109

Escape characters inside a double—quoted string
jsonencode ("\a\b\t\n\v\f\r")
= "\u0007\b\t\n\uOOOB\f\r"

jsonencode ([true; false], "PrettyPrint", true)
= ans = [

true,

false

]

jsonencode (['foo', 'bar'; 'foo', 'bar'l)
= ["foobar","foobar"]

jsonencode (struct ('a', Inf, 'b', [1, 'c', struct ())
= {"a":null,"b": [] ,"C":{}}

jsonencode (struct ('structarray', struct ('a', {1; 3}, 'b', {2; 41D
= {"structarray":[{"a":1,"b":2},{"a":3,"b":4}]}

jsonencode ({'foo'; 'bar'; {'foo'; 'bar'}})
:> [llfoo"’"barll’ ["fooll,"bar“]]

jsonencode (containers.Map({'foo'; 'bar'; 'baz'}, [1, 2, 31))
= {"bar":2,"baz":3,"foo":1}

See also: [jsondecode], page 109.

object = jsondecode (JSON_txt)

object = jsondecode (..., "ReplacementStyle", rs)

object = jsondecode (..., "Prefix", pfx)

object = jsondecode (..., "makeValidName", TF)
Decode text that is formatted in JSON.

The input JSON_txt is a string that contains JSON text.
The output object is an Octave object that contains the result of decoding JSON_txt.

For more information about the options "ReplacementStyle" and "Prefix", see
[matlab.lang.makeValidName|, page 143.

If the value of the option "makeValidName" is false then names will not be changed by
matlab.lang.makeValidName and the "ReplacementStyle" and "Prefix" options
will be ignored.

NOTE: Decoding and encoding JSON text is not guaranteed to reproduce the original
text as some names may be changed by matlab.lang.makeValidName.

This table shows the conversions from JSON data types to Octave data types:

JSON data type Octave data type
Boolean scalar logical
Number scalar double

String vector of characters

110

Object

null, inside a numeric array
null, inside a non-numeric array

GNU Octave (version 9.1.0)

scalar struct (field names of the struct
may be different from the keys of
the JSON object due to matlab_lang_
makeValidName

NaN

empty double array []

Array, of different data types cell array
Array, of Booleans
Array, of Numbers

Array, of Strings

logical array
double array
cell array of character vectors (cellstr)

Array of Objects, same field names struct array
Array of Objects, different field names cell array of scalar structs

Examples:

jsondecode
= ans

NaN

jsondecode
= ans

{

[1,1]
[2,1]
[3,1]

{

}

(

(

[

[2,1]

'[1, 2,

null, 3]')

'["fOO“, llbarll’ ["fOO", ubarn]]l)

1,1]

foo
= bar

foo
bar

jsondecode ('{"nu#m#ber": 7, "s#tr#ing": "hi"}',
'ReplacementStyle', 'delete')
= scalar structure containing the fields:

number =

string

7
hi

Chapter 5: Strings 111

jsondecode ('{"nu#m#ber": 7, "s#tr#ing": "hi"}',
'makeValidName', false)
= scalar structure containing the fields:

nu#m#tber = 7
s#tr#ing = hi

jsondecode ('{"1": "omne", "2": "two"}', 'Prefix', 'm_')
= scalar structure containing the fields:

m_1 = one
m_2 = two

See also: [jsonencode], page 107, [matlab.lang.makeValidName|, page 143.

5.5 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:
isalpha ("!Q@WERT"Y&")
= [0,1,0,1, 1,1, 1, 0, 1, 01

tf = isalnum (s)

Return a logical array which is true where the elements of s are letters or digits and
false where they are not.

This is equivalent to (isalpha (s) | isdigit (s)).
See also: [isalphal, page 111, [isdigit], page 112, [ispunct], page 112, [isspace],
page 112, [iscntrl], page 112.

tf = isalpha (s)
Return a logical array which is true where the elements of s are letters and false where
they are not.

This is equivalent to (islower (s) | isupper (s)).
See also: [isdigit], page 112, [ispunct], page 112, [isspace], page 112, [iscntrl], page 112,
[isalnum], page 111, [islower], page 111, [isupper], page 112.

tf

isletter (s)

Return a logical array which is true where the elements of s are letters and false where
they are not.

This is an alias for the isalpha function.

See also: [isalpha, page 111, [isdigit], page 112, [ispunct], page 112, [isspace],
page 112, [iscntrl], page 112, [isalnum], page 111.

tf = islower (s)
Return a logical array which is true where the elements of s are lowercase letters and
false where they are not.

112

tf

tf

tf

tf

tf

tf

tf

tf

GNU Octave (version 9.1.0)

See also: [isupper|, page 112, [isalpha], page 111, [isletter], page 111, [isalnum],
page 111.

isupper (s)
Return a logical array which is true where the elements of s are uppercase letters and
false where they are not.

See also: [islower|, page 111, [isalpha], page 111, [isletter], page 111, [isalnum],
page 111.

isdigit (s)
Return a logical array which is true where the elements of s are decimal digits (0-9)
and false where they are not.

See also: [isxdigit], page 112, [isalpha, page 111, [isletter|, page 111, [ispunct],
page 112, [isspace], page 112, [iscntrl], page 112.

isxdigit (s)
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).

See also: [isdigit], page 112.

ispunct (s)
Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.

See also: [isalpha], page 111, [isdigit], page 112, [isspace], page 112, [iscntrl], page 112.

isspace (s)

Return a logical array which is true where the elements of s are whitespace characters
(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 112, [ispunct], page 112, [isalpha], page 111, [isdigit], page 112.
iscntrl (s)

Return a logical array which is true where the elements of s are control characters
and false where they are not.

See also: [ispunct], page 112, [isspace|, page 112, [isalpha], page 111, [isdigit],
page 112.

isgraph (s)
Return a logical array which is true where the elements of s are printable characters
(but not the space character) and false where they are not.

See also: [isprint], page 112.
isprint (s)

Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph], page 112.

Chapter 5: Strings 113

tf = isascii (s)
Return a logical array which is true where the elements of s are ASCII characters (in
the range 0 to 127 decimal) and false where they are not.

tf
tf

isstrprop (str, prop)
isstrprop (str, prop, ’ForceCellOutput’, flag)
Test character string properties.

For example:

isstrprop ("abc123", "alpha'")
= [1, 1, 1, 0, 0, 0]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.
Numeric arrays are converted to character strings.

The second argument prop must be one of

"alpha" True for characters that are alphabetic (letters).

"alnum"
"alphanum"
True for characters that are alphabetic or digits.
"lower" True for lowercase letters.
"upper" True for uppercase letters.

"digit" True for decimal digits (0-9).
"xdigit" True for hexadecimal digits (a-fA-F0-9).

"Space“
"wspace" True for whitespace characters (space, formfeed, newline, carriage return,
tab, vertical tab).

"punct" True for punctuation characters (printing characters except space or letter
or digit).

"entrl" True for control characters.

llgraphll

"graphic"
True for printing characters except space.

"print" True for printing characters including space.

"ascii" True for characters that are in the range of ASCII encoding.

If the option 'ForceCellOutput' is given and flag is true then a cell value is returned
rather than a logical array.

See also: [isalpha, page 111, [isalnum|, page 111, [islower|, page 111, [isupper],
page 112, [isdigit], page 112, [isxdigit], page 112, [isspace], page 112, [ispunct],
page 112, [iscntrl], page 112, [isgraph]|, page 112, [isprint], page 112, [isascii],
page 113.

115

6 Data Containers

Octave includes support for three different mechanisms to contain arbitrary data types
in the same variable: Structures, which are C-like, and are indexed with named fields;
containers.Map objects, which store data in key/value pairs; and cell arrays, where each
element of the array can have a different data type and or shape. Multiple input arguments
and return values of functions are organized as another data container, the comma-separated
list.

6.1 Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a =1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name (in
the example above x) from the field name and indicates to Octave that this variable is a
structure. To print the value of the structure you can type its name, just as for any other
variable:

X

a= 1

1 2
4

c = string
Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

116 GNU Octave (version 9.1.0)

a= 1
1 2
3 4

¢ = string

Since structures are themselves values, structure elements may reference other structures,
as well. The following statement adds the field d to the structure x. The value of field 4 is
itself a data structure containing the single field a, which has a value of 3.

x.d.a = 3;
x.d
= ans =

scalar structure containing the fields:

a= 1
b=

1 2

3 4
¢ = string
d =

scalar structure containing the fields:

a= 3

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 117

a.b.c.d.e

]
[
-

scalar structure containing the fields:
b=

scalar structure containing the fields:

scalar structure containing the fields:

d: 1x1 scalar struct

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_
print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

val = struct_levels_to_print ()

old_val = struct_levels_to_print (new_val)

old_val = struct_levels_to_print (new_val, "local")
Query or set the internal variable that specifies the number of structure levels to
display.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [print_struct_array_contents], page 117.
val = print_struct_array_contents ()
old_val = print_struct_array_contents (new_val)
old_val = print_struct_array_contents (new_val, "local")
Query or set the internal variable that specifies whether to print struct array contents.

If true, values of struct array elements are printed. This variable does not affect scalar
structures whose elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct_levels_to_print.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [struct_levels_to_print], page 117.
Functions can return structures. For example, the following function separates the real

and complex parts of a matrix and stores them in two elements of the same structure
variable y.

118 GNU Octave (version 9.1.0)

function y = £ (x)
y.re = real (x);
y.im = imag (x);

endfunction

When called with a complex-valued argument, the function £ returns the data structure
containing the real and imaginary parts of the original function argument.

f (rand (2) + rand (2) * I)
= ans =

scalar structure containing the fields:

re =

o

.040239 0.242160
.238081 0.402523

o

im

o

.26475 0.14828
.18436 0.83669

o

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.8(2:3,2:3), x.v] =svd ([1, 2; 3, 4]);

scalar structure containing the fields:

u=
-0.40455 -0.91451
-0.91451 0.40455
s=
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
v=

-0.57605 0.81742
-0.81742 -0.57605

Chapter 6: Data Containers 119

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 195).

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.
Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

x(1).a = "stringl";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;

which creates a 1-by-2 structure array with two fields. Another way to create a structure
array is with the struct function (see Section 6.1.3 [Creating Structures|, page 120). As
previously, to print the value of the structure array, you can type its name:

X
= x =
{
1x2 struct array containing the fields:
a
b
b

Individual elements of the structure array can be returned by indexing the variable like
x(1), which returns a structure with two fields:

x(1)
= ans =
{
a = stringl
b= 1
b

Furthermore, the structure array can return a comma-separated list of field values (see
Section 6.4 [Comma-Separated Lists|, page 139), if indexed by one of its own field names.
For example:

X.a
=
ans
ans

stringl
string2

Here is another example, using this comma-separated list on the left-hand side of an
assignment:

120 GNU Octave (version 9.1.0)

[x.a] = deal ("new stringl", "new string2");
x(1).a

= ans
x(2).a

= ans = new string2

new stringl

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions|, page 157):

x(3:4) = x(1:2);
[x([1,3]).a] = deal ("other stringl", "other string2");
x.a
=

ans = other stringl

ans = new string2

ans = other string2

ans = new string?2

The function size will return the size of the structure. For the example above

size (x)
= ans =

1 4

Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example

in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"})

= in =
{
1x3 struct array containing the fields:
calll
call2
b
in(1) = [I;
in.calll
=
ans = Inf
ans = last

6.1.3 Creating Structures

Besides the index operator ".", Octave can use dynamic naming " (var)" or the struct
function to create structures. Dynamic naming uses the string value of a variable as the
field name. For example:

Chapter 6: Data Containers 121

a = "field2";
x.a = 1;
x.(a) = 2;
X
= X =
{
a= 1
field2 = 2
}

Dynamic indexing also allows you to use arbitrary strings, not merely valid Octave identifiers
(note that this does not work on MATLAB):

a = "long field with spaces (and funny char$)";

x.a = 1;
x.(a) = 2;
X
= X =
{
a= 1
long field with spaces (and funny char$) = 2
}

The warning id Octave:language-extension can be enabled to warn about this usage.
See [warning_ids], page 261.
More realistically, all of the functions that operate on strings can be used to build the

correct field name before it is entered into the data structure.

names ["Bill"; "Mary"; "John"];

ages [37; 26; 31];

for i = 1l:rows (names)

database. (names(i,:)) = ages(i);

endfor
database
= database =
{
Bill = 37
Mary = 26
John = 31
}

The third way to create structures is the struct command. struct takes pairs of
arguments, where the first argument in the pair is the fieldname to include in the structure
and the second is a scalar or cell array, representing the values to include in the structure
or structure array. For example:

struct ("fieldl", 1, "field2", 2)
= ans =
{
fieldl
field2

nn
N =

122 GNU Octave (version 9.1.0)

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example:
s = struct ("field1l", {1, "one"}, "field2", {2, "two"},
"field3", 3);
s.fieldl
=

ans = one

s.field2
=
ans = 2
ans = two
s.field3
=
ans = 3
ans = 3

If you want to create a struct which contains a cell array as an individual field, you must
wrap it in another cell array as shown in the following example:

struct ("fieldl", {{1, "one"}}, "field2", 2)

= ans =
{
fieldl =
{
[1,1] = 1
[1,2] = one
}
field2 = 2

struct
struct
Create a scalar or array structure and initialize its values.

9]
Il

)
fieldl, valuel, field2, value2, ...)

9]
1

The fieldl, field2, . .. variables are strings specifying the names of the fields and the
valuel, value2, . .. variables can be of any type.

If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.

If the argument is an object, return the underlying struct.

Observe that the syntax is optimized for struct arrays. Consider the following exam-
ples:

Chapter 6: Data Containers

struct ("foo", 1)
= scalar structure containing the
foo = 1

struct ("foo", {})
= 0x0 struct array containing the
foo

struct ("foo", { {} B
= scalar structure containing the
foo = {}(0x0)

struct ("foo", {1, 2, 3})
= 1x3 struct array containing the
foo

123

fields:

fields:

fields:

fields:

The first case is an ordinary scalar struct—one field, one value. The second produces
an empty struct array with one field and no values, since being passed an empty cell
array of struct array values. When the value is a cell array containing a single entry,
this becomes a scalar struct with that single entry as the value of the field. That
single entry happens to be an empty cell array.

Finally, if the value is a nonscalar cell array, then struct produces a struct array.

See also: [cell2struct], page 139, [fieldnames|, page 123, [getfield], page 125, [setfield],
page 124, [rmfield], page 125, [isfield], page 124, [orderfields], page 125, [isstruct],
page 123, [structfun], page 681.

The function isstruct can be used to test if an object is a structure or a structure

array.

tf =

isstruct (x)

Return true if x is a structure or a structure array.

See also: [ismatrix],

6.1.4 Manipulating Structures

page 68, [iscell], page 130, [isa], page 41.

Other functions that can manipulate the fields of a structure are given below.

n = numfields (s)
Return the number of fields of the structure s.

See also: [fieldnames]|, page 123.

names =

names
names
names

fieldnames (struct)
fieldnames (obj)

fieldnames (javaobj)
fieldnames (" javaclassname")

Return a cell array of strings with the names of the fields in the specified input.

When the input is a structure struct, the names are the elements of the structure.

124 GNU Octave (version 9.1.0)

When the input is an Octave object obj, the names are the public properties of the
object.

When the input is a Java object javaobj or a string containing the name of a Java
class javaclassname, the names are the public fields (data members) of the object or
class.

See also: [numfields|, page 123, [isfield], page 124, [orderfields]|, page 125, [struct],
page 122, [properties], page 967.

tf
tf

isfield (x, "name")
isfield (x, name)
Return true if the x is a structure and it includes an element named name.

If name is a cell array of strings then a logical array of equal dimension is returned.

See also: [fieldnames|, page 123.

sout = setfield (s, field, val)
sout setfield (s, sidx1, fieldl, fidx1, sidx2, field2, fidx2,
., val)
Return a copy of the structure s with the field member field set to the value val.

For example:

struct ();
setfield (s, "foo bar", 42);

This is equivalent to

s.("foo bar") = 42;
Note that ordinary structure syntax s.foo bar = 42 cannot be used here, as the
field name is not a valid Octave identifier because of the space character. Using
arbitrary strings for field names is incompatible with MATLAB, and this usage will emit

a warning if the warning ID Octave:language-extension is enabled. See [warning_
ids], page 261.

S
S

With the second calling form, set a field of a structure array. The input sidx selects
an element of the structure array, field specifies the field name of the selected element,
and fidx selects which element of the field (in the case of an array or cell array). The
sidx, field, and fidx inputs can be repeated to address nested structure array elements.
The structure array index and field element index must be cell arrays while the field
name must be a string.

For example:

s = struct ("baz", 42);
setfield (s, {1}, "foo", {1}, "bar", 54)

=
ans =
scalar structure containing the fields:
baz = 42
foo =

scalar structure containing the fields:
bar = 54

Chapter 6: Data Containers 125

The example begins with an ordinary scalar structure to which a nested scalar struc-
ture is added. In all cases, if the structure index sidx is not specified it defaults to
1 (scalar structure). Thus, the example above could be written more concisely as
setfield (s, "foo", "bar", 54)
Finally, an example with nested structure arrays:

sa.foo = 1;

sa = setfield (sa, {2}, "bar", {3}, "baz", {1, 4}, 5);

sa(2) .bar(3)

=

ans =
scalar structure containing the fields:
baz = 0 O O b5

Here sa is a structure array whose field at elements 1 and 2 is in turn another structure
array whose third element is a simple scalar structure. The terminal scalar structure
has a field which contains a matrix value.

Note that the same result as in the above example could be achieved by:
sa.foo = 1;
sa(2).bar(3) .baz(1,4) = 5

See also: [getfield], page 125, [rmfield], page 125, [orderfields|, page 125, [isfield],
page 124, [fieldnames], page 123, [isstruct], page 123, [struct], page 122.

val = getfield (s, field)
val = getfield (s, sidx1, fieldl, fidx1, ...)

sout
sout

sout =

sout
sout
sout

Get the value of the field named field from a structure or nested structure s.

If s is a structure array then sidx selects an element of the structure array, field
specifies the field name of the selected element, and fidx selects which element of the
field (in the case of an array or cell array). For a more complete description of the

syntax, see [setfield|, page 124.
See also: [setfield], page 124, [rmfield], page 125, [orderfields], page 125, [isfield],

page 124, [fieldnames], page 123, [isstruct], page 123, [struct], page 122.

)

rmfield (s, "f")
rmfield (s, f)
Return a copy of the structure (array) s with the field f removed.

If f is a cell array of strings or a character array, remove each of the named fields.

See also: [orderfields]|, page 125, [fieldnames|, page 123, [isfield], page 124.

orderfields (s1)
= orderfields (s1, s2)
= orderfields (s1, {cellstr})

= orderfields (s1, p)

[sout, p] = orderfields (...)

Return a copy of s1 with fields arranged alphabetically, or as specified by the second
input.

Given one input struct sI, arrange field names alphabetically.

126 GNU Octave (version 9.1.0)

If a second struct argument is given, arrange field names in sl as they appear in s2.
The second argument may also specify the order in a cell array of strings cellstr. The
second argument may also be a permutation vector.

The optional second output argument p is the permutation vector which converts the
original name order to the new name order.

Examples:
s = Struct (||d|l, 4’ ||b||, 2’ lla"’ 1’ "C", 3);
t1 = orderfields (s)

= tl =
scalar structure containing the fields:
a= 1
b= 2
c= 3
d= 4

t = struct ("d", {}, "c<", {}, "b", {}, "a", {});
t2 = orderfields (s, t)

= t2 =
scalar structure containing the fields:
d= 4
c= 3
b= 2
a= 1
t3 = orderfields (s, [3, 2, 4, 1]1)
= t3 =
scalar structure containing the fields:
a= 1
b= 2
c= 3
d= 4
[t4, p] = orderfields (s, {"d", "c", "b", "a"})
= t4 =
scalar structure containing the fields:
d= 4
c= 3
b= 2
a= 1
p =
1
4
2
3

See also: [fieldnames], page 123, [getfield], page 125, [setfield], page 124, [rmfield],
page 125, [isfield], page 124, [isstruct], page 123, [struct], page 122.

s = substruct (type, subs, ...)
Create a subscript structure for use with subsref or subsasgn.

Chapter 6: Data Containers 127

For example:

idx = substruct ("QO", {3, ":"})
= idx =
scalar structure containing the fields:

type = O

subs =

{
(1,11 =
[1,2]

|
w

}
x = [1, 2, 3;
4, 5, 6;
7, 8, 91;
subsref (x, idx)
= 7 8 9
Note: The keyword end cannot be used within subsref or subsasgn for indexing
assignments.

See also: [subsref], page 952, [subsasgn], page 954.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements|, page 195). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.
See [structfun], page 681.

Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

¢ = struct2cell (s)
Create a new cell array from the objects stored in the struct object.
If f is the number of fields in the structure, the resulting cell array will have a
dimension vector corresponding to [f size(s)]. For example:

128 GNU Octave (version 9.1.0)

s = struct ("name", {"Peter", "Hannah", "Robert"},
"age", {23, 16, 3});
c = struct2cell (s)
= ¢ = {2x1x3 Cell Array}
c(1,1,:)(C)
=
{
[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert
}
c(2,1,:)(:)
=
{
[1,1] = 23
[2,1] = 16
[3,1] = 3
}

See also: [cell2struct], page 139, [namedargs2cell], page 128, [fieldnames]|, page 123.

