GNU Octave  9.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
inv.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 1996-2024 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if defined (HAVE_CONFIG_H)
27 # include "config.h"
28 #endif
29 
30 #include "defun.h"
31 #include "error.h"
32 #include "errwarn.h"
33 #include "ovl.h"
34 #include "ops.h"
35 #include "ov-re-diag.h"
36 #include "ov-cx-diag.h"
37 #include "ov-flt-re-diag.h"
38 #include "ov-flt-cx-diag.h"
39 #include "ov-perm.h"
40 
42 
43 DEFUN (inv, args, nargout,
44  doc: /* -*- texinfo -*-
45 @deftypefn {} {@var{x} =} inv (@var{A})
46 @deftypefnx {} {[@var{x}, @var{rcond}] =} inv (@var{A})
47 @deftypefnx {} {[@dots{}] =} inverse (@dots{})
48 Compute the inverse of the square matrix @var{A}.
49 
50 Return an estimate of the reciprocal condition number if requested,
51 otherwise warn of an ill-conditioned matrix if the reciprocal condition
52 number is small.
53 
54 In general it is best to avoid calculating the inverse of a matrix directly.
55 For example, it is both faster and more accurate to solve systems of
56 equations (@var{A}*@math{x} = @math{b}) with
57 @code{@var{y} = @var{A} \ @math{b}}, rather than
58 @code{@var{y} = inv (@var{A}) * @math{b}}.
59 
60 If called with a sparse matrix, then in general @var{x} will be a full
61 matrix requiring significantly more storage. Avoid forming the inverse of a
62 sparse matrix if possible.
63 
64 Programming Note: @code{inverse} is an alias for @code{inv} and can be used
65 interchangeably.
66 @seealso{ldivide, rdivide, pinv}
67 @end deftypefn */)
68 {
69  if (args.length () != 1)
70  print_usage ();
71 
72  octave_value arg = args(0);
73 
74  if (! arg.isnumeric ())
75  err_wrong_type_arg ("inv", arg);
76 
77  if (arg.isempty ())
78  return ovl (Matrix ());
79 
80  if (arg.rows () != arg.columns ())
81  err_square_matrix_required ("inv", "A");
82 
83  octave_value result;
84  octave_idx_type info = 0;
85  double rcond = 0.0;
86  float frcond = 0.0;
87  bool isfloat = arg.is_single_type ();
88 
89  if (arg.is_diag_matrix ())
90  {
91  rcond = 1.0;
92  frcond = 1.0f;
93  if (arg.iscomplex ())
94  {
95  if (isfloat)
96  {
97  result = arg.float_complex_diag_matrix_value ().inverse (info);
98  if (info == -1)
99  frcond = 0.0f;
100  else if (nargout > 1)
101  frcond = arg.float_complex_diag_matrix_value ().rcond ();
102  }
103  else
104  {
105  result = arg.complex_diag_matrix_value ().inverse (info);
106  if (info == -1)
107  rcond = 0.0;
108  else if (nargout > 1)
109  rcond = arg.complex_diag_matrix_value ().rcond ();
110  }
111  }
112  else
113  {
114  if (isfloat)
115  {
116  result = arg.float_diag_matrix_value ().inverse (info);
117  if (info == -1)
118  frcond = 0.0f;
119  else if (nargout > 1)
120  frcond = arg.float_diag_matrix_value ().rcond ();
121  }
122  else
123  {
124  result = arg.diag_matrix_value ().inverse (info);
125  if (info == -1)
126  rcond = 0.0;
127  else if (nargout > 1)
128  rcond = arg.diag_matrix_value ().rcond ();
129  }
130  }
131  }
132  else if (arg.is_perm_matrix ())
133  {
134  info = 0;
135  rcond = 1.0;
136  result = arg.perm_matrix_value ().inverse ();
137  }
138  else if (isfloat)
139  {
140  if (arg.isreal ())
141  {
143 
144  MatrixType mattyp = args(0).matrix_type ();
145  result = m.inverse (mattyp, info, frcond, true, true);
146  args(0).matrix_type (mattyp);
147  }
148  else if (arg.iscomplex ())
149  {
151 
152  MatrixType mattyp = args(0).matrix_type ();
153  result = m.inverse (mattyp, info, frcond, true, true);
154  args(0).matrix_type (mattyp);
155  }
156  }
157  else
158  {
159  if (arg.isreal ())
160  {
161  if (arg.issparse ())
162  {
164 
165  MatrixType mattyp = args(0).matrix_type ();
166  result = m.inverse (mattyp, info, rcond, true, true);
167  args(0).matrix_type (mattyp);
168  }
169  else
170  {
171  Matrix m = arg.matrix_value ();
172 
173  MatrixType mattyp = args(0).matrix_type ();
174  result = m.inverse (mattyp, info, rcond, true, true);
175  args(0).matrix_type (mattyp);
176  }
177  }
178  else if (arg.iscomplex ())
179  {
180  if (arg.issparse ())
181  {
183 
184  MatrixType mattyp = args(0).matrix_type ();
185  result = m.inverse (mattyp, info, rcond, true, true);
186  args(0).matrix_type (mattyp);
187  }
188  else
189  {
191 
192  MatrixType mattyp = args(0).matrix_type ();
193  result = m.inverse (mattyp, info, rcond, true, true);
194  args(0).matrix_type (mattyp);
195  }
196  }
197  else
198  // Shouldn't get here since we checked for suitable arg earlier.
199  // Maybe for some user-defined classes?
200  err_wrong_type_arg ("inv", arg);
201  }
202 
203  octave_value_list retval (nargout > 1 ? 2 : 1);
204 
205  retval(0) = result;
206  if (nargout > 1)
207  retval(1) = (isfloat ? octave_value (frcond) : octave_value (rcond));
208 
209  if (nargout < 2)
210  {
211  bool is_singular;
212 
213  if (isfloat)
214  is_singular = ((frcond + 1.0f == 1.0f) || octave::math::isnan (frcond))
215  && ! arg.is_scalar_type ();
216  else
217  is_singular = ((rcond + 1.0 == 1.0) || octave::math::isnan (rcond))
218  && ! arg.is_scalar_type ();
219 
220  if (info == -1 || is_singular)
221  warn_singular_matrix (isfloat ? frcond : rcond);
222  }
223 
224  return retval;
225 }
226 
227 /*
228 ## Basic test for double/single matrices
229 %!assert (inv ([1, 2; 3, 4]), [-2, 1; 1.5, -0.5], 5*eps)
230 %!test
231 %! [xinv, rcond] = inv ([1,2;3,4]);
232 %! assert (xinv, [-2, 1; 1.5, -0.5], 5*eps);
233 %! assert (isa (rcond, "double"));
234 
235 %!assert (inv (single ([1, 2; 3, 4])), single ([-2, 1; 1.5, -0.5]),
236 %! 5* eps ("single"))
237 %!test
238 %! [xinv, rcond] = inv (single ([1,2;3,4]));
239 %! assert (xinv, single ([-2, 1; 1.5, -0.5]), 5* eps ("single"));
240 %! assert (isa (rcond, "single"));
241 
242 ## Basic test for integer inputs
243 %!assert (inv (int32 (2)), 0.5)
244 %!assert (inv (uint32 (2)), 0.5)
245 %!assert (inv (int64