¢ = namedargs2cell (s)
Create a cell array of field name/value pairs from a scalar structure.

Example:
s.Name = "Peter";
s.Height = 185;
s.Age = 42;

¢ = namedargs2cell (s)
= { "Name", "Peter", "Height", 185, "Age", 42 }

See also: [struct2cell], page 127.

6.2 containers.Map

= containers.Map ()
containers.Map (keys, vals)
containers.Map (keys, vals, "UniformValues", is_uniform)
= containers.Map ("KeyType", kt, "ValueType", vt)
Create an object of the containers.Map class that stores a list of key/value pairs.

888

keys is an array of unique keys for the map. The keys can be numeric scalars or
strings. The type for numeric keys may be one of "double", "single", "int32",
"uint32", "int64", or "uint64". Other numeric or logical keys will be converted to
"double". A single string key may be entered as is. Multiple string keys are entered
as a cell array of strings.

vals is an array of values for the map with the same number of elements as keys.

When called with no input arguments a default map is created with strings as the
key type and "any" as the value type.

Chapter 6: Data Containers 129

The "UniformValues" option specifies whether the values of the map must be strictly
of the same type. If is_uniform is true, any values which would be added to the map
are first validated to ensure they are of the correct type.

When called with "KeyType" and "ValueType" arguments, create an empty map with
the specified types. The inputs kt and vt are the types for the keys and values of the
map respectively. Allowed values for kt are "char", "double", "single", "int32",
"uint32", "int64", "uint64". Allowed values for vt are "any", "char", "double",
"single", "int32", "uint32", "int64", "uint64", "logical".

The return value m is an object of the containers.Map class.

See also: [struct], page 122.

6.3 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like V-dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.3.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix

¢ = {"a string", rand(2, 2)};

To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:

c{1}

= ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes

c{1:2}
= ans = a string
= ans

0.593993 0.627732
0.377037 0.033643

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array

130 GNU Octave (version 9.1.0)

c{3} =3
= ¢ =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

Details on indexing cell arrays are explained in Section 6.3.3 [Indexing Cell Arrays],
page 135.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

celldisp (c)
celldisp (c, name)
Recursively display the contents of a cell array.
By default the values are displayed with the name of the variable ¢. However, this
name can be replaced with the variable name. For example:
c =A{1, 2, {31, 32}};
celldisp (c, "b")
=
b{1}
1
b{2}
2
b{3}{1}
31
b{3}{2}
32

See also: [disp|, page 283.

Y

To test if an object is a cell array, use the iscell function. For example:

iscell (c)

= ans =1
iscell (3)

= ans = 0

tf = iscell (x)
Return true if x is a cell array object.

See also: [ismatrix], page 68, [isstruct], page 123, [iscellstr], page 138, [isa], page 41.

Chapter 6: Data Containers 131

6.3.2 Creating Cell Arrays

The introductory example (see Section 6.3.1 [Basic Usage of Cell Arrays|, page 129) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices

c = cell (2,2)

= Cc =
{
(1,11 = [1(0x0)
(2,11 = [1(0x0)
(1,2] = [1(0x0)
[2,2] = [1(0x0)
+

Just like numerical arrays, cell arrays can be multi-dimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

cl = cell (3, 4, 5);
c2 = cell ([3, 4, 5]);
size (c1)
= ans =
3 4 5

As can be seen, the [size|, page 47, function also works for cell arrays. As do other functions
describing the size of an object, such as [length], page 47, [numel], page 47, [rows], page 46,
and [columns|, page 46.

= cell (n)
cell (m, n)
cell (m, n, k, ...)
=cell (mn ...])
Create a new cell array object.

aQaaQaa

If invoked with a single scalar integer argument, return a square NxN cell array. If
invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with the given dimensions.

See also: [cellstr], page 138, [mat2cell], page 133, [num2cell], page 131, [struct2cell],
page 127.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell, mat2cell and cellslices
functions.

132 GNU Octave (version 9.1.0)

C = num2cell (4)
= num2cell (4, dim)
Convert the numeric matrix A to a cell array.

Q
[

When no dim is specified, each element of A becomes a 1x1 element in the output C.

If dim is defined then individual elements of C contain all of the elements from A
along the specified dimension. dim may also be a vector of dimensions with the same
rule applied.

For example:

x = [1,2;3,4]
=
1 2
4

each element of A becomes a 1x1 element of C
num2cell (x)
=
{

[1,1]
[2,1] =
[1,2] =
[2,2]

SN W

}
all rows (dim 1) of A appear in each element of C
num2cell (x, 1)
=
{

[1,1]
1
3

[1,2]
2
4

}

all columns (dim 2) of A appear in each element of C
num2cell (x, 2)

=
{
[1,1] =
1 2
[2,1] =
3 4
}

all rows and cols appear in each element of C
(hence, only 1 output)
num2cell (x, [1, 2])

=

Chapter 6: Data Containers 133

{
[1,1] =
1 2
3 4
}

See also: [mat2cell], page 133.

C = mat2cell (4, diml, dim2, ..., dimi, ..., dimn)
mat2cell (A, rowdim)
Convert the matrix A to a cell array C.

Q
I

Each dimension argument (diml, dim2, etc.) is a vector of integers which specifies
how to divide that dimension’s elements amongst the new elements in the output C.
The number of elements in the i-th dimension is size (4, i). Because all elements
in A must be partitioned, there is a requirement that sum (dimi) == size (4, i).
The size of the output cell C is numel (diml) x numel (dim2) x ... x numel (dimn).

Given a single dimensional argument, rowdim, the output is divided into rows as
specified. All other dimensions are not divided and thus all columns (dim 2), pages
(dim 3), etc. appear in each output element.

Examples
x = reshape (1:12, [3, 4])'
=
1 2 3
4 5 6
7 8 9
10 11 12

134

GNU Octave (version 9.1.0)

The 4 rows (diml) are divided in to two cell elements

with 2 rows each.

The 3 cols (dim2) are divided in to three cell elements
with 1 col each.

mat2cell (x,

=
{

[1,1]

[2,1]

10

[1,2]

[2,2]
11

[1,3]

[2,3]

12

[2,2],

[1,1,11)

Chapter 6: Data Containers 135

sl

The 4 rows (diml) are divided in to two cell elements
with a 3/1 split.

All columns appear in each output element.

mat2cell (x, [3,1])

=
{
(1,11 =
1 2 3
4 5 6
7 8 9
[2,1] =
10 11 12
}

See also: [num2cell], page 131, [cell2mat], page 139.

= cellslices (x, 1b, ub, dim)

Given an array x, this function produces a cell array of slices from the array deter-
mined by the index vectors Ib, ub, for lower and upper bounds, respectively.

In other words, it is equivalent to the following code:

n = length (1b);
sl = cell (1, n);
for i = 1:length (1b)
s1{i} = x(:,...,1b(1):ub(i),...,:);
endfor
The position of the index is determined by dim. If not specified, slicing is done along
the first non-singleton dimension.

See also: [cell2mat], page 139, [cellindexmat], page 137, [cellfun], page 679.

6.3.3 Indexing Cell Arrays

As shown in see Section 6.3.1 [Basic Usage of Cell Arrays|, page 129, elements can be
extracted from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access
subarrays which are still cell arrays, you need to use the ‘(C and ‘)’ operators. The following
example illustrates the difference:

c = {lllll, |I2||’ ll3"; llel, ||y||’ "Z"; Il4ll’ II5II’ HGH};

c{2,3}
= ans = z
c(2,3)
= ans =
{
[1,1] = z

}

136 GNU Octave (version 9.1.0)

So with ‘{}’ you access elements of a cell array, while with ()’ you access a sub array of a
cell array.

Using the ‘C and ‘)’ operators, indexing works for cell arrays like for multi-dimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:

c(:, [1, 31) = {0}
= =
{
[1,1] =
[2,1] =
[3,1] =
[1,2] =
[2,2] =
[3,2] =
[1,3] =
[2,3] =
[3,3] =

O OO U1K NO OO

}

Note, that the above can also be achieved like this:
cC:, [1, 31) = 0;

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ‘()’, you can exchange the first
and the second row of a cell array as in the following command:

c=q{1, 2, 3; 4, 5, 6};
c(l1, 21,) = c([2, 11,)
=

-~

[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

W o N O~ b

}

Accessing multiple elements of a cell array with the ‘{” and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.4 [Comma-Separated
Lists]|, page 139). Using the ‘{’ and ‘}’ operators the first two rows in the above example
can be swapped back like this:

Chapter 6: Data Containers 137

[c{[1,2], :}] = deal (c{[2, 11, :})
=

A

[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

AW OoTN D

}

As for struct arrays and numerical arrays, the empty matrix ‘[1’ can be used to delete
elements from a cell array:

X = {“1", n2||; ||3n’ ||4n};

x(1,) =11
= x =
{
[1,1] = 3
[1,2] = 4
}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

X = {lllll, II2|I; IISH, ll4ll};

x(1,) ={0%}
= x =
{
[1,1]1 = [1(0x0)
[2,1] = 3
[1,2] = [1(0x0)
[2,2] = 4
}

The indexing operations operate on the cell array and not on the objects within the cell
array. By contrast, cellindexmat applies matrix indexing to the objects within each cell
array entry and returns the requested values.

y = cellindexmat (x, varargin)
Perform indexing of matrices in a cell array.

Given a cell array of matrices x, this function computes

Y = cell (size (X));
for i = 1:numel (X)
Y{i} = X{i}(varargin{1}, varargin{2}, ..., varargin{N});
endfor
The indexing arguments may be scalar (2), arrays ([1, 3]), ranges (1:3), or the colon
operator (":"). However, the indexing keyword end is not available.

See also: [cellslices], page 135, [cellfun], page 679.

138 GNU Octave (version 9.1.0)

6.3.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.2 [Concatenating Strings|, page 79), while the function
cellstr converts a character array to a cell array of strings:

a = ["hello"; "world"];
c = cellstr (a)
= Cc =
{
[1,1] = hello
[2,1] = world
}

cstr = cellstr (strmat)
Create a new cell array object from the elements of the string array strmat.

Each row of strmat becomes an element of cstr. Any trailing spaces in a row are
deleted before conversion.

To convert back from a cellstr to a character array use char.

See also: [cell], page 131, [char|, page 81.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:

¢ = {"hello", "world"};
strcmp ("hello", c)
= ans =
1 0

The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.2 [Concatenating Strings|, page 79), strcmp, strncmp, strcmpi, strncmpi (see
Section 5.3.4 [Searching in Strings|, page 86), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.3 [String Operations|, page 76) and

str2double (see Section 5.4 [Converting Strings|, page 97).

The function iscellstr can be used to test if an object is a cell array of strings.

tf = iscellstr (cell)
Return true if every element of the cell array cell is a character string.

See also: [ischar|, page 75, [isstring], page 75.

Chapter 6: Data Containers 139

6.3.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array. See [cellfun],
page 679.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct
functions.

m = cell2mat (c)

Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a
hyperrectangle.

Elements of ¢ must be numeric, logical, or char matrices; or cell arrays; or structs;

and cat must be able to concatenate them together.

See also: [mat2cell], page 133, [num2cell], page 131.

S = cell2struct (cell, fields)
S = cell2struct (cell, fields, dim)
Convert cell to a structure.
The number of fields in fields must match the number of elements in cell along dimen-
sion dim, that is numel (fields) == size (cell, dim). If dim is omitted, a value of
1 is assumed.
S = cell2struct ({"Peter", "Hannah", "Robert";
185, 170, 168},
{"Name","Height"}, 1);
S(1)
=

Name = Peter
Height = 185
}

See also: [struct2cell], page 127, [cell2mat], page 139, [struct], page 122.

6.4 Comma-Separated Lists

Comma-separated lists' are the basic argument type to all Octave functions—both for input
and return arguments. In the example

max (a, b)
‘a, b’ is a comma-separated list. Comma-separated lists can appear on both the right and
left hand side of an assignment. For example

x=[1010011; 000000 T7];
(i, j] = find (x, 2, "last");

1 Comma-separated lists are also sometimes referred to as cs-lists.

140 GNU Octave (version 9.1.0)

Here, ‘x, 2, "last"’ is a comma-separated list constituting the input arguments of find.
find returns a comma-separated list of output arguments which is assigned element by
element to the comma-separated list ‘i, j’.

Another example of where comma-separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices], page 52) or the creation of a cell array with {}
(see Section 6.3.1 [Basic Usage of Cell Arrays|, page 129). In the expressions

a = [1, 2, 3, 4];
c=4{4, 5, 6, 7};
both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma-separated lists.

Comma-separated lists cannot be directly manipulated by the user. However, both
structure arrays and cell arrays can be converted into comma-separated lists, and thus used
in place of explicitly written comma-separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.4.1 Comma-Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.3.3 [Indexing Cell Arrays|, page 135), elements
of a cell array can be extracted into a comma-separated list with the { and } operators. By
surrounding this list with [and], it can be concatenated into an array. For example:

a={1, [2, 3], 4, 5, 6};
b = [a{1:4}]
= b =

1 2 3 4 5
Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:
a = {1, rand(2, 2), "three"};
b={af{ 1, 31 }1?}
= b =
{

1
three

[1,1]
[1,2]

}

Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, c{5});

- GNU Octave is Free Software
printf ("%s ", c{:});

-1 GNU Octave is Free Software

If used on the left-hand side of an assignment, a comma-separated list generated with
{3} can be assigned to. An example is

in{1} = [10, 20, 30];

Chapter 6: Data Containers 141

in{2} = inf;

in{3} "last";

in{4} = "first";

out = cell (4, 1);
[out{1:3}] = in{1 : 3};
lout{4:6}] = in{[1, 2, 41}

= out =
{

[1,1] =

10 20 30
[2,1] = Inf
[3,1] = last
[4,1] =

10 20 30
[5,1] = Inf

[6,1] = first
}

6.4.2 Comma-Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma-separated lists. This is done by
addressing one of the fields of a structure array. For example:

x = ceil (randn (10, 1));
in = struct ("calll", {x, 3, "last"},
"call2", {x, inf, "first"});
out = struct ("calll", cell (2, 1), "call2", cell (2, 1));
[out.calll] find (in.calll);
[out.call?2] find (in.call?2);

143

7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

X
x15

__foo_bar_baz__
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value.
Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions|, page 177.

There is one automatically created variable with a special meaning. The ans variable
always contains the result of the last computation, where the output wasn’t assigned to
any variable. The code a = cos (pi) will assign the value -1 to the variable a, but will not
change the value of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same

program. Variables may not be used before they have been given a value. Doing so results
in an error.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable.

For example, after the expression
372 + 472

is evaluated, the value returned by ans is 25.

tf = isvarname (name)
Return true if name is a valid variable name.

A valid variable name is composed of letters, digits, and underscores ("_"), and the
first character must not be a digit.

See also: [iskeyword], page 1161, [exist], page 150, [who], page 148.

varname = matlab.lang.makeValidName (str)
varname = matlab.lang.makeValidName (..., "ReplacementStyle", rs)
varname = matlab.lang.makeValidName (..., "Prefix", pfx)
[varname, ismodified] = matlab.lang.makeValidName (...)

Create valid variable name varname from str.

144 GNU Octave (version 9.1.0)

The input str must be a string or a cell array of strings. The output varname will be
of the same type.

A valid variable name is a sequence of letters, digits, and underscores that does not
begin with a digit.
The "ReplacementStyle" option specifies how invalid characters are handled. Ac-
ceptable values are

"underscore" (default)
Replace all invalid characters with an underscore ("_").

"delete" Remove any invalid character.
"hex" Replace all invalid characters with their hexadecimal representation.

Whitespace characters are always removed prior to the application of the
"ReplacementStyle". Lowercase letters following a whitespace will be changed to
uppercase.

The "Prefix" option specifies the string pfx to add as a prefix to the input if it begins
with a digit. pfx must be a valid variable name itself. The default prefix is "x".

The optional output ismodified is a logical array indicating whether the respective
element in str was a valid name or not.

See also: [iskeyword], page 1161, [isvarname|, page 143, [matlab.lang.makeUniqueStrings]]
page 144.

unigstr = matlab.lang.makeUniqueStrings (str)

unigstr = matlab.lang.makeUniqueStrings (str, ex)

unigstr = matlab.lang.makeUniqueStrings (str, ex, maxlength)

[unigstr, ismodified] = matlab.lang.makeUniqueStrings (...)
Construct a list of unique strings from a list of strings.

The input str must be a string or a cell array of strings. The output unigstr will be
of the same type.

The algorithm makes two strings unique by appending an underscore ("_" and a
numeric count to the second string.

If ex is a string or a cell array of strings, unigstr will contain elements that are unique
between themselves and with respect to ex.

If ex is an index array or a logical array for str then it selects the subset of str that
are made unique. Unselected elements are not modified.

The optional input maxlength specifies the maximum length of any string in unigstr.
If an input string cannot be made unique without exceeding maxlength an error is
emitted.

The optional output ismodified is a logical array indicating whether each element in
str was modified to make it unique.

See also: [unique|, page 847, [matlab.lang.makeValidName|, page 143.

n = namelengthmax ()
Return the MATLAB compatible maximum variable name length.

Chapter 7: Variables 145

Octave is capable of storing strings up to 23! — 1 in length. However for MATLAB
compatibility all variable, function, and structure field names should be shorter than
the length returned by namelengthmax. In particular, variables stored to a MATLAB
file format (*.mat) will have their names truncated to this length.

7.1 Global Variables
See keyword: [global], page 1161,

A global variable is one that may be accessed anywhere within Octave. This is in contrast
to a local variable which can only be accessed outside of its current context if it is passed
explicitly, such as by including it as a parameter when calling a function (fcn (local_vari,
local_var2)).

A variable is declared global by using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d =3 e £ =5

Note that the global qualifier extends only to the next end-of-statement indicator which
could be a comma (‘,’), semicolon (‘;’), or newline (‘'\n'’). For example, the following
code declares one global variable, a, and one local variable b to which the value 1 is assigned.

global a, b =1

A global variable may only be initialized once in a global statement. For example, after
executing the following code

1
2

the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

global gvar
global gvar

It is necessary declare a variable as global within a function body in order to access the
one universal variable. For example,

global x

function f ()
x =1;

endfunction

f 0O

does not set the value of the global variable x to 1. Instead, a local variable, with name x,
is created and assigned the value of 1. In order to change the value of the global variable
X, you must also declare it to be global within the function body, like this

function £ O
global x;
x =1;
endfunction
Passing a global variable in a function parameter list will make a local copy and not
modify the global value. For example, given the function

146 GNU Octave (version 9.1.0)

function f (x)
x =0

endfunction
and the definition of x as a global variable at the top level,

global x = 13
the expression

f x)
will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

Programming Note: While global variables occasionally are the right solution to a coding

problem, modern best practice discourages their use. Code which relies on global variables
may behave unpredictably between different users and can be difficult to debug. This

is because global variables can introduce systemic changes so that localizing a bug to a
particular function, or to a particular loop within a function, becomes difficult.

tf = isglobal (name)
Return true if name is a globally visible variable.
For example:
global x
isglobal ("x")
=1

See also: [isvarname], page 143, [exist], page 150.

7.2 Persistent Variables

See keyword: [persistent|, page 1162,

A variable that has been declared persistent within a function will retain its contents in
memory between subsequent calls to the same function. The difference between persistent
variables and global variables is that persistent variables are local in scope to a particular
function and are not visible elsewhere.

The following example uses a persistent variable to create a function that prints the
number of times it has been called.

function count_calls ()
persistent calls = O;
printf ("'count_calls' has been called %d times\n",
++calls) ;
endfunction

for i = 1:3
count_calls ();
endfor

- 'count_calls' has been called 1 times
- 'count_calls' has been called 2 times
- 'count_calls' has been called 3 times

Chapter 7: Variables 147

As the example shows, a variable may be declared persistent using a persistent decla-
ration statement. The following statements are all persistent declarations.

persistent a
persistent a b
persistent c = 2
persistent d = 3 e £ =5
The behavior of persistent variables is equivalent to the behavior of static variables in
C.
One restriction for persistent variables is, that neither input nor output arguments of a
function can be persistent:
function y = foo ()
persistent y = 0; # Not allowed!
endfunction

foo O
- error: can't make function parameter y persistent
Like global variables, a persistent variable may only be initialized once. For example,
after executing the following code
persistent pvar = 1
persistent pvar = 2
the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether
it is empty, as the following example illustrates.

function count_calls ()
persistent calls;
if (isempty (calls))
calls = 0;
endif
printf ("'count_calls' has been called %d times\n",

++calls);
endfunction
This implementation behaves in exactly the same way as the previous implementation of
count_calls.
The value of a persistent variable is kept in memory until it is explicitly cleared. As-
suming that the implementation of count_calls is saved on disk, we get the following

behavior.

for i = 1:2
count_calls ();
endfor

- 'count_calls' has been called 1 times
- 'count_calls' has been called 2 times

clear

148

for i = 1:2
count_calls ();
endfor

-4 'count_calls'
- 'count_calls'

clear all

for i = 1:2
count_calls ();

endfor

- 'count_calls'

- 'count_calls'

clear count_calls

for i = 1:2
count_calls ();
endfor

-4 'count_calls'
-4 'count_calls'

been
been

been
been

been
been

called 3 times
called 4 times

called 1 times
called 2 times

called 1 times
called 2 times

GNU Octave (version 9.1.0)

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire
function definition will be removed from memory. If you do not want a persistent variable to
be removed from memory even if the function is cleared, you should use the mlock function
(see Section 11.10.6 [Function Locking], page 232).

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables
are available at the prompt. The function who and its siblings whos and whos_line_format
will show different information about what is in memory, as the following shows.

str = "A random string";

who

-1 Variables in the current scope:

_|

- ans str

who
who pattern ...

who option pattern .

C = who (...)

List currently defined variables matching the given patterns.

Valid pattern syntax is the same as described for the clear command. If no patterns
are supplied, all variables are listed.

By default, only variables visible in the local scope are displayed.

The following are valid options, but may not be combined.

Chapter 7: Variables 149

whos
whos
whos

global List variables in the global scope rather than the current scope.

-regexp The patterns are considered to be regular expressions when matching the
variables to display. The same pattern syntax accepted by the regexp
function is used.

-file The next argument is treated as a filename. All variables found within the
specified file are listed. No patterns are accepted when reading variables
from a file.

If called as a function, return a cell array of defined variable names matching the
given patterns.

See also: [whos|, page 149, [isglobal|, page 146, [isvarname]|, page 143, [exist], page 150,
[regexp], page 93.

pattern ...
option pattern ...

S = whos ("pattern", ...)

Provide detailed information on currently defined variables matching the given pat-
terns.

Options and pattern syntax are the same as for the who command.

Extended information about each variable is summarized in a table with the following
default entries.

Attr Attributes of the listed variable. Possible attributes are:
blank Variable in local scope
c Variable of complex type.
f Formal parameter (function argument).
g Variable with global scope.
p Persistent variable.
Name The name of the variable.
Size The logical size of the variable. A scalar is 1x1, a vector is 1xN or NxI,

a 2-D matrix is MxN.
Bytes The amount of memory currently used to store the variable.

Class The class of the variable. Examples include double, single, char, uint16,
cell, and struct.

The table can be customized to display more or less information through the function
whos_line_format.

If whos is called as a function, return a struct array of defined variable names matching
the given patterns. Fields in the structure describing each variable are: name, size,
bytes, class, global, sparse, complex, nesting, persistent.

See also: [who|, page 148, [whos_line_format], page 150.

150

val

GNU Octave (version 9.1.0)

= whos_line_format ()

old_val = whos_line_format (new_val)
old_val = whos_line_format (new_val, "local")

Query or set the format string used by the command whos.

A full format string is:
% [modifier]<command>[:width[:left-min[:balance]]];

The following command sequences are available:

ha Prints attributes of variables (c=complex, s=sparse, f=formal parameter,
g=global, p=persistent).

%b Prints number of bytes occupied by variables.
he Prints class names of variables.

he Prints elements held by variables.

n Prints variable names.

%s Prints dimensions of variables.

Wt Prints type names of variables.

Every command may also have an alignment modifier:

1 Left alignment.
r Right alignment (default).
c Column-aligned (only applicable to command %s).

The width parameter is a positive integer specifying the minimum number of columns
used for printing. No maximum is needed as the field will auto-expand as required.

The parameters left-min and balance are only available when the column-aligned
modifier is used with the command ‘%s’. balance specifies the column number within
the field width which will be aligned between entries. Numbering starts from 0 which
indicates the leftmost column. left-min specifies the minimum field width to the
left of the specified balance column.

The default format is:
" %la:5; %ln:6; %cs:16:6:1; Y%rb:12; %lc:-1;\n"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [whos|, page 149.

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behavior of a program depending
on the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))

disp ("The program has no 'meaning'");

endif

Chapter 7: Variables 151

¢ = exist (name)
exist (name, type)
Check for the existence of name as a variable, function, file, directory, or class.

[9)
]

The return code c is one of
1 name is a variable.

2 name is an absolute filename, an ordinary file in Octave’s path, or (after
appending ‘.m’) a function file in Octave’s path.

3 name is a ‘.oct’ or ‘.mex’ file in Octave’s path.

5 name is a built-in function.

7 name is a directory.

8 name is a classdef class.

103 name is a function not associated with a file (entered on the command
line).

0 name does not exist.

If the optional argument type is supplied, check only for symbols of the specified type.
Valid types are

"var" Check only for variables.
"builtin"

Check only for built-in functions.
"dir" Check only for directories.
"file" Check only for files and directories.
"class" Check only for classdef classes.

If no type is given, and there are multiple possible matches for name, exist will
return a code according to the following priority list: variable, built-in function, oct-
file, directory, file, class.

exist returns 2 if a regular file called name is present in Octave’s search path. For
information about other types of files not on the search path use some combination
of the functions file_in_path and stat instead.

Programming Note: If name is implemented by a buggy .oct/.mex file, calling exist
may cause Octave to crash. To maintain high performance, Octave trusts .oct/.mex
files instead of sandboxing them.

See also: [file_in_loadpath], page 225, [file_in_path], page 1019, [dir_in_loadpath],
page 226, [stat], page 1015.

Usually Octave will manage the memory, but sometimes it can be practical to remove
variables from memory manually. This is usually needed when working with large variables
that fill a substantial part of the memory. On a computer that uses the IEEE floating point
format, the following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);

Since having this variable in memory might slow down other computations, it can be nec-
essary to remove it manually from memory. The clear or clearvars functions do this.

152

GNU Octave (version 9.1.0)

clear
clear pattern
clear options pattern

Delete the names matching the given patterns thereby freeing memory.

The pattern may contain the following special characters:
? Match any single character.
* Match zero or more characters.

[1ist] Match the list of characters specified by list. If the first character is !
or ~, match all characters except those specified by list. For example,
the pattern [a-zA-Z] will match all lowercase and uppercase alphabetic
characters. On Windows, square brackets are matched literally and are
not used to group characters.

For example, the command
clear foo b*r

clears the name foo and all names that begin with the letter ‘b’ and end with the
letter ‘r’.

If clear is called without any arguments, all user-defined variables are cleared from
the current workspace (i.e., local variables). Any global variables present will no
longer be visible in the current workspace, but they will continue to exist in the
global workspace. Functions are unaffected by this form of clear.

The following options are available in both long and short form

all, -all, -a
Clear all local and global user-defined variables, and all functions from
the symbol table.

-exclusive, -x
Clear variables that do not match the following pattern.

functions, —-functions, -f
Clear function names from the function symbol table. Persistent variables
will be re-initialized to their default value unless the function has been
locked in memory with mlock.

global, -global, -g
Clear global variable names.

variables, -variables, -v
Clear local variable names.

classes, —classes, -c
Clear the class structure table and all objects.

-regexp, -r
The pattern arguments are treated as regular expressions and any
matches will be cleared.

Chapter 7: Variables 153

With the exception of ~exclusive and -regexp, all long options can be used without
the dash as well. Note that, aside from -exclusive, only one other option may
appear. All options must appear before any patterns.

Programming Notes: The command clear name only clears the variable name when
both a variable and a (shadowed) function named name are currently defined. For
example, suppose you have defined a function foo, and then hidden it by performing
the assignment foo = 2. Executing the command clear foo once will clear the vari-
able definition and restore the definition of foo as a function. Executing clear foo
a second time will clear the function definition.

When a local variable name, which is linked to a global variable, is cleared only
the local copy of the variable is removed. The global copy is untouched and can be
restored with global global_varname. Conversely, clear -g global_varname will
remove both the local and global variables.

See also: [clearvars], page 153, [who], page 148, [whos], page 149, [exist], page 150,
[mlock], page 233.

clearvars
clearvars pattern ...
clearvars -regexp pattern ...
clearvars ... —-except pattern ...
clearvars ... —except -regexp pattern ...
clearvars -global
Delete the variables matching the given patterns from memory.

The pattern may contain the following special characters:
? Match any single character.
* Match zero or more characters.

[1ist] Match the list of characters specified by list. If the first character is !
or ~, match all characters except those specified by list. For example,
the pattern [a-zA-Z] will match all lowercase and uppercase alphabetic
characters.

If the -regexp option is given then subsequent patterns are treated as regular expres-
sions and any matches will be cleared.

If the —except option is given then subsequent patterns select variables that will not
be cleared.

If the -global option is given then all patterns will be applied to global variables
rather than local variables.

When called with no arguments, clearvars deletes all local variables.
Example Code:
Clear all variables starting with 'x' and the specific variable "foobar"
clearvars x* foobar
Clear the specific variable "foobar" and use regular expressions to clear all variables
starting with 'x' or 'y'.

clearvars foobar -regexp “x "y

154 GNU Octave (version 9.1.0)

Clear all variables except for "foobar"
clearvars -except foobar
Clear all variables beginning with "foo", except for those ending in "bar"

clearvars foo* -except -regexp bar$
See also: [clear|, page 151, [who|, page 148, [whos|, page 149, [exist], page 150.
pack ()

Consolidate workspace memory in MATLAB.

This function is provided for compatibility, but does nothing in Octave.
See also: [clear], page 151.
Information about a function or variable such as its location in the file system can also be

acquired from within Octave. This is usually only useful during development of programs,
and not within a program.

type name ...
type —-q name ...

text = type ("name", ...)
Display the contents of name which may be a file, function (m-file), variable, operator,
or keyword.

type normally prepends a header line describing the category of name such as function
or variable; The -q option suppresses this behavior.

If no output variable is used the contents are displayed on screen. Otherwise, a cell
array of strings is returned, where each element corresponds to the contents of each
requested function.

which name ...
[str, ...] = which (’name’, ...)
Display the type of each name.

If name is defined from a function file, the full name of the file is also displayed.

See also: [help]|, page 21, [lookfor|, page 22.

what
what dir
w = what (dir)
List the Octave specific files in directory dir.
If dir is not specified then the current directory is used.

If a return argument is requested, the files found are returned in the structure w. The
structure contains the following fields:

path Full path to directory dir
m Cell array of m-files
mat Cell array of mat files

mex Cell array of mex files

Chapter 7: Variables 155

oct Cell array of oct files

mdl Cell array of mdl files

slx Cell array of slx files

P Cell array of p-files

classes Cell array of class directories (@classname/)

packages Cell array of package directories (+pkgname/)

Compatibility Note: Octave does not support mdl, slx, and p files. what will always
return an empty list for these categories.

See also: [which], page 154, [ls], page 1042, [exist], page 150.

157

8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates
to a value, which you can print, test, store in a variable, pass to a function, or assign a new
value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements
contain one or more expressions which specify data to be operated on. Asin other languages,
expressions in Octave include variables, array references, constants, and function calls, as
well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a vector, a
matrix (2-D), or a higher-dimensional array. Arrays may be indexed in one of three
ways: [Component Indexing], page 157, [Linear Indexing], page 159, and [Logical Indexing],
page 159.

Component Indexing

Component indices may be scalars, vectors, ranges, or the special operator ‘:’, which selects
entire rows, columns, or higher-dimensional slices.

Component index expression consists of a set of parentheses enclosing M expressions
separated by commas. Each individual index value, or component, is used for the respective
dimension of the object that it is applied to. In other words, the first index component is
used for the first dimension (rows) of the object, the second index component is used for the
second dimension (columns) of the object, and so on. The number of index components M
defines the dimensionality of the index expression. An index with two components would
be referred to as a 2-D index because it has two dimensions.

In the simplest case, 1) all components are scalars, and 2) the dimensionality of the index
expression M is equal to the dimensionality of the object it is applied to. For example:

A = reshape (1:8, 2, 2, 2) # Create 3-D array

A:
ans(:,:,1) =
1 3
2 4
ans(:,:,2) =
5 7
6 8

AC2, 1, 2) # second row, first column of second slice
in third dimension: ans = 6

The size of the returned object in a specific dimension is equal to the number of elements
in the corresponding component of the index expression. When all components are scalars,

158 GNU Octave (version 9.1.0)

the result is a single output value. However, if any component is a vector or range then the
returned values are the Cartesian product of the indices in the respective dimensions. For
example:

AC[L, 21, 1, 2) = [A(1,1,2); A(2,1,2)]

=

The total number of returned values is the product of the number of elements returned
for each index component. In the example above, the total is 2¥1*1 = 2 elements.

Notice that the size of the returned object in a given dimension is equal to the number
of elements in the index expression for that dimension. In the code above, the first index
component ([1, 2]) was specified as a row vector, but its shape is unimportant. The
important fact is that the component specified two values, and hence the result must have
a size of two in the first dimension; and because the first dimension corresponds to rows,
the overall result is a column vector.

AC1, [2, 1, 1], D # result is a row vector: ans = [3, 1, 1]
A(ones (2, 2), 1, 1) # result is a column vector: ans = [1; 1; 1; 1]

The first line demonstrates again that the size of the output in a given dimension is equal
to the number of elements in the respective indexing component. In this case, the output
has three elements in the second dimension (which corresponds to columns), so the result
is a row vector. The example also shows how repeating entries in the index expression can
be used to replicate elements in the output. The last example further proves that the shape
of the indexing component is irrelevant, it is only the number of elements (2x2 = 4) which
is important.

The above rules apply whenever the dimensionality of the index expression is greater
than one (M > 1). However, for one-dimensional index expressions special rules apply
and the shape of the output is determined by the shape of the indexing component. For
example:

A(C[1, 2]) # result is a row vector: ams = [1, 2]
A([1; 2]) # result is a column vector: ans = [1; 2]

The shape rules for A(P) are:
e When at least one of A or P has two or more dimensions, then A(P) takes the shape
of P. This happens when at least one of the variables is a 2-D matrix or an N-D array.

e When both A and P are 1-D vectors, then A(P) takes the shape of A itself. In
particular, when A is a row vector, then A(P) is also a row vector irrespective of
P’s shape. The case when A is a column vector is analogous.

A colon (‘:’) may be used as an index component to select all of the elements in a
specified dimension. Given the matrix,
A= [1, 2; 3, 4]
all of the following expressions are equivalent and select the first row of the matrix.

AC1, [1, 2]1) # row 1, columns 1 and 2
AC1, 1:2) # row 1, columns in range 1-2
ACL, @) # row 1, all columns

Chapter 8: Expressions 159

When a colon is used in the special case of 1-D indexing the result is always a column
vector. Creating column vectors with a colon index is a very frequently encountered code
idiom and is faster and generally clearer than calling reshape for this case.

AC:) # result is column vector: ams = [1; 2; 3; 4]
AC:H)! # result is row vector: ams = [1, 2, 3, 4]
In index expressions the keyword end automatically refers to the last entry for a partic-

ular dimension. This magic index can also be used in ranges and typically eliminates the
needs to call size or length to gather array bounds before indexing. For example:

A(1:end/2) # first half of A => [1, 2]
A(end + 1) = 5; # append element

A(end) = [1; # delete element

A(1:2:end) # odd elements of A => [1, 3]
A(2:2:end) # even elements of A => [2, 4]
A(end:-1:1) # reversal of A => [4, 3, 2, 1]

For more information see the ["end" keyword], page 1162.

Linear Indexing

It is permissible to use a 1-D index with a multi-dimensional object. This is also called linear
indexing. In this case, the elements of the multi-dimensional array are taken in column-first
order like in Fortran. That is, the columns of the array are imagined to be stacked on top
of each other to form a column vector and then the single linear index is applied to this
vector.

A=11, 2, 3; 4, 5, 6; 7, 8, 9];

A(4) # linear index of 4th element in 2-D array: ans = 2
A(3:5) # result has shape of index component: ans = [7, 2, 5]
AC[1, 2, 2, 1]) # result includes repeated elements: ans = [1, 4, 4, 1]

Logical Indexing

Logical values can also be used to index matrices and cell arrays. When indexing with a
logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following examples illustrates this.

data = [1, 2; 3, 4 1;

idx = [true, false; false truel;

data(idx)
= ans

[1; 4]

idx = (data <= 2);
data(idx)
= ans

[1; 2]

Instead of creating the idx array it is possible to replace data(idx) with data(data <=2)
in the above code.

While the size of the logical index expressions is usually the same as that of the array
being indexed, this is not a necessary condition. If the logical index is a different size than

160 GNU Octave (version 9.1.0)

the array, then elements from the array are matched against elements from the logical index
based on their linear order, just as with linear indexing.

data =[1, 2, 3; 4, 5, 6 1;
idx = [true, false, false, true];
data(idx)
= ans = [1 5] # idx selected the 1st and 4th position elements

If the logical index is larger than then array an out of bounds error will occur if any true
values attempt to select a linear position larger than the number of elements in the array.

idx = [true, true, false; false, true, false; true; false; false];
data(idx)
= ans = [1; 2; 5; 3] # returns positions 1, 3, 4, 5 in a column

idx = [true, true, false; false, true, false; true; false; true];
data(idx)
= error: a(9): out of bound 6 (dimensions are 2x3)

False elements of a logical index outside the array size are ignored, but when the ninth
element of the logical index is true it triggers an error as it tries to select a nonexistent 9th
element of the array.

8.1.1 Advanced Indexing

Chained indexing

Octave permits the use of repeated (chained) index expressions to extract subsets of an
array in a single command without the need to use intermediate variables. This can make
it easier to write code with either complicated indexing operations or using multiple indexing
methods. The following example shows two equivalent index extraction operations:

A = reshape (1:16, 4, 4);

B = A(2:4, 2:3);

C = B(3:5);

D =C([true, false, true])
= D=1[8, 11]

D = A(2:4, 2:3)(3:5)([true, false, true])
= D=1[8, 11]

Chained indexing will necessarily be slower than a single index expression producing
the same results, but is usually more computationally efficient than performing multiple
discrete indexing operations with intermediate variable assignments.

Note that chained indexing is only compatible with right-hand expressions and can not
be used on the left-hand side of assignment operations.

Component to linear index conversion

When it is necessary to extract subsets of entries out of an array whose indices cannot be
written as a Cartesian product of components, linear indexing together with the function
sub2ind can be used. For example:

Chapter 8: Expressions 161

=

= reshape (1:8, 2, 2, 2) # Create 3-D array

ans(:,:,1) =

1 3

2 4
ans(:,:,2) =

5 7

6 8

A(sub2ind (size (&), [1, 2, 1], [1, 1, 21, [1, 2, 11

ind =

ind

[s1,

= ans = [A(1, 1, 1), A(2, 1, 2), A(1, 2, D]

sub2ind (dims, i, j)
sub2ind (dims, s1, s2, ..., sN)
Convert subscripts to linear indices.

The input dims is a dimension vector where each element is the size of the array in
the respective dimension (see [size|, page 47). The remaining inputs are scalars or
vectors of subscripts to be converted.

The output vector ind contains the converted linear indices.

Background: Array elements can be specified either by a linear index which starts
at 1 and runs through the number of elements in the array, or they may be specified
with subscripts for the row, column, page, etc. The functions ind2sub and sub2ind
interconvert between the two forms.

The linear index traverses dimension 1 (rows), then dimension 2 (columns), then
dimension 3 (pages), etc. until it has numbered all of the elements. Consider the
following 3-by-3 matrices:

(1,0, 1,2), (1,3)] 1, 4, 7]
(2,0, (2,2), (2,3)] ==> [2, 5, 8]
(3,1, 3,2), (3,3)] (3, 6, 9]

The left matrix contains the subscript tuples for each matrix element. The right
matrix shows the linear indices for the same matrix.

The following example shows how to convert the two-dimensional indices (2,1) and
(2,3) of a 3-by-3 matrix to linear indices with a single call to sub2ind.
s1 = [2, 2];
s2 [1, 3];
ind = sub2ind ([3, 3], s1, s2)
= ind = 2 8

See also: [ind2sub], page 161, [size], page 47.

s2, ..., sN] = ind2sub (dims, ind)
Convert linear indices to subscripts.

162

tf
tf

GNU Octave (version 9.1.0)

The input dims is a dimension vector where each element is the size of the array in
the respective dimension (see [size], page 47). The second input ind contains linear
indices to be converted.

The outputs s1, ..., sN contain the converted subscripts.

Background: Array elements can be specified either by a linear index which starts
at 1 and runs through the number of elements in the array, or they may be specified
with subscripts for the row, column, page, etc. The functions ind2sub and sub2ind
interconvert between the two forms.

The linear index traverses dimension 1 (rows), then dimension 2 (columns), then
dimension 3 (pages), etc. until it has numbered all of the elements. Consider the
following 3-by-3 matrices:

(1, 4, 7] (1,1, (1,2), (1,3)]
(2, 5, 8] ==> [(2,1), (2,2), (2,3)]
(3, 6, 9] (3,1, 3,2), (3,3)]

The left matrix contains the linear indices for each matrix element. The right matrix
shows the subscript tuples for the same matrix.

The following example shows how to convert the linear indices 2 and 8 to appropriate
subscripts of a 3-by-3 matrix.

ind = [2, 8];

[r, c] = ind2sub ([3, 3], ind)
= r = 2 2
= c= 1 3

If the number of output subscripts exceeds the number of dimensions, the exceeded
dimensions are set to 1. On the other hand, if fewer subscripts than dimensions are
provided, the exceeding dimensions are merged into the final requested dimension.
For clarity, consider the following examples:

ind = [2, 8];
dims = [3, 3];
same as dims = [3, 3, 1]

[r, ¢, s] = ind2sub (dims, ind)
= r = 2 2
= c= 1 3
= s = 1 1

same as dims [9]
r = ind2sub (dims, ind)
=>1r = 2 8

See also: [sub2ind], page 161, [size], page 47.
isindex (ind)

isindex (ind, n)
Return true if ind is a valid index.

Valid indices are either positive integers (although possibly of real data type), or
logical arrays.

Chapter 8: Expressions 163

If present, n specifies the maximum extent of the dimension to be indexed. When
possible the internal result is cached so that subsequent indexing using ind will not
perform the check again.

Implementation Note: Strings are first converted to double values before the checks
for valid indices are made. Unless a string contains the NULL character "\0", it will
always be a valid index.

Component count not equal to dimensionality

An array with ‘nd’ dimensions can be indexed by an index expression which has from 1 to
‘nd’ components. For the ordinary and most common case, the number of components ‘M’
matches the number of dimensions ‘nd’. In this case the ordinary indexing rules apply and
each component corresponds to the respective dimension of the array.

However, if the number of indexing components exceeds the number of dimensions
(M > nd) then the excess components must all be singletons (1). Moreover, if M < nd, the
behavior is equivalent to reshaping the input object so as to merge the trailing nd - M di-
mensions into the last index dimension M. Thus, the result will have the dimensionality of
the index expression, and not the original object. This is the case whenever dimensionality
of the index is greater than one (M > 1), so that the special rules for linear indexing are not
applied. This is easiest to understand with an example:

A = reshape (1:8, 2, 2, 2) # Create 3-D array
A=

ans(:,:,1) =

1 3

2 4
ans(:,:,2) =

5 7

6 8

2-D indexing causes third dimension to be merged into second dimension.|]
Equivalent array for indexing, Atmp, is now 2x4.

Atmp = reshape (4, 2, 4)

Atmp =

1 3 5 7
2 4 6 8

AC2,1) # Reshape to 2x4 matrix, second entry of first column: ans = 2
A(2,4) # Reshape to 2x4 matrix, second entry of fourth column: ans = 8
AC:,) # Reshape to 2x4 matrix, select all rows & columns, ans = Atmp

Note here the elegant use of the double colon to replace the call to the reshape function.

164 GNU Octave (version 9.1.0)

Array replication

Another advanced use of linear indexing is to create arrays filled with a single value. This
can be done by using an index of ones on a scalar value. The result is an object with
the dimensions of the index expression and every element equal to the original scalar. For
example, the following statements

a = 13;
a(ones (1, 4))

produce a row vector whose four elements are all equal to 13.

Similarly, by indexing a scalar with two vectors of ones it is possible to create a matrix.
The following statements

a = 13;
a(ones (1, 2), ones (1, 3))

create a 2x3 matrix with all elements equal to 13. This could also have been written as
13(ones (2, 3))

It is more efficient to use indexing rather than the code construction scalar * ones (M,
N, ...) because it avoids the unnecessary multiplication operation. Moreover, multiplica-
tion may not be defined for the object to be replicated whereas indexing an array is always
defined. The following code shows how to create a 2x3 cell array from a base unit which is
not itself a scalar.

{"Hello"}(ones (2, 3))

It should be noted that ones (1, n) (a row vector of ones) results in a range object (with
zero increment). A range is stored internally as a starting value, increment, end value, and
total number of values; hence, it is more efficient for storage than a vector or matrix of ones
whenever the number of elements is greater than 4. In particular, when ‘r’ is a row vector,
the expressions

r(ones (1, n), :)
r(ones (n, 1), :)

will produce identical results, but the first one will be significantly faster, at least for ‘r’
and ‘n’ large enough. In the first case the index is held in compressed form as a range which
allows Octave to choose a more efficient algorithm to handle the expression.

A general recommendation for users unfamiliar with these techniques is to use the func-
tion repmat for replicating smaller arrays into bigger ones, which uses such tricks.

Indexing for performance enhancement

A second use of indexing is to speed up code. Indexing is a fast operation and judicious use
of it can reduce the requirement for looping over individual array elements, which is a slow
operation.

Consider the following example which creates a 10-element row vector a containing the
values a; = V/i.
for i = 1:10
a(i) = sqrt (1);
endfor

Chapter 8: Expressions 165

It is quite inefficient to create a vector using a loop like this. In this case, it would have
been much more efficient to use the expression

a = sqrt (1:10);
which avoids the loop entirely.

In cases where a loop cannot be avoided, or a number of values must be combined to
form a larger matrix, it is generally faster to set the size of the matrix first (pre-allocate
storage), and then insert elements using indexing commands. For example, given a matrix
a7

[nr, nc] = size (a);
x = zeros (nr, n * nc);
for i = 1:n
x(:,(i-1)*nc+1:i*nc) = a;
endfor
is considerably faster than
X = a;
for i = 1:n-1
x = [x, al;
endfor
because Octave does not have to repeatedly resize the intermediate result.

For more performance improvement suggestions see Chapter 19 [Vectorization and Faster
Code Execution], page 671.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it
by name at any point in the program. For example, the function sqrt computes the square
root of a number.

A fixed set of functions are built-in, which means they are available in every Octave
program. The sqrt function is one of these. In addition, you can define your own functions.
See Chapter 11 [Functions and Scripts|, page 201, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more
than one argument, they are separated by commas. If there are no arguments, you can
omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that
a function call was intended. Here are some examples:

sqrt (x"2 + y~2) # One argument
ones (n, m) # Two arguments
rand O # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:
sqrt (argument)
Some of the built-in functions take a variable number of arguments, depending on the
particular usage, and their behavior is different depending on the number of arguments
supplied.

166 GNU Octave (version 9.1.0)

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of sqrt (argument)
is the square root of the argument. A function can also have side effects, such as assigning
the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,
the following statement

[u, s, vl = svd (a)
computes the singular value decomposition of the matrix a and assigns the three result
matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, that is, a
list of variable names potentially qualified by index expressions. See also Section 8.1 [Index
Expressions], page 157, and Section 8.6 [Assignment Ops|, page 177.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory
before being passed to the function. There is currently no way to specify that a function
parameter should be passed by reference instead of by value. This means that it is impossible
to directly alter the value of a function parameter in the calling function. It can only change
the local copy within the function body. For example, the function

function f (x, n)
while (n—- > 0)
disp (x);
endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as a
temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a
function called as

foo = "bar";

fcn (foo)
you should not think of the argument as being “the variable foo.” Instead, think of the
argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);

fx);
does not actually force two 1000 by 1000 element matrices to exist unless the function f
modifies the value of its argument. Then Octave must create a copy to avoid changing the
value outside the scope of the function £, or attempting (and probably failing!) to modify
the value of a constant or the value of a temporary result.

Chapter 8: Expressions 167

8.2.2 Recursion

With some restrictions®, recursive function calls are allowed. A recursive function is one
which calls itself, either directly or indirectly. For example, here is an inefficient? way to
compute the factorial of a given integer:

function retval = fact (n)
if (n > 0)
retval = n * fact (n-1);
else
retval
endif
endfunction

1;

This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous
call. Once the argument is no longer greater than zero, it does not call itself, and the
recursion ends.

The function max_recursion_depth may be used to specify a limit to the recursion
depth and prevents Octave from recursing infinitely. Similarly, the function max_stack_
depth may be used to specify limit to the depth of function calls, whether recursive or
not. These limits help prevent stack overflow on the computer Octave is running on, so
that instead of exiting with a signal, the interpreter will throw an error and return to the
command prompt.

val = max_recursion_depth ()

old_val = max_recursion_depth (new_val)

old_val = max_recursion_depth (new_val, "local")
Query or set the internal limit on the number of times a function may be called
recursively.

If the limit is exceeded, an error message is printed and control returns to the top
level.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [max_stack_depth], page 167.

val = max_stack_depth ()

old_val = max_stack_depth (new_val)

old_val = max_stack_depth (new_val, "local")
Query or set the internal limit on the number of times a function may be called
recursively.

1 Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver 1sode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so 1sode should not be called either directly or indirectly from within the user-supplied
function that 1sode requires. Doing so will result in an error.

2 1t would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that
the value n is actually a positive integer.

168 GNU Octave (version 9.1.0)

If the limit is exceeded, an error message is printed and control returns to the top
level.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [max_recursion_depth], page 167.

8.2.3 Access via Handle

A function may be abstracted and referenced via a function handle acquired using the
special operator ‘@’. For example,

f = Oplus;
£ (2, 2)
= 4

is equivalent to calling plus (2, 2) directly. Beyond abstraction for general programming,
function handles find use in callback methods for figures and graphics by adding listeners
to properties or assigning pre-existing actions, such as in the following example:

function mydeletefcn (h, ~, msg)
printf (msg);
endfunction
sombrero;
set (gcf, "deletefcn", {@mydeletefcn, "Bye!\n"});
close;

The above will print "Bye!" to the terminal upon the closing (deleting) of the figure. There
are many graphics property actions for which a callback function may be assigned, including,
buttondownfcn, windowscrollwheelfcn, createfcn, deletefcn, keypressfcn, etc.

Note that the ‘@ character also plays a role in defining class functions, i.e., methods,
but not as a syntactical element. Rather it begins a directory name containing methods
for a class that shares the directory name sans the ‘@ character. See Chapter 34 [Object
Oriented Programming], page 947.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices. The
element-by-element operators and functions broadcast (see Section 19.2 [Broadcasting],
page 673).

x+y Addition (always works element by element). If both operands are matrices, the
number of rows and columns must both agree, or they must be broadcastable
to the same shape.

X -y Subtraction (always works element by element). If both operands are matri-
ces, the number of rows and columns of both must agree, or they must be
broadcastable to the same shape.

y Matrix multiplication. The number of columns of x must agree with the number
of rows of y.

Chapter 8: Expressions 169

x Xy Element-by-element multiplication. If both operands are matrices, the number
of rows and columns must both agree, or they must be broadcastable to the
same shape.

x/y Right division. This is conceptually equivalent to the expression

(inv (y') * x')'
but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x.ly Element-by-element right division.

x\y Left division. This is conceptually equivalent to the expression

inv (x) * y
but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x \y Element-by-element left division. Each element of y is divided by each corre-
sponding element of x.

x "y Power operator. If x and y are both scalars, this operator returns x raised to
the power y. If x is a scalar and y is a square matrix, the result is computed
using an eigenvalue expansion. If x is a square matrix, the result is computed
by repeated multiplication if y is an integer, and by an eigenvalue expansion if
y is not an integer. An error results if both x and y are matrices.

The implementation of this operator needs to be improved.

x.my Element-by-element power operator. If both operands are matrices, the number
of rows and columns must both agree, or they must be broadcastable to the
same shape. If several complex results are possible, the one with smallest non-
negative argument (angle) is taken. This rule may return a complex root even
when a real root is also possible. Use realpow, realsqrt, cbrt, or nthroot if
a real result is preferred.

-X Negation.

+x Unary plus. This operator has no effect on the operand.

x’ Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to
the expression

conj (x.")

x. Transpose.

Note that because Octave’s element-by-element operators begin with a ‘.’) there is a

possible ambiguity for statements like

1./m

because the period could be interpreted either as part of the constant or as part of the
operator. To resolve this conflict, Octave treats the expression as if you had typed

(1)

./ m

170 GNU Octave (version 9.1.0)

and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually
prefers to break the input into tokens by preferring the longest possible match at any given
point, it is more useful in this case.

Note also that some combinations of binary operators and whitespace can create ap-
parent ambiguities with the Command Syntax form of calling functions. See Section 11.13
[Command Syntax and Function Syntax], page 246, for a description of how Octave treats
that syntax.

B = ctranspose (4)
Return the complex conjugate transpose of A.

This function and A' are equivalent.

See also: [transposel, page 172.
y = pagectranspose (4)

Return the page-wise complex conjugate transpose of the N-dimensional array A.

This is equivalent to A(:,:, k) ' for each page k.

See also: [pagetranspose|, page 172, [ctranspose], page 170, [permute|, page 564.
C = ldivide (4, B)

Return the element-by-element left division of A and B.

This function and A .\ B are equivalent.

See also: [rdivide], page 171, [mldivide], page 170, [times]|, page 171, [plus|, page 171.
C = minus (4, B)

This function and A - B are equivalent.

See also: [plus|, page 171, [uminus|, page 172.
C = mldivide (4, B)

Return the matrix left division of A and B.

This function and A \ B are equivalent.

If the system is not square, or if the coefficient matrix is singular, a minimum norm
solution is computed.

See also: [mrdivide], page 171, [ldivide], page 170, [rdivide], page 171, [linsolve],
page 636.

C = mpower (4, B)
Return the matrix power operation of A raised to the B power.

This function and A = B are equivalent.

See also: [power]|, page 171, [mtimes]|, page 171, [plus], page 171, [minus|, page 170.

Chapter 8: Expressions 171

Q
I

mrdivide (4, B)

Return the matrix right division of A and B.

This function and A / B are equivalent.

If the system is not square, or if the coefficient matrix is singular, a minimum norm

solution is computed.

See also: [mldivide], page 170, [rdivide], page 171, [plus]|, page 171, [minus], page 170.

mtimes (4, B)
mtimes (A1, A2, ...)
Return the matrix multiplication product of inputs.
This function and A * B are equivalent. If more arguments are given, the multiplica-
tion is applied cumulatively from left to right:
(...((A1 * A2) * A3) * ...)

See also: [times]|, page 171, [plus], page 171, [minus]|, page 170, [rdivide], page 171,
[mrdivide], page 171, [mldivide], page 170, [mpower]|, page 170, [tensorprod], page 656.

= plus (4, B)
= plus (41, A2, ...)

This function and A + B are equivalent.
If more arguments are given, the summation is applied cumulatively from left to right:
(... ((A1 + A2) + A3) + ...)

See also: [minus|, page 170, [uplus|, page 172.

power (A, B)

Return the element-by-element operation of A raised to the B power.
This function and A .~ B are equivalent.

If several complex results are possible, returns the one with smallest non-negative
argument (angle). Use realpow, realsqrt, cbrt, or nthroot if a real result is pre-
ferred.

See also: [mpower|, page 170, [realpow|, page 594, [realsqrt], page 594, [cbrt],
page 594, [nthroot|, page 594.

rdivide (4, B)
Return the element-by-element right division of A and B.
This function and 4 ./ B are equivalent.

See also: [ldivide], page 170, [mrdivide], page 171, [times], page 171, [plus], page 171.

= times (4, B)

times (41, A2, ...)
Return the element-by-element multiplication product of inputs.

This function and A .* B are equivalent. If more arguments are given, the multipli-
cation is applied cumulatively from left to right:

(... ((A1 % A2) .x A3) .x ...)
See also: [mtimes|, page 171, [rdivide], page 171.

172 GNU Octave (version 9.1.0)

B = transpose (4)
Return the transpose of A.
This function and A.' are equivalent.
See also: [ctranspose|, page 170.
B = pagetranspose (4)
Return the page-wise transpose of the N-dimensional array A.
This is equivalent to A(:,:, k).' for each page k.
See also: [pagectranspose], page 170, [transpose], page 172, [permute], page 564.
B = uminus (4)
This function and - A are equivalent.
See also: [uplus|, page 172, [minus|, page 170.
B = uplus (4)

This function and + A are equivalent.

See also: [uminus|, page 172, [plus|, page 171.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.

All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0
if it is false. For matrix values, they all work on an element-by-element basis. Broadcasting
rules apply. See Section 19.2 [Broadcasting], page 673. For example:

(1, 2; 3, 4] == [1, 3; 2, 4]
= 1 0
0 1

According to broadcasting rules, if one operand is a scalar and the other is a matrix, the
scalar is compared to each element of the matrix in turn, and the result is the same size as
the matrix.

x<y True if x is less than y.

x<=y True if x is less than or equal to y.

X == True if x is equal to y.

xX>=y True if x is greater than or equal to y.
x>y True if x is greater than y.

x!l=y

x"=y True if x is not equal to y.

For complex numbers, the following ordering is defined: z1 < z2 if and only if

abs (z1) < abs (z2)
|l (abs (z1) == abs (z2) && arg (z1) < arg (z2))

Chapter 8: Expressions 173

This is consistent with the ordering used by max, min and sort, but is not consistent
with MATLAB, which only compares the real parts.

String comparisons may also be performed with the strcmp function, not with the com-
parison operators listed above. See Chapter 5 [Strings|, page 73.

TF = eq (4, B)
Return true if the two inputs are equal.

This function is equivalent to A ==

See also: [nel, page 173, [isequal|, page 173, [le], page 173, [ge], page 173, [gt], page 173,

[ne|, page 173, [lt], page 173.
TF = ge (4, B)

This function is equivalent to 4 >= B.

See also: [le|, page 173, [eq], page 173, [gt], page 173, [ne], page 173, [lt], page 173.
TF = gt (4, B)

This function is equivalent to A > B.

See also: [le], page 173, [eq], page 173, [ge|, page 173, [ne], page 173, [lt], page 173.
tf = isequal (x1, x2, ...)

Return true if all of x1, x2, ... are equal.

See also: [isequaln|, page 173.
tf = isequaln (x1, x2, ...)

Return true if all of x1, x2, ... are equal under the additional assumption that NaN
== NaN (no comparison of NaN placeholders in dataset).

See also: [isequal], page 173.
TF = le (4, B)

This function is equivalent to A <= B.

See also: [eq], page 173, [ge], page 173, [gt], page 173, [ne], page 173, [lt], page 173.
TF = 1t (4, B)

This function is equivalent to 4 < B.

See also: [le], page 173, [eq], page 173, [ge|, page 173, [gt], page 173, [ne], page 173.

TF = ne (4, B)
Return true if the two inputs are not equal.

This function is equivalent to A !'= B.

See also: [eq], page 173, [isequall, page 173, [le], page 173, [ge], page 173, [1t], page 173.

174 GNU Octave (version 9.1.0)

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to
control nesting. The truth of the boolean expression is computed by combining the truth
values of the corresponding elements of the component expressions. A value is considered
to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions
can be used. They can be used in if and while statements. However, a matrix value used
as the condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression

also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

booleanl & boolean2
Elements of the result are true if both corresponding elements of booleanl and
boolean2 are true.

booleanl | boolean2
Elements of the result are true if either of the corresponding elements of
booleanl or booleanZ2 is true.

! boolean
~ boolean Each element of the result is true if the corresponding element of boolean is
false.

These operators work on an element-by-element basis. For example, the expression
(1, 0; O, 11 & [1, O0; 2, 3]
returns a two by two identity matrix.

For the binary operators, broadcasting rules apply. See Section 19.2 [Broadcasting],
page 673. In particular, if one of the operands is a scalar and the other a matrix, the
operator is applied to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions booleanl and
boolean?2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & bt++
the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-
valued operands.

TF = and (x, y)
TF = and (x1, x2, ...)
Return the logical AND of x and y.

Chapter 8: Expressions 175

This function is equivalent to the operator syntax x & y. If more than two arguments
are given, the logical AND is applied cumulatively from left to right:

(...((x1 & x2) & x3) & ...)
See also: [or], page 175, [not], page 175, [xor|, page 557.

z = not (x)
Return the logical NOT of x.

This function is equivalent to the operator syntax ! x.
See also: [and], page 174, [or], page 175, [xor], page 557.
TF = or (x, y)

TF = or (x1, x2, ...)
Return the logical OR of x and y.

This function is equivalent to the operator syntax x | y. If more than two arguments
are given, the logical OR is applied cumulatively from left to right:

C..(x1 1 x2 | x3) | ...)
See also: [and], page 174, [not], page 175, [xor], page 557.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-
tave’s element-by-element boolean operators are often sufficient for performing most logical
operations. However, it is sometimes desirable to stop evaluating a boolean expression as
soon as the overall truth value can be determined. Octave’s short-circuit boolean operators
work this way.

booleanl && booleanZ2

The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If booleanl is not a logical value, it
is considered true if its value is nonzero, and false if its value is zero. If booleanl
is an array, it is considered true only if it is non-empty and all elements are
nonzero. If booleanl evaluates to false, the result of the overall expression is
false. If it is true, the expression boolean2 is evaluated in the same way as
booleanl. If it is true, the result of the overall expression is true. Otherwise
the result of the overall expression is false.

Warning: the one exception to the equivalence with evaluating all
(boolean1(:)) is when booleanl an the empty array. For MATLAB
compatibility, the truth value of an empty array is always false so [] && true
evaluates to false even though all ([]) is true.

booleanl || boolean2
The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If booleanl is not a logical value, it
is considered true if its value is nonzero, and false if its value is zero. If booleanl
is an array, it is considered true only if it is non-empty and all elements are
nonzero. If booleanl evaluates to true, the result of the overall expression is
true. If it is false, the expression boolean2 is evaluated in the same way as

176 GNU Octave (version 9.1.0)

booleanl. If it is true, the result of the overall expression is true. Otherwise
the result of the overall expression is false.

Warning: the truth value of an empty matrix is always false, see the previous
list item for details.

The fact that both operands may not be evaluated before determining the overall truth
value of the expression can be important. For example, in the expression

a && b++
the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)
if (nargin > 2 && ischar (c))

instead of having to use two if statements to avoid attempting to evaluate an argument
that doesn’t exist. For example, without the short-circuit feature, it would be necessary to
write

function f (a, b, c)
if (nargin > 2)
if (ischar (c))

Writing
function £ (a, b, c)
if (nargin > 2 & ischar (c))

would result in an error if £ were called with one or two arguments because Octave would
be forced to try to evaluate both of the operands for the operator ‘&’.

MATLAB has special behavior that allows the operators ‘&’ and ‘|’ to short-circuit when
used in the truth expression for if and while statements. Octave behaves the same way for
compatibility, however, the use of the ‘&’ and ‘|’ operators in this way is strongly discouraged
and a warning will be issued. Instead, you should use the ‘€&’ and ‘| |’ operators that always
have short-circuit behavior.

Finally, the ternary operator (?7:) is not supported in Octave. If short-circuiting is not
important, it can be replaced by the ifelse function.

M = merge (mask, tval, fval)
M = ifelse (mask, tval, fval)
Merge elements of true_val and false_val, depending on the value of mask.

If mask is a logical scalar, the other two arguments can be arbitrary values. Otherwise,
mask must be a logical array, and tval, fval should be arrays of matching class, or
cell arrays. In the scalar mask case, tval is returned if mask is true, otherwise fval is
returned.

In the array mask case, both tval and fval must be either scalars or arrays with
dimensions equal to mask. The result is constructed as follows:

result(mask) = tval(mask);
result (! mask) = fval(! mask);

Chapter 8: Expressions 177

mask can also be arbitrary numeric type, in which case it is first converted to logical.

Programming Note: ifelse is an alias for merge and can be used interchangeably.

See also: [logical], page 65, [diff], page 558.

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable. For example, the
following expression assigns the value 1 to the variable z:

z =1

After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=’ sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would
store the value "this food is good" in the variable message:

thing = "food"
predicate = "good"

message = ["this " , thing , " is " , predicate]
= "this food is good"

(This also illustrates concatenation of strings.)

Most operators (addition, concatenation, and so on) have no effect except to compute
a value. If you ignore the value, you might as well not use the operator. An assignment
operator is different. It does produce a value, but even if you ignore the value, the assignment
still makes itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 143). It can also be an element of a matrix (see Section 8.1 [Index Expressions],
page 157) or a list of return values (see Section 8.2 [Calling Functions|, page 165). These
are all called Ivalues, which means they can appear on the left-hand side of an assignment
operator. The right-hand operand may be any expression. It produces the new value which
the assignment stores in the specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a
variable is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a string value
later on:

>> foo =1

foo =1

>> foo = "bar"
foo = bar

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced
by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) =56

sets all the elements in the second column of a to 5.

178 GNU Octave (version 9.1.0)

When an assignment sets the value of a vector, matrix, or array element at a position
or dimension outside of that variable’s current size, the array size will be increased to
accommodate the new values:

>> a = [1, 2, 3]
a=1

2
>> a(4)
2

2

w I w

4
a=1 4
>> a(
a =

1 2 3 4
5 6 7 8

, 1) =105, 6,7, 8]

Attempting to increase the size of an array such that the desired output size is ambiguous
will result in an error:

>> a(9) = 10

- error: Invalid resizing operation or ambiguous assignment to an
out-of-bounds array element

This is because adding the 9th element creates an ambiguity in the desired array position
for the value 10, each possibility requiring a different array size expansion to accommodate
the assignment.

Assignments may be made with fewer specified elements than would be required to fill
the newly expanded array as long as the assignment is unambiguous. In these cases the
array will be automatically padded with null values:

>> a = [1, 2]

a = 1 2
>> a(4) =5
a = 1 2 0 5
>> a3, :) = [6, 7, 8, 9]
a =
i1 2 0 5
O 0 O oO
6 7 8 9
>> a(4, 5) = 10
a =
1 2 0 5 0
0 0 0 0 0
6 7 8 9 0
0 0 0 0 10

For all built-in types, the null value will be appropriate to that object type.
Numeric arrays:

>> a = int32 ([1, 21)

a=1, 2
>> a(4) =5
a=12025

Logical arrays:

Chapter 8: Expressions 179

>> a = [true, false, true]
a=101

>> d(5) = true
d=10101

Character arrays:

>> a = "abc"

a = abc

>> a(5) = Ild"

a = abcd

>> double (a)

ans = 97 98 99 0 100

Cell arrays:

>> e = {1, "foo", [3, 41};

>> e(5) = "bar"

e =

{
[1,1] = 1
[1,2] = foo
[1,3] =

3 4

[1,4] = [1(0x0)
[1,5] = bar

}

Struct arrays:

>> a = struct("foo",1,"bar",2);
>> a(3) = struct("foo",3,"bar",9)
a:

1x3 struct array containing the fields:

foo
bar
>> a.foo
ans = 1
ans = [](0x0)
ans = 3
>> a.bar
ans = 2
ans = [](0x0)
ans = 9

180 GNU Octave (version 9.1.0)

Note that Octave currently is unable to concatenate arbitrary object types into arrays.
Such behavior must be explicitly defined within the object class or attempts at concatena-
tion will result in an error. See Chapter 34 [Object Oriented Programming], page 947,
Assigning an empty matrix ‘[]’ works in most cases to allow you to delete rows or
columns of matrices and vectors. See Section 4.1.1 [Empty Matrices|, page 55. For example,
given a 4 by 5 matrix A, the assignment
A (3,) =1]

deletes the third row of A, and the assignment
A (:, 1:2:5) =[]

deletes the first, third, and fifth columns.

Deleting part of an array object will necessarily resize the object. When the deletion
allows for consistent size reduction across a dimension, e.g., one element of a vector, or one
row or column of a matrix, the size along that dimension will be reduced while preserv-
ing dimensionality. If, however, dimensionality cannot be maintained, the object will be
reshaped into a vector following column-wise element ordering:

> a=1[1, 2, 3, 4; 5, 6, 7, 8]

a =
1 2 3 4
5 6 7 8
>> a(:, 3) =[]
a =
1 2 4
5 6 8
>> a(4) =[]

a=152438

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the
value 1. One consequence of this is that you can write multiple assignments together:

x=y=2=0
stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,
is stored into y, and then the value of y = z = 0, which is 0, is stored into x.
This is also true of assignments to lists of values, so the following is a valid expression
[a, b, c] = [u, s, v] = svd (a)
that is exactly equivalent to
[u, s, vl = svd (a)

a=u
b=s
c=v

In expressions like this, the number of values in each part of the expression need not
match. For example, the expression
[a, b] = [u, s, v] = svd (a)
is equivalent to
[u, s, v] = svd (a)
a=u
b=-=s

Chapter 8: Expressions 181

The number of values on the left side of the expression can, however, not exceed the number
of values on the right side. For example, the following will produce an error.

la, b, ¢, d] = [u, s, v] = svd (a);
- error: element number 4 undefined in return list

The symbol ~ may be used as a placeholder in the list of lvalues, indicating that the
corresponding return value should be ignored and not stored anywhere:

[, s, v] = svd (a);

This is cleaner and more memory efficient than using a dummy variable. The nargout
value for the right-hand side expression is not affected. If the assignment is used as an
expression, the return value is a comma-separated list with the ignored values dropped.

A very common programming pattern is to increment an existing variable with a given
value, like this

a=a+ 2;
This can be written in a clearer and more condensed form using the += operator
a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

exprl op= expr2
is evaluated as
exprl = (exprl) op (expr2)

where op can be either +, -, *, or /, as long as expr2 is a simple expression with no side
effects. If expr2 also contains an assignment operator, then this expression is evaluated as

temp = expr2
exprl = (exprl) op temp
where temp is a placeholder temporary value storing the computed result of evaluating
expr2. So, the expression
a *= b+l
is evaluated as
a=a * (b+1)
and not
a=ax*xb+1

You can use an assignment anywhere an expression is called for. For example, it is valid
to write x !'= (y = 1) to set y to 1 and then test whether x equals 1. But this style tends
to make programs hard to read. Except in a one-shot program, you should rewrite it to get
rid of such nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to
increment a variable is written as ‘“++’. It may be used to increment a variable either before
or after taking its value.

182 GNU Octave (version 9.1.0)

For example, to pre-increment the variable x, you would write ++x. This would add one
to x and then return the new value of x as the result of the expression. It is exactly the
same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,
but returns the value that x had prior to incrementing it. For example, if x is equal to 2,
the result of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

The increment and decrement operators must "hug" their corresponding variable. That
means, no white spaces are allowed between these operators and the variable they affect.

Here is a list of all the increment and decrement expressions.

++X This expression increments the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x + 1.

--x This expression decrements the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x - 1.

x++ This expression causes the variable x to be incremented. The value of the
expression is the old value of x.

x-= This expression causes the variable x to be decremented. The value of the
expression is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators ap-
pear close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the
expression a + b * ¢ means to multiply b and ¢, and then add a to the product (i.e., a + (b

* C)).

You can overrule the precedence of the operators by using parentheses. You can think
of the precedence rules as saying where the parentheses are assumed if you do not write
parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual
combination of operators, because other people who read the program may not remember
what the precedence is in this case. You might forget as well, and then you too could make
a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment operators, which group in the opposite order. Thus, the
expression a - b + ¢ groups as (a - b) + ¢, but the expression a =b = c groups asa = (b =

c).

The precedence of prefix unary operators is important when another operator follows
the operand. For example, -x~2 means -(x~2), because ‘-’ has lower precedence than ‘~’.

Here is a table of the operators in Octave, in order of decreasing precedence. Unless
noted, all operators group left to right.

function call and array indexing, cell array indexing, and structure element
indexing

(()7 ({}7 4'7

Chapter 8: Expressions 183

postfix increment, and postfix decrement
3 bANY 9
+4)

These operators group right to left.

transpose and exponentiation
[Y 1) (~9 ¢~

unary plus, unary minus, prefix increment, prefix decrement, and logical "not"
G 0 ¢ P YL~)0
R !

multiply and divide

(*7 4/7 t\?(\74 *7(/7
add, subtract

R

colon c

relational

4<7 (<=7 L==? L>=? 4>7 4|=7 4~=7
element-wise "and"
4&7
element-wise "or"
4 | bl
logical "and"
4&&7
logical "oxr"
4 | | bl

assignment
L) L+=7 [pp— £*=7 L/=7 (\=7 [Rae i *=7 3 /=7 3 \=7 ¢ o~ (|=7 ¢&=7

These operators group right to left.

185

9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by
asking Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed
and stored in a string, which is exactly what the eval function lets you do.

eval (try)
eval (try, catch)
Parse the string try and evaluate it as if it were an Octave program.

If execution fails, evaluate the optional string catch.

The string try is evaluated in the current context, so any results remain available
after eval returns.

The following example creates the variable A with the approximate value of 3.1416
in the current workspace.

eval ("A = acos(-1);");

If an error occurs during the evaluation of try then the catch string is evaluated, as
the following example shows:

eval ('error ("This is a bad example");',
'printf ("This error occurred:\n%s\n", lasterr ();');
- This error occurred:
This is a bad example

Programming Note: if you are only using eval as an error-capturing mechanism,
rather than for the execution of arbitrary code strings, Consider using try/catch
blocks or unwind_protect /unwind_protect_cleanup blocks instead. These techniques
have higher performance and don’t introduce the security considerations that the
evaluation of arbitrary code does.

See also: [evalin], page 188, [evalc], page 185, [assignin], page 188, [feval], page 186.

The evalc function additionally captures any console output produced by the evaluated
expression.

s = evalc (try)

evalc (try, catch)

Parse and evaluate the string try as if it were an Octave program, while capturing
the output into the return variable s.

9]
]

If execution fails, evaluate the optional string catch.
This function behaves like eval, but any output or warning messages which would
normally be written to the console are captured and returned in the string s.

The diary is disabled during the execution of this function. When system is used,
any output produced by external programs is mot captured, unless their output is
captured by the system function itself.
s = evalc ("t = 42"), t
= s =t = 42

= t = 42

186 GNU Octave (version 9.1.0)

See also: [eval], page 185, [diary], page 35.

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This
is useful when writing a function that needs to call user-supplied functions. The feval
function takes the name of the function to call as its first argument, and the remaining
arguments are given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

usage: newtroot (fname, x)

#
fname : a string naming a function f(x).
X : initial guess

delta = tol = sqrt (eps);
maxit = 200;
fx = feval (fname, x);
for i = 1:maxit
if (abs (fx) < tol)
result = x;
return;
else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
x =x - fx / deriv;
fx = fx_new;
endif
endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied functions and
should not be taken too seriously. In addition to using a more robust algorithm, any serious
code would check the number and type of all the arguments, ensure that the supplied func-
tion really was a function, etc. See Section 4.8 [Predicates for Numeric Objects|, page 67, for
a list of predicates for numeric objects, and see Section 7.3 [Status of Variables|, page 148,
for a description of the exist function.

retval = feval (name, ...)
Evaluate the function named name.

Any arguments after the first are passed as inputs to the named function. For example,

feval ("acos", -1)
= 3.1416

Chapter 9: Evaluation 187

calls the function acos with the argument ‘-1’

The function feval can also be used with function handles of any sort (see
Section 11.12.1 [Function Handles], page 244). Historically, feval was the only way
to call user-supplied functions in strings, but function handles are now preferred due
to the cleaner syntax they offer. For example,

f = Qexp;
feval (£, 1)
= 2.7183
£ (1)
= 2.7183

are equivalent ways to call the function referred to by f. If it cannot be predicted
beforehand whether f is a function handle, function name in a string, or inline function
then feval can be used instead.

A similar function run exists for calling user script files, that are not necessarily on the
user path

run script
run ("script")
Run script in the current workspace.

Scripts which reside in directories specified in Octave’s load path, and which end with
the extension .m, can be run simply by typing their name. For scripts not located on
the load path, use run.

The filename script can be a bare, fully qualified, or relative filename and with or
without a file extension. If no extension is specified, Octave will first search for a script
with the .m extension before falling back to the script name without an extension.

Implementation Note: If script includes a path component, then run first changes the
working directory to the directory where script is found. Next, the script is executed.
Finally, run returns to the original working directory unless script has specifically
changed directories.

See also: [path], page 225, [addpath], page 223, [source|, page 235.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list
of function parameters and a couple of predefined variables such as nargin. Expressions
inside the function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in
your own context. This allows you to use a pass-by-name style of function, which is similar
to using a pointer in programming languages such as C.

Consider how you might write save and load as m-files. For example:

188 GNU Octave (version 9.1.0)

function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y
endfunction

With evalin, you could write save as follows:

function save (file, namel, name?2)
f = open_save_file (file);
save_var (f, namel, evalin ("caller", namel));
save_var (f, name2, evalin ("caller", name?2));
endfunction
Here, ‘caller’ is the create_data function and namel is the string "x", which evaluates
simply as the value of x.
You later want to load the values back from mydata in a different context:

function process_data
load mydata
. do work ...
endfunction
With assignin, you could write load as follows:
function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);
endfunction
Here, ‘caller’ is the process_data function.
You can set and use variables at the command prompt using the context ‘base’ rather
than ‘caller’.
These functions are rarely used in practice. One example is the fail (‘code’,
‘pattern’) function which evaluates ‘code’ in the caller’s context and checks that the

error message it produces matches the given pattern. Other examples such as save and
load are written in C++ where all Octave variables are in the ‘caller’ context and evalin

is not needed.

evalin (context, try)
evalin (context, try, catch)
Like eval, except that the expressions are evaluated in the context context, which

may be either "caller" or "base".

See also: [eval], page 185, [assignin], page 188.

assignin (context, varname, value)
Assign value to varname in context context, which may be either "base" or "caller".

See also: [evalin], page 188.

189

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while,
to distinguish them from simple expressions. Many control statements contain other state-
ments; for example, the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks the end of the
control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a
more specific end keyword is expected, but using the more specific keywords is preferred
because if you use them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.

The list of statements contained between keywords like if or while and the correspond-
ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an
if statement. In its simplest form, it looks like this:
if (condition)
then-body
endif

condition is an expression that controls what the rest of the statement will do. The then-
body is executed only if condition is true.

The condition in an if statement is considered true if its value is nonzero, and false if
its value is zero. If the value of the conditional expression in an if statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are nonzero.
The conceptually equivalent code when condition is a matrix is shown below.

if (matrix) = if (all (matrix(:)))
The second form of an if statement looks like this:
if (condition)
then-body
else
else-body
endif
If condition is true, then-body is executed; otherwise, else-body is executed.
Here is an example:
if (rem (x, 2) == 0)
printf ("x is even\n");
else
printf ("x is odd\n");
endif

190 GNU Octave (version 9.1.0)

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is
divisible by 2), then the first printf statement is evaluated, otherwise the second printf
statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be
combined in a single statement. It looks like this:

if (condition)
then-body
elseif (condition)
elseif-body
else
else-body
endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is
found to be true, its corresponding body is executed. If none of the conditions are true and
the else clause is present, its body is executed. Only one else clause may appear, and it
must be the last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible
by 2), then the first printf statement is executed. If it is false, then the second condition
is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf
statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If
it is, the space between the else and if will tell Octave to treat this as a new if statement
within another if statement’s else clause. For example, if you write

if (c1)
body-1
else if (c2)
body-2
endif

Octave will expect additional input to complete the first if statement. If you are using
Octave interactively, it will continue to prompt you for additional input. If Octave is reading
this input from a file, it may complain about missing or mismatched end statements, or, if
you have not used the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,

Chapter 10: Statements 191

if (c1)
body-1
else
if (c2)
body-2
endif
using the indentation to show how Octave groups the statements. See Chapter 11 [Functions

and Scripts], page 201.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X ==1)
do_something ();
elseif (X == 2)
do_something_else ();
else
do_something_completely_different ();
endif
This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above

example becomes

switch (X)
case 1
do_something ();
case 2
do_something_else ();
otherwise
do_something_completely_different ();
endswitch
This code makes the repetitive structure of the problem more explicit, making the code
easier to read, and hence maintain. Also, if the variable X should change its name, only one
line would need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch (expression)
case label
command_list
case label
command_list

otherwise
command_1list
endswitch

192 GNU Octave (version 9.1.0)

where label can be any expression. However, duplicate label values are not detected, and
only the command_list corresponding to the first match will be executed. For the switch
statement to be meaningful at least one case label command_list clause must be present,
while the otherwise command_list clause is optional.

If label is a cell array the corresponding command._list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable
is either 6 or 7’.

A=17;
switch (A)
case { 6, 7 }
printf ("variable is either 6 or 7\n");
otherwise
printf ("variable is neither 6 nor 7\n");
endswitch

As with all other specific end keywords, endswitch may be replaced by end, but you
can get better diagnostics if you use the specific forms.
One advantage of using the switch statement compared to using if statements is that
the labels can be strings. If an if statement is used it is not possible to write
if (X == "a string") # This is NOT valid
since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement,
and it is possible to write programs that look like this
switch (X)
case "a string"
do_something

en&é%itch
10.2.1 Notes for the C Programmer

The switch statement is also available in the widely used C programming language. There
are, however, some differences between the statement in Octave and C

e Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement
of the C language.

e The command_list elements are not optional. Making the list optional would have
meant requiring a separator between the label and the command list. Otherwise,
things like

switch (foo)
case (1) -2

would produce surprising results, as would
switch (foo)
case (1)
case (2)
doit O

Chapter 10: Statements 193

particularly for C programmers. If doit () should be executed if foo is either 1 or 2,
the above code should be written with a cell array like this

switch (foo)
case {1, 2 }
doit ();

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed
two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes
a statement as long as a condition is true. As with the condition in an if statement, the
condition in a while statement is considered true if its value is nonzero, and false if its
value is zero. If the value of the conditional expression in a while statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are nonzero.

Octave’s while statement looks like this:

while (condition)
body
endwhile

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes
the statement body. After body has been executed, condition is tested again, and if it is
still true, body is executed again. This process repeats until condition is no longer true. If
condition is initially false, the body of the loop is never executed.

This example creates a variable £ib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);

i = 3;

while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether
i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th
element of fib is set to the sum of the previous two values in the sequence. Then the i++
increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

194 GNU Octave (version 9.1.0)

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly ex-
ecutes a statement until a condition becomes true, and the test of the condition is at the
end of the loop, so the body of the loop is always executed at least once. As with the
condition in an if statement, the condition in a do-until statement is considered true if
its value is nonzero, and false if its value is zero. If the value of the conditional expression
in a do—until statement is a vector or a matrix, it is considered true only if it is non-empty
and all of the elements are nonzero.

Octave’s do—until statement looks like this:

do
body
until (condition)

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

This example creates a variable £ib that contains the first ten elements of the Fibonacci

sequence.
fib =

i= 2;
do

it++;

fib (i) = fib (i-1) + fib (i-2);
until (i == 10)

ones (1, 10);

A newline is not required between the do keyword and the body; but using one makes
the program clearer unless the body is very simple.

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for var = expression
body
endfor

where body stands for any statement or list of statements, expression is any valid expression,
and var may take several forms. Usually it is a simple variable name or an indexed variable.
If the value of expression is a structure, var may also be a vector with two elements. See
Section 10.5.1 [Looping Over Structure Elements|, page 195, below.

The assignment expression in the for statement works a bit differently than Octave’s
normal assignment statement. Instead of assigning the complete result of the expression, it
assigns each column of the expression to var in turn. If expression is a range, a row vector,
or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten
elements of the Fibonacci sequence, this time using the for statement:

Chapter 10: Statements 195

fib = ones (1, 10);
for i = 3:10

fib(i) = fib(i-1) + fib(i-2);
endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3
to 10 inclusive. Then the variable i is assigned the first element of the range and the body
of the loop is executed once. When the end of the loop body is reached, the next value in
the range is assigned to the variable i, and the loop body is executed again. This process
continues until there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for
statement. For example consider

disp ("Loop over a matrix")
for i = [1,3;2,4]
i
endfor
disp ("Loop over a cell array")
for i = {1,"two";"three",4}
i
endfor
In this case the variable i takes on the value of the columns of the matrix or cell matrix.
So the first loop iterates twice, producing two column vectors [1;2], followed by [3;4],
and likewise for the loop over the cell array. This can be extended to loops over multi-
dimensional arrays. For example:

a = [1,3;2,4]; ¢ = cat (3, a, 2%*a);
for i = ¢

i
endfor

In the above case, the multi-dimensional matrix c is reshaped to a two-dimensional matrix as
reshape (c, rows (c), prod (size (c)(2:end))) and then the same behavior as a loop
over a two-dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has
both statements because often a for loop is both less work to type and more natural to
think of. Counting the number of iterations is very common in loops and it can be easier
to think of this counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements
A special form of the for statement allows you to loop over all the elements of a structure:

for [val, key] = expression
body
endfor

In this form of the for statement, the value of expression must be a structure. If it is, key
and val are set to the name of the element and the corresponding value in turn, until there
are no more elements. For example:

196 GNU Octave (version 9.1.0)

x.a =1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
- key = a
- val =1
- key =D
- val =
_4
- 1 2
- 3 4
_{
-1 key = ¢
- val = string

The elements are not accessed in any particular order. If you need to cycle through
the list in a particular way, you will have to use the function fieldnames and sort the list
yourself.

10.6 The break Statement

The break statement jumps out of the innermost while, do—until, or for loop that encloses
it. The break statement may only be used within the body of a loop. The following example
finds the smallest divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks
out of the loop. This means that Octave proceeds immediately to the statement following
the loop and continues processing. (This is very different from the exit statement which
stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition
of a while statement could just as well be replaced with a break inside an if:

Chapter 10: Statements 197

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside while, do-until, or for loops.
It skips over the rest of the loop body, causing the next cycle around the loop to begin
immediately. Contrast this with break, which jumps out of the loop altogether. Here is an
example:

print elements of a vector of random
integers that are even.

first, create a row vector of 10 random
integers with values between O and 100:

vec = round (rand (1, 10) * 100);
print what we're interested in:

for x = vec
if (rem (x, 2) !'= 0)
continue;
endif
printf ("%d\n", x);
endfor

If one of the elements of vec is an odd number, this example skips the print statement
for that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

for x = vec

if (rem (x, 2) == 0)
printf ("%d\n", x);
endif

endfor

198 GNU Octave (version 9.1.0)

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modeled after the unwind-protect
form of Lisp.

The general form of an unwind_protect block looks like this:

unwind_protect
body
unwind_protect_cleanup
cleanup
end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are guaranteed to be executed regardless of how
control exits body.

This is useful to protect temporary changes to global variables from possible errors. For
example, the following code will always restore the original value of the global variable
frobnosticate even if an error occurs in the first part of the unwind_protect block.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;

unwind_protect_cleanup
frobnosticate = save_frobnosticate;
end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while evaluating the first part of the unwind_protect block because evaluation would stop
at the point of the error and the statement to restore the value would not be executed.

In addition to unwind_protect, Octave supports another form of exception handling, the
try block.

10.9 The try Statement
The original form of a try block looks like this:

try

body
catch

cleanup
end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does
occur during the execution of body, cleanup can use the functions lasterr or lasterror
to access the text of the message that would have been printed, as well as its identifier. The
alternative form,

Chapter 10: Statements 199

try
body
catch err
cleanup
end_try_catch

will automatically store the output of lasterror in the structure err. See Chapter 12
[Errors and Warnings|, page 251, for more information about the lasterr and lasterror
functions.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell
Octave to ignore the newline character in order to continue a statement from one line to
the next. Lines that end with the characters ... are joined with the following line before
they are divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name
+ longer_variable_name ...
- 42
form a single statement.
Any text between the continuation marker and the newline character is ignored. For
example, the statement

x = long_variable_name ... # comment one
+ longer_variable_name ...comment two
- 42 # last comment

is equivalent to the one shown above.

Inside double-quoted string constants, the character \ has to be used as continuation
marker. The \ must appear at the end of the line just before the newline character:

s = "This text starts in the first line \
and is continued in the second line."

Input that occurs inside parentheses can be continued to the next line without having to
use a continuation marker. For example, it is possible to write statements like
if (fine_dining destination == on_a_boat
|| fine_dining destination == on_a_train)
seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);
endif

without having to add to the clutter with continuation markers.

201

11 Functions and Scripts

Complicated Octave programs can often be simplified by defining functions. Functions can
be defined directly on the command line during interactive Octave sessions, or in external
files, and can be called just like built-in functions.

11.1 Introduction to Function and Script Files

There are seven different things covered in this section.

1. Typing in a function at the command prompt.
Storing a group of commands in a file — called a script file.
Storing a function in a file—called a function file.
Subfunctions in function files.
Multiple functions in one script file.

Private functions.

NSO W N

Nested functions.

Both function files and script files end with an extension of .m, for MATLAB compatibility.
If you want more than one independent functions in a file, it must be a script file (see
Section 11.11 [Script Files|, page 234), and to use these functions you must execute the
script file before you can use the functions that are in the script file.

11.2 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name
body
endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-
scores, not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");
endfunction
The printf statement (see Chapter 14 [Input and Output|, page 283) simply tells Octave
to print the string "\a". The special character ‘\a’ stands for the alert character (ASCII
7). See Chapter 5 [Strings], page 73.

Once this function is defined, you can ask Octave to evaluate it by typing the name of
the function.

Normally, you will want to pass some information to the functions you define. The
syntax for passing parameters to a function in Octave is

202 GNU Octave (version 9.1.0)

function name (arg-list)
body
endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list
of arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look
like this:

function wakeup (message)
printf ("\alks\n", message);
endfunction

Calling this function using a statement like this
wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’,
followed by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you
define. Here is the syntax for writing a function that returns a single value:

function ret-var = name (arg-list)
body
endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by
the function. This variable must be defined before the end of the function body in order
for the function to return a value.

Variables used in the body of a function are local to the function. Variables named
in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],
page 145, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);
endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave
would have printed an error message like this:

error: value on right hand side of assignment is undefined

because the body of the if statement was never executed, and retval was never defined.
To prevent obscure errors like this, it is a good idea to always make sure that the return

Chapter 11: Functions and Scripts 203

variables will always have values, and to produce meaningful error messages when problems
are encountered. For example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

There is still one remaining problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message
that won’t really help you track down the source of the error. To allow you to catch errors
like this, Octave provides each function with an automatic variable called nargin. Each
time a function is called, nargin is automatically initialized to the number of arguments
that have actually been passed to the function. For example, we might rewrite the avg
function like this:

function retval = avg (v)
retval = 0;

if (nargin != 1)
usage ("avg (vector)");
endif

if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

Octave automatically reports an error for functions written in .m file code if they are
called with more arguments than expected. Octave does not automatically report an error
if a function is called with too few arguments, since functions in general may have default
arguments, but any attempt to use a variable that has not been given a value will result in
an error. Functions can check the arguments they are called with to avoid such problems
and to provide more context-specific error messages.

n
n

nargin ()
nargin (fcn)
Report the number of input arguments to a function.

Called from within a function, return the number of arguments passed to the function.
At the top level, return the number of command line arguments passed to Octave.

If called with the optional argument fcn—a function name or handle—return the
declared number of arguments that the function can accept.

If the last argument to fcn is varargin the returned value is negative. For example,
the function union for sets is declared as

204 GNU Octave (version 9.1.0)

function [y, ia, ib] = union (a, b, varargin)
and

nargin ("union")

= -3
Programming Note: nargin does not work on compiled functions (.oct files) such as
built-in or dynamically loaded functions.

See also: [nargout|, page 207, [narginchk], page 213, [varargin|, page 209, [inputname],
page 204.
namestr = inputname (n)

namestr = inputname (n, ids_only)
Return the name of the n-th argument to the calling function.

If the argument is not a simple variable name, return an empty string. Examples
which will return "" are numbers (5.1), expressions (y/2), and cell or structure
indexing (c{1} or s.field).

inputname is only useful within a function. When used at the command line or within
a script it always returns an empty string.

By default, return an empty string if the n-th argument is not a valid variable name.
If the optional argument ids_only is false, return the text of the argument even if it
is not a valid variable name. This is an Octave extension that allows the programmer
to view exactly how the function was invoked even when the inputs are complex
expressions.

See also: [nargin|, page 203, [narginchk], page 213.

val = silent_functions ()

old_val = silent_functions (new_val)

old_val = silent_functions (new_val, "local")
Query or set the internal variable that controls whether internal output from a func-
tion is suppressed.
If this option is disabled, Octave will display the results produced by evaluating
expressions within a function body that are not terminated with a semicolon.
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

11.3 Returning from a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:
return
Unlike the return statement in C, Octave’s return statement cannot be used to return
a value from a function. Instead, you must assign values to the list of return variables that
are part of the function statement. The return statement simply makes it easier to exit
a function from a deeply nested loop or conditional statement.

Chapter 11: Functions and Scripts 205

Here is an example of a function that checks to see if any elements of a vector are nonzero.

function retval = any_nonzero (v)
retval = 0;
for i = 1:length (v)
if (v (1) !'= 0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction

Note that this function could not have been written using the break statement to exit
the loop once a nonzero value is found without adding extra logic to avoid printing the
message if the vector does contain a nonzero element.

return
When Octave encounters the keyword return inside a function or script, it returns
control to the caller immediately. At the top level, the return statement is ignored.
A return statement is assumed at the end of every function definition.

11.4 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return
more than one value. The syntax for defining functions that return multiple values is

function [ret-list] = name (arg-list)
body
endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The
list of return values must have at least one element. If ret-list has only one element, this
form of the function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a
vector and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)

idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = i;
endif
endfor
endfunction

In this particular case, the two values could have been returned as elements of a single
array, but that is not always possible or convenient. The values to be returned may not

206 GNU Octave (version 9.1.0)

have compatible dimensions, and it is often desirable to give the individual return values
distinct names.

It is possible to use the nthargout function to obtain only some of the return values or
several at once in a cell array. See Section 3.1.5 [Cell Array Objects|, page 46.

arg = nthargout (n, fcn, ...)

arg = nthargout (n, ntot, fcn, ...)
Return the nth output argument of the function specified by the function handle or
string fen.

Any additional arguments are passed directly to fcn. The total number of arguments
to call fcn with can be passed in ntot; by default ntot is n. The input n can also be
a vector of indices of the output, in which case the output will be a cell array of the
requested output arguments.

The intended use of nthargout is to avoid intermediate variables. For example, when
finding the indices of the maximum entry of a matrix, the following two compositions
of nthargout

m = magic (5);

cell2mat (nthargout ([1, 2], @ind2sub, size (m),
nthargout (2, @max, m(:))))

= 5 3

are completely equivalent to the following lines:

m = magic (5);

[7, idx] = max (M(:));

[i, j] = ind2sub (size (m), idx);

(i, jl

= b 3
It can also be helpful to have all output arguments collected in a single cell array as
the following code demonstrates:

USV = nthargout ([1:3], @svd, hilb (5));

See also: [nargin|, page 203, [nargout], page 207, [varargin], page 209, [varargout],
page 208, [isargout], page 211.

In addition to setting nargin each time a function is called, Octave also automatically
initializes nargout to the number of values that are expected to be returned. This allows
you to write functions that behave differently depending on the number of values that the
user of the function has requested. The implicit assignment to the built-in variable ans
does not figure in the count of output arguments, so the value of nargout may be zero.

The svd and hist functions are examples of built-in functions that behave differently
depending on the value of nargout. For example, hist will draw a histogram when called
with no output variables, but if called with outputs it will return the frequency counts
and/or bin centers without creating a plot.

It is possible to write functions that only set some return values. For example, calling
the function

Chapter 11: Functions and Scripts 207

function [x, y, z] = £ O
x =1;
z = 2;
endfunction

as
la, b, cl] = O
produces:

a=1

b

[1(0x0)

c=2
along with a warning.
n = nargout ()

nargout (fcn)
Report the number of output arguments from a function.

n}
Il

Called from within a function, return the number of values the caller expects to
receive. At the top level, nargout with no argument is undefined and will produce
an error.

If called with the optional argument fcn—a function name or handle—return the
number of declared output values that the function can produce.

If the final output argument is varargout the returned value is negative.

For example,

£f 0O
will cause nargout to return O inside the function f and
[s, t] = O

will cause nargout to return 2 inside the function £.
In the second usage,
nargout (@histc) # or nargout ("histc") using a string input
will return 2, because histc has two outputs, whereas
nargout (Q@imread)
will return -2, because imread has two outputs and the second is varargout.

Programming Note. nargout does not work for built-in functions and returns -1 for
all anonymous functions.

See also: [nargin], page 203, [varargout]|, page 208, [isargout], page 211, [nthargout],
page 206.

208 GNU Octave (version 9.1.0)

11.5 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a
syntax that’s similar to the one used with the special varargin parameter name. To let a
function return a variable number of output arguments the special output parameter name
varargout is used. As with varargin, varargout is a cell array that will contain the
requested output arguments.

As an example the following function sets the first output argument to 1, the second to
2, and so on.

function varargout = one_to_n ()
for i = l:nargout
varargout{i} = i;
endfor
endfunction

When called this function returns values like this

[a, b, c] = one_to_n ()

= a= 1
= b= 2
= c = 3

If varargin (varargout) does not appear as the last element of the input (output)
parameter list, then it is not special, and is handled the same as any other parameter name.

[r1, r2, ..., rn] = deal (a)
[r1, r2, ..., rnl deal (a1, a2, ..., an)
Copy the input parameters into the corresponding output parameters.

If only a single input parameter is supplied, its value is copied to each of the outputs.
For example,
[a, b, c] = deal (x, y, 2);

is equivalent to

a = x;
b =1y;
c = z;
and
[a, b, c] = deal (x);

is equivalent to
a=>b=c=x;

Programming Note: deal is often used with comma-separated lists derived from cell
arrays or structures. This is unnecessary as the interpreter can perform the same
action without the overhead of a function call. For example:

Chapter 11: Functions and Scripts 209

c = {[1 2], "Three", 4};
[x, y, z] = c{:}

=
X=
1 2
y = Three
z= 4

See also: [cell2struct], page 139, [struct2cell], page 127, [repmat|, page 573.

11.6 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As
an example think of a function that returns the smallest of all its input arguments. For
example:

a = smallest (1, 2, 3);
b = smallest (1, 2, 3, 4);

In this example both a and b would be 1. One way to write the smallest function is

function val = smallest (argl, arg2, arg3, arg4, argb)
body
endfunction

and then use the value of nargin to determine which of the input arguments should be
considered. The problem with this approach is that it can only handle a limited number of
input arguments.

If the special parameter name varargin appears at the end of a function parameter list
it indicates that the function takes a variable number of input arguments. Using varargin
the function looks like this

function val = smallest (varargin)
body
endfunction

In the function body the input arguments can be accessed through the variable varargin.
This variable is a cell array containing all the input arguments. See Section 6.3 [Cell Arrays],
page 129, for details on working with cell arrays. The smallest function can now be defined
like this

function val = smallest (varargin)
val = min ([varargin{:}]);
endfunction

This implementation handles any number of input arguments, but it’s also a very simple
solution to the problem.

A slightly more complex example of varargin is a function print_arguments that prints
all input arguments. Such a function can be defined like this

210 GNU Octave (version 9.1.0)

function print_arguments (varargin)
for i = 1l:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{il});
endfor
endfunction
This function produces output like this
print_arguments (1, "two", 3);
- Input argument 1: 1
- Input argument 2: two
- Input argument 3: 3

[reg, prop] = parseparams (params)
[reg, varl, ...] = parseparams (params, namel, defaultl, ...)
Return in reg the cell elements of param up to the first string element and in prop
all remaining elements beginning with the first string element.
For example:
[reg, prop] = parseparams ({1, 2, "linewidth", 10})
reg =
{
[1,1] =
[1,2]

|
N =

}

prop =

{
[1,1] = linewidth
[1,2] = 10

}
The parseparams function may be used to separate regular numeric arguments from
additional arguments given as property/value pairs of the varargin cell array.

In the second form of the call, available options are specified directly with their default
values given as name-value pairs. If params do not form name-value pairs, or if an
option occurs that does not match any of the available options, an error occurs.
When called from an m-file function, the error is prefixed with the name of the caller
function.

The matching of options is case-insensitive.

See also: [varargin|, page 209, [inputParser|, page 218.

11.7 Ignoring Arguments

In the formal argument list, it is possible to use the dummy placeholder ~ instead of a name.
This indicates that the corresponding argument value should be ignored and not stored to
any variable.
function val = pick2nd (, arg2)
val = arg?2;
endfunction

Chapter 11: Functions and Scripts 211

The value of nargin is not affected by using this declaration.

Return arguments can also be ignored using the same syntax. For example, the sort
function returns both the sorted values, and an index vector for the original input which
will result in a sorted output. Ignoring the second output is simple—don’t request more
than one output. But ignoring the first, and calculating just the second output, requires
the use of the ~ placeholder.

x = [2, 3, 1];
[s, i] = sort (x)

=
S =
1 2 3
i —
3 1 2
[*, i] = sort (x)
=
i =
3 1 2

When using the = placeholder, commas—mnot whitespace—must be used to separate
output arguments. Otherwise, the interpreter will view ~ as the logical not operator.
[i] = sort (x)
parse error:

invalid left hand side of assignment

Functions may take advantage of ignored outputs to reduce the number of calculations
performed. To do so, use the isargout function to query whether the output argument is
wanted. For example:

function [outl, out2] = long function (x, y, z)
if (isargout (1))
Long calculation

outl = result;
endif
endfunction
tf = isargout (k)
Within a function, return a logical value indicating whether the argument k will be
assigned to a variable on output.
If the result is false, the argument has been ignored during the function call through

the use of the tilde () special output argument. Functions can use isargout to avoid
performing unnecessary calculations for outputs which are unwanted.

212 GNU Octave (version 9.1.0)

If k is outside the range 1:max (nargout), the function returns false. k can also be
an array, in which case the function works element-by-element and a logical array is
returned. At the top level, isargout returns an error.

See also: [nargout], page 207, [varargout], page 208, [nthargout], page 206.

11.8 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list
it is possible to assign a default value to the argument like this

function name (argl = vall, ...)
body
endfunction

If no value is assigned to argl by the user, it will have the value vall.

As an example, the following function implements a variant of the classic “Hello, World”
program.

function hello (who = "World")
printf ("Hello, %s!\n", who);
endfunction
When called without an input argument the function prints the following
hello (;
- Hello, World!
and when it’s called with an input argument it prints the following
hello ("Beautiful World of Free Software");
< Hello, Beautiful World of Free Software!

Sometimes it is useful to explicitly tell Octave to use the default value of an input
argument. This can be done writing a ‘:’ as the value of the input argument when calling
the function.

hello (:);
- Hello, World!

11.9 Validating Arguments

Octave is a weakly typed programming language. Thus it is possible to call a function with
arguments, that probably cause errors or might have undesirable side effects. For example
calling a string processing function with a huge sparse matrix.

It is good practice at the head of a function to verify that it has been called correctly.
Octave offers several functions for this purpose.

11.9.1 Validating the number of Arguments
In Octave the following idiom is seen frequently at the beginning of a function definition:

if (nargin < min_#_inputs || nargin > max_#_inputs)
print_usage ();
endif

Chapter 11: Functions and Scripts 213

which stops the function execution and prints a message about the correct way to call the
function whenever the number of inputs is wrong.

Similar error checking is provided by narginchk and nargoutchk.

narginchk (minargs, maxargs)
Check for correct number of input arguments.

Generate an error message if the number of arguments in the calling function is outside
the range minargs and maxargs. Otherwise, do nothing.

Both minargs and maxargs must be scalar numeric values. Zero, Inf, and negative
values are all allowed, and minargs and maxargs may be equal.

Note that this function evaluates nargin on the caller.

See also: [nargoutchk]|, page 213, [error|, page 251, [nargout]|, page 207, [nargin],
page 203.

nargoutchk (minargs, maxargs)

msgstr = nargoutchk (minargs, maxargs, nargs)

msgstr = nargoutchk (minargs, maxargs, nargs, "string")

msgstruct = nargoutchk (minargs, maxargs, nargs, "struct")
Check for correct number of output arguments.

In the first form, return an error if the number of arguments is not between minargs
and maxargs. Otherwise, do nothing. Note that this function evaluates the value of
nargout on the caller so its value must have not been tampered with.

Both minargs and maxargs must be numeric scalars. Zero, Inf, and negative are all
valid, and they can have the same value.

For backwards compatibility, the other forms return an appropriate error message
string (or structure) if the number of outputs requested is invalid.

This is useful for checking to that the number of output arguments supplied to a
function is within an acceptable range.

See also: [narginchk], page 213, [error|, page 251, [nargout|, page 207, [nargin],
page 203.

11.9.2 Validating the type of Arguments

Besides the number of arguments, inputs can be checked for various properties.
validatestring is used for string arguments and validateattributes for numeric
arguments.

validstr = validatestring (str, strarray)

validstr = validatestring (str, strarray, funcname)
validstr = validatestring (str, strarray, funcname, varname)
validstr = validatestring (..., position)

Verify that str is an element, or substring of an element, in strarray.

When str is a character string to be tested, and strarray is a cell array of strings of
valid values, then validstr will be the validated form of str where validation is defined
as str being a member or substring of validstr. This is useful for both verifying and
expanding short options, such as "r", to their longer forms, such as "red". If str is

214 GNU Octave (version 9.1.0)

a substring of validstr, and there are multiple matches, the shortest match will be
returned if all matches are substrings of each other. Otherwise, an error will be raised
because the expansion of str is ambiguous. All comparisons are case insensitive.

The additional inputs funcname, varname, and position are optional and will make
any generated validation error message more specific.

Examples:

validatestring ("r", {"red", "green", "blue"})
= "red"

validatestring ("b", {"red", "green", "blue", "black"})
= error: validatestring: multiple unique matches were found for 'b':
blue, black

See also: [strcmp|, page 86, [strcmpi|, page 87, [validateattributes], page 214,
[inputParser|, page 218.

validateattributes
validateattributes

(A, classes, attributes)

(
validateattributes (

(

(

classes, attributes, arg_idx)

, classes, attributes, func_name)

, classes, attributes, func_name, arg_name)
A, classes, attributes, func_name, arg_name,

A
A

b
b

-

validateattributes
validateattributes
arg_idx)
Check validity of input argument.
Confirms that the argument A is valid by belonging to one of classes, and holding
all of the attributes. If it does not, an error is thrown, with a message formatted
accordingly. The error message can be made further complete by the function name
fun_name, the argument name arg_name, and its position in the input arg_idx.

classes must be a cell array of strings (an empty cell array is allowed) with the name
of classes (remember that a class name is case sensitive). In addition to the class
name, the following categories names are also valid:

"float" Floating point value comprising classes "double" and "single".
"integer"
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.

"numeric"
Numeric value comprising either a floating point or integer value.

attributes must be a cell array with names of checks for A. Some of them require an
additional value to be supplied right after the name (see details for each below).

ng=" All values are less than or equal to the following value in attributes.

g All values are less than the following value in attributes.

n>=n All values are greater than or equal to the following value in attributes.
> All values are greater than the following value in attributes.

"4 A 2-dimensional matrix. Note that vectors and empty matrices have 2

dimensions, one of them being of length 1, or both length 0.

Chapter 11: Functions and Scripts 215

34" Has no more than 3 dimensions. A 2-dimensional matrix is a 3-D matrix
whose 3rd dimension is of length 1.

"binary" All values are either 1 or 0.
"column" Values are arranged in a single column.

"decreasing"
No value is NaN, and each is less than the preceding one.

"diag" Value is a diagonal matrix.
"even" All values are even numbers.
"finite" All values are finite.

"increasing"
No value is NaN, and each is greater than the preceding one.

"integer"
All values are integer. This is different than using isinteger which only
checks its an integer type. This checks that each value in A is an integer
value, i.e., it has no decimal part.
"ncols" Has exactly as many columns as the next value in attributes.
"ndims" Has exactly as many dimensions as the next value in attributes.
"nondecreasing"
No value is NaN, and each is greater than or equal to the preceding one.
"nonempty"
It is not empty.
"nonincreasing"

No value is NaN, and each is less than or equal to the preceding one.
"nonnan" No value is a NaN.

"nonnegative"
All values are non negative.

"nonsparse"
It is not a sparse matrix.

"nonzero"

No value is zero.
"nrows" Has exactly as many rows as the next value in attributes.
"numel" Has exactly as many elements as the next value in attributes.
"odd" All values are odd numbers.
"positive"

All values are positive.
"real" It is a non-complex matrix.

"row" Values are arranged in a single row.

216 GNU Octave (version 9.1.0)

"scalar" It is a scalar.

"size" Its size has length equal to the values of the next in attributes. The next
value must is an array with the length for each dimension. To ignore the
check for a certain dimension, the value of NaN can be used.

"square" Is a square matrix.

"vector" Values are arranged in a single vector (column or vector).
See also: [isa|, page 41, [validatestring], page 213, [inputParser|, page 218.

As alternatives to validateattributes there are several shorter convenience functions
to check for individual properties.

mustBeFinite (x)
Require that input x is finite.

Raise an error if any element of the input x is not finite, as determined by isfinite

(x).
See also: [mustBeNonNan], page 217, [isfinite], page 559.

mustBeGreaterThan (x, ¢)
Require that input x is greater than c.
Raise an error if any element of the input x is not greater than c, as determined by

X > cC.

See also: [mustBeGreaterThanOrEqual], page 216, [mustBeLessThan]|, page 216, [gt],
page 173.

mustBeGreaterThanOrEqual (x, c)
Require that input x is greater than or equal to c.

Raise an error if any element of the input x is not greater than or equal to c, as
determined by x >= c.

See also: [mustBeGreaterThan], page 216, [mustBeLessThanOrEqual], page 217, [ge],
page 173.

mustBeInteger (x)
Require that input x is integer-valued (but not necessarily integer-typed).

Raise an error if any element of the input x is not a finite, real, integer-valued numeric
value, as determined by various checks.

See also: [mustBeNumeric|, page 218.

mustBeLessThan (x, ¢)
Require that input x is less than c.

Raise an error if any element of the input x is not less than ¢, as determined by x <
c.

See also: [mustBeLessThanOrEqual], page 217, [mustBeGreaterThan], page 216, [lt],
page 173.

Chapter 11: Functions and Scripts 217

mustBeLessThanOrEqual (x, c)
Require that input is less than or equal to a given value.
Raise an error if any element of the input x is not less than or equal to ¢, as determined
by x <= c.

See also: [mustBeLessThan|, page 216, [mustBeGreaterThanOrEqual], page 216, [le],
page 173.

mustBeMember (x, valid)
Require that input x is a member of a set of given valid values.

Raise an error if any element of the input x is not a member of the set valid, as
determined by ismember (x).

Programming Note: char inputs may behave strangely because of the interaction
between chars and cellstrings when calling ismember on them. But it will probably
"do what you mean" if you just use it naturally. To guarantee operation, convert all
char arrays to cellstrings with cellstr.

See also: [mustBeNonempty]|, page 217, [ismember|, page 851.
mustBeNegative (x)
Require that input x is negative.
Raise an error if any element of the input x is not negative, as determined by x < 0.
See also: [mustBeNonnegative|, page 217.
mustBeNonempty (x)

Require that input x is nonempty.
Raise an error if the input x is empty, as determined by isempty (x).

See also: [mustBeMember], page 217, [mustBeNonzero|, page 218, [isempty], page 48.
mustBeNonNan (x)

Require that input x is non-NaN.
Raise an error if any element of the input x is NaN, as determined by isnan (x).

See also: [mustBeFinite], page 216, [mustBeNonempty], page 217, [isnan|, page 558.
mustBeNonnegative (x)

Require that input x is not negative.
Raise an error if any element of the input x is negative, as determined by x >= 0.

See also: [mustBeNonzero], page 218, [mustBePositive], page 218.

?

mustBeNonpositive (x)
Require that input x is not positive.

Raise an error if any element of the input x is positive, as determined by x <= 0.

See also: [mustBeNegative|, page 217, [mustBeNonzero|, page 218.

mustBeNonsparse (x)
Require that input x is not sparse.

Raise an error if the input x is sparse, as determined by issparse (x).

See also: [issparse|, page 714.

218 GNU Octave (version 9.1.0)

mustBeNonzero (x)
Require that input x is not zero.

Raise an error if any element of the input x is zero, as determined by x == 0.

See also: [mustBeNonnegative|, page 217, [mustBePositive], page 218.

mustBeNumeric (x)
Require that input x is numeric.

Raise an error if the input x is not numeric, as determined by isnumeric (x).

See also: [mustBeNumericOrLogical], page 218, [isnumeric|, page 68.

mustBeNumericOrLogical (x)
Require that input x is numeric or logical.

Raise an error if the input x is not numeric or logical, as determined by isnumeric

(x) || islogical (x).

See also: [mustBeNumeric], page 218, [isnumeric|, page 68, [islogical], page 68.

mustBePositive (x)
Require that input x is positive.

Raise an error if any element of the input x is not positive, as determined by x > 0.

See also: [mustBeNonnegative], page 217, [mustBeNonzero|, page 218.

mustBeReal (x)
Require that input x is real.

Raise an error if the input x is not real, as determined by isreal (x).

See also: [mustBeFinite], page 216, [mustBeNonNan|, page 217, [isreal], page 68.

11.9.3 Parsing Arguments

If none of the preceding validation functions is sufficient there is also the class inputParser
which can perform extremely complex input checking for functions.

p = inputParser ()
Create object p of the inputParser class.

This class is designed to allow easy parsing of function arguments. The class supports
four types of arguments:

1. mandatory (see addRequired);
2. optional (see addOptional);

3. named (see addParameter);

4. switch (see addSwitch).

After defining the function API with these methods, the supplied arguments can be
parsed with the parse method and the results accessed with the Results accessor.

inputParser.Parameters
Return the list of parameter names already defined. (read-only)

Chapter 11: Functions and Scripts 219

inputParser.Results
Return a structure with argument names as fieldnames and corresponding values.
(read-only)

inputParser.Unmatched
Return a structure similar to Results, but for unmatched parameters. (read-only)
See the KeepUnmatched property.

inputParser.UsingDefaults
Return cell array with the names of arguments that are using default values. (read-
only)

inputParser.FunctionName = name
Set function name to be used in error messages; Defaults to empty string.

inputParser.CaseSensitive = boolean
Set whether matching of argument names should be case sensitive; Defaults to false.

inputParser.KeepUnmatched = boolean
Set whether string arguments which do not match any Parameter are parsed and
stored in the Unmatched property; Defaults to false. If false, an error will be emitted
at the first unrecognized argument and parsing will stop. Note that since Switch
and Parameter arguments can be mixed, it is not possible to know the type of the
unmatched argument. Octave assumes that all unmatched arguments are of the
Parameter type and therefore must be followed by a value.

inputParser.PartialMatching = boolean
Set whether argument names for Parameter and Switch options may be given in
shortened form as long as the name uniquely identifies an option; Defaults to true.
For example, the argument 'opt' will match a parameter 'opt_color', but will fail
if there is also a parameter 'opt_case'.

inputParser.StructExpand = boolean
Set whether a structure passed to the function is expanded into parameter/value pairs
(parameter = fieldname); Defaults to true.

The following example shows how to use this class:

function check (varargin)
p = inputParser ();
p.-FunctionName = "check";
p-addRequired ("pack", @ischar);
p.addOptional ("path", pwd(), @ischar);

create object

set function name
mandatory argument
optional argument

Create anonymous function handle for validators
valid_vec = @(x) isvector (x) && all (x >= 0) && all (x <= 1);
p-addOptional ("vec", [0 0], valid_vec);

Create two arguments of type "Parameter"
vld_type = @(x) any (strcmp (x, {"linear", "quadratic"l}));
p-addParameter ("type", "linear", vld_type);

220

GNU Octave (version 9.1.0)

vld_tol = @(x) any (strcmp (x, {"low", "medium", "high"}));
p-addParameter ("tolerance", "low", vld_tol);

Create a switch type of argument
p.addSwitch ("verbose");

p-parse (varargin{:}); # Run created parser on inputs

The rest of the function can access inputs by using p.Results.
For example, get the tolerance input with p.Results.tolerance
endfunction

check ("mech"); # valid, use defaults for other arguments
check QO; # error, one argument is mandatory

check (1); # error, since ! ischar

check ("mech", "“/dev"); # valid, use defaults for other arguments

check ("mech", ""“/dev", [0 1 0 0], "type", "linear"); # valid

following is also valid. Note how the Switch argument type can
be mixed in with or before the Parameter argument type (but it
must still appear after any Optional arguments).

check ("mech", "“/dev", [0 1 0 0], "verbose", "tolerance", "high");

following returns an error since an Optional argument, 'path',
was given after the Parameter argument 'type'.
check ("mech", "type", "linear", "7/dev");

Note 1: A function can have any mixture of the four API types but they must appear
in a specific order. Required arguments must be first and can be followed by any
Optional arguments. Only the Parameter and Switch arguments may be mixed
together and they must appear following the first two types.

Note 2: If both Optional and Parameter arguments are mixed in a function API
then once a string Optional argument fails to validate it will be considered the end
of the Optional arguments. The remaining arguments will be compared against any
Parameter or Switch arguments.

See also: [nargin|, page 203, [validateattributes], page 214, [validatestring|, page 213,
[varargin], page 209.

11.10 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them.
You simply need to put the function definitions in a place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks for variables or
functions that are already compiled and currently listed in its symbol table. If it fails to

Chapter 11: Functions and Scripts 221

find a definition there, it searches a list of directories (the path) for files ending in .m that
have the same base name as the undefined identifier.! Once Octave finds a file with a name
that matches, the contents of the file are read. If it defines a single function, it is compiled
and executed. See Section 11.11 [Script Files|, page 234, for more information about how
you can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it
read and the time stamp on the file. If the time stamp on the file changes, Octave may reload
the file. When Octave is running interactively, time stamp checking normally happens at
most once each time Octave prints the prompt. Searching for new function definitions also
occurs if the current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your
Octave session.

To avoid degrading performance unnecessarily by checking the time stamps on functions
that are not likely to change, Octave assumes that function files in the directory tree octave-
home/share/octave/version/m will not change, so it doesn’t have to check their time
stamps every time the functions defined in those files are used. This is normally a very
good assumption and provides a significant improvement in performance for the function
files that are distributed with Octave.

If you know that your own function files will not change while you are running Octave,
you can improve performance by calling ignore_function_time_stamp ("all"), so that
Octave will ignore the time stamps for all function files. Passing "system" to this function
resets the default behavior.

edit name

edit field value

value = edit ("get", field)

value = edit ("get", "all")
Edit the named function, or change editor settings.
If edit is called with the name of a file or function as its argument it will be opened
in the text editor defined by EDITOR.

e If the function name is available in a file on your path, then it will be opened
in the editor. If no file is found, then the m-file variant, ending with ".m", will
be considered. If still no file is found, then variants with a leading "@" and then
with both a leading "@" and trailing " .m" will be considered.

e If name is the name of a command-line function, then an m-file will be created
to contain that function along with its current definition.

e If name. cc is specified, then it will search for name.cc in the path and open it in
the editor. If the file is not found, then a new .cc file will be created. If name
happens to be an m-file or command-line function, then the text of that function
will be inserted into the .cc file as a comment.

e If name.ext is on your path then it will be edited, otherwise the editor will be
started with name.ext in the current directory as the filename.

! The ‘.m’ suffix was chosen for compatibility with MATLAB.

222

GNU Octave (version 9.1.0)

Warning: You may need to clear name before the new definition is available. If
you are editing a .cc file, you will need to execute mkoctfile name.cc before the
definition will be available.

If edit is called with field and value variables, the value of the control field field will
be set to value.

If an output argument is requested and the first input argument is get then edit
will return the value of the control field field. If the control field does not exist, edit
will return a structure containing all fields and values. Thus, edit ("get", "all")
returns a complete control structure.

The following control fields are used:

‘author’

‘email’

‘license’

‘mode’

This is the name to put after the "## Author:" field of new functions.
By default it guesses from the gecos field of the password database.

This is the e-mail address to list after the name in the author field. By
default it guesses <$LOGNAME@$HOSTNAME>, and if $HOSTNAME is not de-
fined it uses uname -n. You probably want to override this. Be sure to
use the format user@host.

‘gpl’ GNU General Public License (default).

‘bsd’ BSD-style license without advertising clause.
‘pd’ Public domain.

‘“"text"’ Your own default copyright and license.

Unless you specify ‘pd’, edit will prepend the copyright statement with
"Copyright (C) YYYY Author".

This value determines whether the editor should be started in async mode
(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to "sync" to start the editor
in sync mode. The default is "async" (see [system|, page 1032).

‘editinplace’

‘home’

Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is true. Set it to false
to have read-only function files automatically copied to ‘home’, if it exists,
when editing them.

This value indicates a directory that system m-files should be copied into
before opening them in the editor. The intent is that this directory is
also in the path, so that the edited copy of a system function file shadows
the original. This setting only has an effect when ‘editinplace’ is set to
false. The default is the empty matrix ([]), which means it is not used.
The default in previous versions of Octave was ~/octave.

See also: [EDITORJ, page 32, [path], page 225.

mailto:user@host

Chapter 11: Functions and Scripts 223

mfilename ()
mfilename ("fullpath")
mfilename ("fullpathext")
Return the name of the currently executing file.

The base name of the currently executing script or function is returned without any
extension. If called from outside an m-file, such as the command line, return the
empty string.
Given the argument "fullpath", include the directory part of the filename, but not
the extension.

Given the argument "fullpathext", include the directory part of the filename and
the extension.

See also: [inputname|, page 204, [dbstack], page 275.

val = ignore_function_time_stamp ()

old_val = ignore_function_time_stamp (new_val)
Query or set the internal variable that controls whether Octave checks the time stamp
on files each time it looks up functions defined in function files.

If the internal variable is set to "system", Octave will not automatically recom-
pile function files in subdirectories of octave-home/share/version/m if they have
changed since they were last compiled, but will recompile other function files in the
search path if they change.

If set to "all", Octave will not recompile any function files unless their definitions
are removed with clear.

If set to "none", Octave will always check time stamps on files to determine whether
functions defined in function files need to recompiled.

11.10.1 Manipulating the Load Path

When a function is called, Octave searches a list of directories for a file that contains the
function declaration. This list of directories is known as the load path. By default the
load path contains a list of directories distributed with Octave plus the current working
directory. To see your current load path call the path function without any input or output
arguments.

It is possible to add or remove directories to or from the load path using addpath and
rmpath. As an example, the following code adds ‘~/Octave’ to the load path.
addpath ("~/Octave")

After this the directory ‘~/0ctave’ will be searched for functions.

addpath (dir1, ...)
addpath (dirl, ..., option)
oldpath = addpath (...)
Add named directories to the function search path.
If option is "-begin" or 0 (the default), prepend the directory name(s) to the current

path. If option is "-end" or 1, append the directory name(s) to the current path.
Directories added to the path must exist.

224 GNU Octave (version 9.1.0)

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

addpath ("dirl:/dir2:7/dir3")
The newly added paths appear in the load path in the same order that they appear
in the arguments of addpath. When extending the load path to the front, the last

path in the list of arguments is added first. When extending the load path to the
end, the first path in the list of arguments is added first.

For each directory that is added, and that was not already in the path, addpath
checks for the existence of a file named PKG_ADD (note lack of .m extension) and runs
it if it exists.

See also: [path]|, page 225, [rmpath]|, page 224, [genpath], page 224, [pathdef],
page 225, [savepath], page 224, [pathsep], page 225.

pathstr = genpath (dir)
pathstr = genpath (dir, skipdiril, ...)
Return a path constructed from dir and all its subdirectories.

The path does not include package directories (beginning with ‘+’), old-style class
directories (beginning with ‘@’), private directories, or any subdirectories of these
types.

If additional string parameters are given, the resulting path will exclude directories
with those names.

See also: [path], page 225, [addpath], page 223.

rmpath (diri, ...)

oldpath = rmpath (diril, ...)
Remove dirl, ... from the current function search path.
In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

rmpath ("dirl:/dir2:7/dir3")

For each directory that is removed, rmpath checks for the existence of a file named
PKG_DEL (note lack of .m extension) and runs it if it exists.

See also: [path], page 225, [addpath]|, page 223, [genpath], page 224, [pathdef],
page 225, [savepath], page 224, [pathsep|, page 225.

savepath
savepath file
status = savepath (...)
Save the unique portion of the current function search path to file.

The list of folders that are saved in file does not include the folders that are added
for Octave’s own functions, those that belong to Octave packages (see [pkg load],
page 1057), and those added via command line switches.

If file is omitted, Octave looks in the current directory for a project-specific .octaverc
file in which to save the path information. If no such file is present then the user’s
configuration file "/ .octaverc is used.

Chapter 11: Functions and Scripts 225

If successful, savepath returns 0.

The savepath function makes it simple to customize a user’s configuration file to
restore the working paths necessary for a particular instance of Octave. Assuming no
filename is specified, Octave will automatically restore the saved directory paths from
the appropriate .octaverc file when starting up. If a filename has been specified
then the paths may be restored manually by calling source file.

See also: [path], page 225, [addpath]|, page 223, [rmpath], page 224, [genpath],
page 224, [pathdef], page 225.

path ()
str = path ()
str = path (pathl, ...)
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy
to read format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with
pathsep. Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: [addpath], page 223, [rmpath], page 224, [genpath], page 224, [pathdef],
page 225, [savepath], page 224, [pathsep], page 225.

val = pathdef ()
Return the default path for Octave.

The path information is extracted from one of four sources. The possible sources, in
order of preference, are:

1. .octaverc

2. ~/.octaverc

3. <OCTAVE_HOME>/.../<version>/m/startup/octaverc
4. Octave’s path prior to changes by any octaverc file.

See also: [path], page 225, [addpath]|, page 223, [rmpath], page 224, [genpath],
page 224, [savepath], page 224.

val = pathsep ()
Query the character used to separate directories in a path.

See also: [filesep], page 1020.

rehash ()
Reinitialize Octave’s load path directory cache.

fname = file_in_loadpath (file)

fname = file_in_loadpath (file, "all")
Return the absolute name of file if it can be found in the list of directories specified
by path.

226 GNU Octave (version 9.1.0)

If no file is found, return an empty character string.

When file is already an absolute name, the name is checked against the file system
instead of Octave’s loadpath. In this case, if file exists it will be returned in fname,
otherwise an empty string is returned.

If the first argument is a cell array of strings, search each directory of the loadpath
for element of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file_in_path], page 1019, [dir_in_loadpath], page 226, [path], page 225.

pathstr = restoredefaultpath ()
Restore Octave’s path to its initial state at startup.

The re-initialized path is returned as an output.

See also: [path], page 225, [addpath]|, page 223, [rmpath], page 224, [genpath],
page 224, [pathdef], page 225, [savepath], page 224, [pathsep|, page 225.

pathstr = command_line_path ()
Return the path argument given to Octave at the command line when the interpreter
was started (--path arg).

See also: [path], page 225, [addpath]|, page 223, [rmpath], page 224, [genpath],
page 224, [pathdef], page 225, [savepath], page 224, [pathsep|, page 225.

dirname = dir_in_loadpath (dir)

dirname = dir_in_loadpath (dir, "all")
Return the absolute name of the loadpath element matching dir if it can be found in
the list of directories specified by path.

If no match is found, return an empty character string.

The match is performed at the end of each path element. For example, if dir
is "foo/bar", it matches the path element "/some/dir/foo/bar", but not
"/some/dir/foo/bar/baz" "/some/dir/allfoo/bar". When dir is an absolute
name, rather than just a path fragment, it is matched against the file system instead
of Octave’s loadpath. In this case, if dir exists it will be returned in dirname,
otherwise an empty string is returned.

If the optional second argument is supplied, return a cell array containing all name
matches rather than just the first.

See also: [file_in_path], page 1019, [file_in_loadpath], page 225, [path], page 225.

current_encoding = mfile_encoding ()
mfile_encoding (new_encoding)
old_encoding = mfile_encoding (new_encoding)

Query or set the encoding that is used for reading m-files.

The input and output are strings naming an encoding, e.g., "utf-8".

Chapter 11: Functions and Scripts 227

This encoding is used by Octave’s parser when reading m-files unless a different encod-
ing was set for a specific directory containing m-files using the function dir_encoding
or in a file .oct-config in that directory.

The special value "system" selects the encoding that matches the system locale.

If the m-file encoding is changed after the m-files have already been parsed, the files
have to be parsed again for that change to take effect. That can be triggered with
the command clear all.

Additionally, this encoding is used to load and save files with the built-in editor in
Octave’s GUL

See also: [dir_encoding], page 227.

current_encoding = dir_encoding (dir)
dir_encoding (dir, new_encoding)
dir_encoding (dir, "delete")
old_encoding = dir_encoding (dir, new_encoding)
Query or set the encoding that is used for reading m-files in dir.

The per-directory encoding overrides the (globally set) m-file encoding, see [mfile_
encoding], page 226.

The string DIR must match how the directory would appear in the load path.

The new_encoding input must be a valid encoding identifier or "delete". In the latter
case, any per-directory encoding is removed and the (globally set) m-file encoding will
be used for the given dir.

The currently or previously used encoding is returned only if an output argument is
requested.

The directory encoding is automatically read from the file .oct-config when a new
path is added to the load path (for example with addpath). To set the encoding for
all files in the same folder, that file must contain a line starting with "encoding="
followed by the encoding identifier.

For example to set the file encoding for all files in the same folder to ISO 8859-1
(Latin-1), create a file .oct-config with the following content:

encoding=is08859-1

If the file encoding is changed after the files have already been parsed, the files have to
be parsed again for that change to take effect. That can be done with the command
clear all.

See also: [addpath], page 223, [path], page 225, [mfile_encoding], page 226.

11.10.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary func-
tions are only visible to the other functions in the same function file. For example, a file
f.m containing

228 GNU Octave (version 9.1.0)

function £ ()
printf ("in f, calling g\n");
g O
endfunction
function g ()
printf ("in g, calling h\n");
h O
endfunction
function h ()
printf ("in h\n")
endfunction
defines a main function £ and two subfunctions. The subfunctions g and h may only be
called from the main function f or from the other subfunctions, but not from outside the
file f.m.

subfcn_list = localfunctions ()
Return a list of all local functions, i.e., subfunctions, within the current file.

The return value is a column cell array of function handles to all local functions
accessible from the function from which localfunctions is called. Nested functions
are not included in the list.

If the call is from the command line, an anonymous function, or a script, the return
value is an empty cell array.

See also: [functions|, page 244.

11.10.3 Private Functions

In many cases one function needs to access one or more helper functions. If the helper
function is limited to the scope of a single function, then subfunctions as discussed above
might be used. However, if a single helper function is used by more than one function,
then this is no longer possible. In this case the helper functions might be placed in a
subdirectory, called "private", of the directory in which the functions needing access to this
helper function are found.

As a simple example, consider a function funcl, that calls a helper function func2 to
do much of the work. For example:

function y = funcl (x)
y = func2 (x);
endfunction

Then if the path to funcl is <directory>/funcl.m, and if func2 is found in the directory
<directory>/private/func2.m, then func? is only available for use of the functions, like
funcl, that are found in <directory>.

11.10.4 Nested Functions

Nested functions are similar to subfunctions in that only the main function is visible outside
the file. However, they also allow for child functions to access the local variables in their
parent function. This shared access mimics using a global variable to share information —
but a global variable which is not visible to the rest of Octave. As a programming strategy,

Chapter 11: Functions and Scripts 229

sharing data this way can create code which is difficult to maintain. It is recommended to
use subfunctions in place of nested functions when possible.

As a simple example, consider a parent function foo, that calls a nested child function
bar, with a shared variable x.

function y = foo ()

x = 10;
bar ;
y = %5

function bar ()
x = 20;
endfunction
endfunction

foo ()
= 20

Notice that there is no special syntax for sharing x. This can lead to problems with acci-
dental variable sharing between a parent function and its child. While normally variables
are inherited, child function parameters and return values are local to the child function.

Now consider the function foobar that uses variables x and y. foobar calls a nested
function foo which takes x as a parameter and returns y. foo then calls bat which does
some computation.

function z = foobar ()

x = 0;
y = 0;
z = foo (5);
z += x + y;

function y = foo (%)
y = x + bat ();

function z = bat ()
Z = X;
endfunction
endfunction
endfunction

foobar ()
= 10

It is important to note that the x and y in foobar remain zero, as in foo they are a return
value and parameter respectively. The x in bat refers to the x in foo.

Variable inheritance leads to a problem for eval and scripts. If a new variable is created
in a parent function, it is not clear what should happen in nested child functions. For
example, consider a parent function foo with a nested child function bar:

230 GNU Octave (version 9.1.0)

function y = foo (to_eval)
bar O;
eval (to_eval);

function bar ()
eval ("x = 100;");
eval ("y = x;");
endfunction
endfunction

foo ("x = 5;")
= error: can not add variable "x" to a static workspace

foo ("y = 10;")
= 10

foo (u u)
= 100
The parent function foo is unable to create a new variable x, but the child function bar
was successful. Furthermore, even in an eval statement y in bar is the same y as in its
parent function foo. The use of eval in conjunction with nested functions is best avoided.

As with subfunctions, only the first nested function in a file may be called from the
outside. Inside a function the rules are more complicated. In general a nested function may
call:

0. Globally visible functions

1. Any function that the nested function’s parent can call
2. Sibling functions (functions that have the same parents)
3. Direct children

As a complex example consider a parent function ex_top with two child functions, ex_a
and ex_b. In addition, ex_a has two more child functions, ex_aa and ex_ab. For example:

function ex_top ()
Can call: ex_top, ex_a, and ex_b
Can NOT call: ex_aa and ex_ab

function ex_a ()
Can call everything

function ex_aa ()
Can call everything
endfunction

function ex_ab ()
Can call everything
endfunction
endfunction

Chapter 11: Functions and Scripts 231

function ex_b ()
Can call: ex_top, ex_a, and ex_b
Can NOT call: ex_aa and ex_ab
endfunction
endfunction

11.10.5 Overloading and Autoloading

Functions can be overloaded to work with different input arguments. For example, the oper-
ator '+’ has been overloaded in Octave to work with single, double, uint8, int32, and many
other arguments. The preferred way to overload functions is through classes and object
oriented programming (see Section 34.4.1 [Function Overloading], page 957). Occasionally,
however, one needs to undo user overloading and call the default function associated with
a specific type. The builtin function exists for this purpose.

[...] = builtin (f, ...)
Call the base function f even if f is overloaded to another function for the given type
signature.

This is normally useful when doing object-oriented programming and there is a re-
quirement to call one of Octave’s base functions rather than the overloaded one of a
new class.

A trivial example which redefines the sin function to be the cos function shows how
builtin works.

sin (0)
= 0
function y = sin (x), y = cos (x); endfunction
sin (0)
=1
builtin ("sin", 0)
= 0

A single dynamically linked file might define several functions. However, as Octave
searches for functions based on the functions filename, Octave needs a manner in which to
find each of the functions in the dynamically linked file. On operating systems that support
symbolic links, it is possible to create a symbolic link to the original file for each of the
functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is undesirable as it increases
the amount of disk space used by Octave. Instead Octave supplies the autoload function,
that permits the user to define in which file a certain function will be found.

autoload_map = autoload ()
autoload (function, file)
autoload (..., "remove")

Define function to autoload from file.

232 GNU Octave (version 9.1.0)

The second argument, file, should be an absolute filename or a file name in the same
directory as the function or script from which the autoload command was run. file
should not depend on the Octave load path.

Normally, calls to autoload appear in PKG_ADD script files that are evaluated when
a directory is added to Octave’s load path. To avoid having to hardcode directory
names in file, if file is in the same directory as the PKG_ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above usage when bar.oct is
not in the same directory, or usages such as

autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior may be unpredictable.
With no arguments, return a structure containing the current autoload map.

If a third argument "remove" is given, the function is cleared and not loaded anymore
during the current Octave session.

See also: [PKG_ADD], page 1064.

11.10.6 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is
typically used for dynamically linked functions in oct-files or mex-files that contain some
initialization, and it is desirable that calling clear does not remove this initialization.

As an example,

function my_function ()
mlock ();

endfunction

prevents my_function from being removed from memory after it is called, even if clear is
called. It is possible to determine if a function is locked into memory with the mislocked,
and to unlock a function with munlock, which the following code illustrates.

my_function Q;

mislocked ("my_function")
= ans =1

munlock ("my_function");
mislocked ("my_function")
= ans =0

A common use of mlock is to prevent persistent variables from being removed from
memory, as the following example shows:

Chapter 11: Functions and Scripts 233

function count_calls ()

mlock ();

persistent calls = O;

printf ("count_calls() has been called %d times\n", ++calls);
endfunction

count_calls ();
-4 count_calls() has been called 1 times

clear count_calls
count_calls ();
< count_calls() has been called 2 times

mlock might also be used to prevent changes to an m-file, such as in an external editor,
from having any effect in the current Octave session; A similar effect can be had with the
ignore_function_time_stamp function.

mlock ()
Lock the current function into memory so that it can’t be removed with clear.

See also: [munlock|, page 233, [mislocked], page 233, [persistent], page 1162, [clear],
page 151.

munlock ()
munlock (fcn)
Unlock the named function fen so that it may be removed from memory with clear.

If no function is named then unlock the current function.

See also: [mlock], page 233, [mislocked], page 233, [persistent|, page 1162, [clear],
page 151.

tf = mislocked ()
tf = mislocked (fcn)
Return true if the named function fcn is locked in memory.

If no function is named then return true if the current function is locked.

See also: [mlock]|, page 233, [munlock]|, page 233, [persistent], page 1162, [clear],
page 151.

11.10.7 Function Precedence

Given the numerous different ways that Octave can define a function, it is possible and even
likely that multiple versions of a function, might be defined within a particular scope. The
precedence of which function will be used within a particular scope is given by

1. Subfunction A subfunction with the required function name in the given scope.

2. Private function A function defined within a private directory of the directory which
contains the current function.

3. Class constructor A function that constructs a user class as defined in chapter
Chapter 34 [Object Oriented Programming], page 947.

9

234 GNU Octave (version 9.1.0)

4. Class method An overloaded function of a class as in chapter Chapter 34 [Object
Oriented Programming], page 947.

5. Command-line Function A function that has been defined on the command-line.

6. Autoload function A function that is marked as autoloaded with See [autoload],
page 231.

7. A Function on the Path A function that can be found on the users load-path. There can
also be Oct-file, mex-file or m-file versions of this function and the precedence between
these versions are in that order.

8. Built-in function A function that is a part of core Octave such as numel, size, etc.

11.11 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and
evaluated just as if you had typed each command at the Octave prompt, and provides a
convenient way to perform a sequence of commands that do not logically belong inside a
function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should
be evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file
are not local variables, but are in the same scope as the other variables that are visible on
the command line.

Even though a script file may not begin with the function keyword, it is possible to
define more than one function in a single script file and load (but not execute) all of them
at once. To do this, the first token in the file (ignoring comments and other white space)
must be something other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

Prevent Octave from thinking that this
is a function file:

1
Define function one:

function one ()

To have Octave read and compile these functions into an internal form, you need to
make sure that the file is in Octave’s load path (accessible through the path function), then
simply type the base name of the file that contains the commands. (Octave uses the same
rules to search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the func-
tion and try to execute it, printing a message warning about any non-whitespace characters
that appear after the function definition.

Chapter 11: Functions and Scripts 235

Note that Octave does not try to look up the definition of any identifier until it needs
to evaluate it. This means that Octave will compile the following statements if they appear
in a script file, or are typed at the command line,

not a function file:
1;
function foo (O
do_something ();
endfunction
function do_something ()
do_something_else ();
endfunction
even though the function do_something is not defined before it is referenced in the function
foo. This is not an error because Octave does not need to resolve all symbols that are
referenced by a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will
always print ‘bar = 3’ whether it is typed directly on the command line, read from a script
file, or is part of a function body, even if there is a function or script file called bar.m in
Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were
resolved as the function was being compiled. It would be virtually impossible to make
Octave clever enough to evaluate this code in a consistent fashion. The parser would have
to be able to perform the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved, and requiring that
would be too restrictive (the string might come from user input, or depend on things that
are not known until the function is evaluated).

Although Octave normally executes commands from script files that have the name
file.m, you can use the function source to execute commands from any file.

source (file)

source (file, context)
Parse and execute the contents of file.
Without specifying context, this is equivalent to executing commands from a script
file, but without requiring the file to be named file.m or to be on the execution path.
Instead of the current context, the script may be executed in either the context of
the function that called the present function ("caller"), or the top-level context
("base").

See also: [run|, page 187.
11.11.1 Publish Octave Script Files

The function publish provides a dynamic possibility to document your script file. Unlike
static documentation, publish runs the script file, saves any figures and output while
running the script, and presents them alongside static documentation in a desired output
format. The static documentation can make use of Section 11.11.2 [Publishing Markup],
page 238, to enhance and customize the output.

236 GNU Octave (version 9.1.0)

publish (file)
publish (file, output_format)
publish (file, optionl, valuel, ...)
publish (file, options)
output_file = publish (file, ...)
Generate a report from the Octave script file file in one of several output formats.

The generated reports interpret Publishing Markup in section comments, which is
explained in detail in the GNU Octave manual. Section comments are comment
blocks that start with a line with double comment character.

Assume the following example, using some Publishing Markup, to be the contents of
the script file pub_example.m:

Headline title

#

Some *bold*, _italic_, or |monospaced| Text with
a <https://www.octave.org link to *GNU Octave*>.
##

"Real" Octave commands to be evaluated
sombrero ()

%% MATLAB comment style ('%') is supported as well
%

% * Bulleted list item 1

% * Bulleted list item 2

yA

% # Numbered list item 1

% # Numbered list item 2

To publish this script file, type publish ("pub_example.m").

When called with one input argument, a HTML report is generated in a subdirec-
tory html relative to the current working directory. Any Octave commands in pub_
example.m are evaluated in a separate context and any figures created while executing
the script file are included in the report.

Using publish (file, output_format) is equivalent to the function call using a
structure

options.format = output_format;
publish (file, options)

which is described below. The same holds for using option/value pairs

options.optionl = valuel;
publish (file, options)

The structure options can have the following field names. If a field name is not
specified, the default value is used:

e ‘format’ — Output format of the published script file, one of
‘html’ (default), ‘doc’, ‘latex’, ‘ppt’, ‘pdf’, or ‘xml’.

Chapter 11: Functions and Scripts 237

The output formats ‘doc’, ‘ppt’, and ‘xml’ are not currently supported. To
generate a ‘doc’ report, open a generated ‘html’ report with your office suite.

In Octave custom formats are supported by implementing all callback subfunc-

tions in a function file named ‘__publish_<custom format>_output__.m’. To

obtain a template for the HTML format type:

edit (fullfile (fileparts (which ("publish")),
"private", "__publish_html_output__.m"))

e ‘outputDir’ — Full path of the directory where the generated report will be
located. If no directory is given, the report is generated in a subdirectory html
relative to the current working directory.

e ‘stylesheet’ — Not supported, only for MATLAB compatibility.
e ‘createThumbnail’ — Not supported, only for MATLAB compatibility.
e ‘figureSnapMethod’ — Not supported, only for MATLAB compatibility.

e ‘imageFormat’ — Desired format for any images produced while evaluating the
code. The allowed image formats depend on the output format:

e ‘html’, ‘xml’ — ‘png’ (default), any image format supported by Octave
e ‘latex’ — ‘epsc2’ (default), any image format supported by Octave
e ‘pdf’ — ‘jpg’ (default) or ‘bmp’, note MATLAB uses ‘bmp’ as default
e ‘doc’ or ‘ppt’ — ‘png’ (default), ‘jpg’, ‘bmp’, or ‘tiff’
e ‘maxWidth’ and ‘maxHeight’ — Maximum width (height) of the produced images

in pixels. An empty value means no restriction. Both values must be set in order
for the option to work properly.

‘[’ (default), integer value > 0

e ‘useNewFigure’ — Use a new figure window for figures created by the evaluated
code. This avoids side effects with already opened figure windows.

‘true’ (default) or ‘false’
e ‘evalCode’ — Evaluate code of the Octave source file
‘true’ (default) or ‘false’
e ‘catchError’ — Catch errors while evaluating code and continue

‘true’ (default) or ‘false’

e ‘codeToEvaluate’ — Octave commands that should be evaluated prior to pub-
lishing the script file. These Octave commands do not appear in the generated
report.

e ‘max0OutputlLines’ — Maximum number of output lines from code evaluation

which are included in output.
‘Inf’ (default) or integer value > 0
e ‘showCode’ — Show the evaluated Octave commands in the generated report
‘true’ (default) or ‘false’
The option output output_file is a string with path and file name of the generated

report.

See also: [grabcode], page 238.

238 GNU Octave (version 9.1.0)

The counterpart to publish is grabcode:

grabcode filename
grabcode url
code_str = grabcode (...)
Grab the code from a report created by the publish function.

The grabbed code inside the published report must be enclosed by the strings ‘#####
SOURCE BEGIN ##### and ‘##### SOURCE END ##### . The publish function creates
this format automatically.

If no return value is requested the code is saved to a temporary file and opened in
the default editor. NOTE: The temporary file must be saved to a new filename or
the code will be lost.

If an output is requested the grabbed code will be returned as string code_str.
Example:

publish ("my_script.m");
grabcode ("html/my_script.html");

The example above publishes my_script.m to the default location html/my_
script.html. Next, the published Octave script is grabbed to edit its content in a
new temporary file.

See also: [publish], page 235.

11.11.2 Publishing Markup

11.11.2.1 Using Publishing Markup in Script Files

To use Publishing Markup, start by typing ‘## or ‘%%’ at the beginning of a new line. For
MATLAB compatibility ‘%%%’ is treated the same way as ‘%%’

The lines following ‘##’ or ‘%%’ start with one of either ‘#’ or ‘%’ followed by at least one
space. These lines are interpreted as section. A section ends at the first line not starting
with ‘#’ or ‘%’, or when the end of the document is reached.

A section starting in the first line of the document, followed by another start of a section
that might be empty, is interpreted as a document title and introduction text.

See the example below for clarity:

Chapter 11: Functions and Scripts 239

%% Headline title

%

% Some *bold*, _italic_, or |monospaced| Text with
% a <https://www.octave.org link to GNU Octave>.
YA

"Real" Octave commands to be evaluated
sombrero ()

Octave comment style supported as well

* Bulleted list item 1
* Bulleted list item 2

Numbered list item 1

#
#
#
#
#
Numbered list item 2

11.11.2.2 Text Formatting

Basic text formatting is supported inside sections, see the example given below:
##
bold, _italic_, or |monospaced| Text
Additionally two trademark symbols are supported, just embrace the letters ‘TM’ or ‘R’.

##
(TM) or (R)

11.11.2.3 Sections

A section is started by typing ‘## or ‘%%’ at the beginning of a new line. A section title can
be provided by writing it, separated by a space, in the first line after ‘## or ‘%%’. Without
a section title, the section is interpreted as a continuation of the previous section. For
MATLAB compatibility ‘%%%’ is treated the same way as ‘%%’.

some_code ();

Section 1
#
Section 2

some_code ();

it
Still in section 2

some_code ();
%%% Section 3

h
h

240 GNU Octave (version 9.1.0)

11.11.2.4 Preformatted Code

To write preformatt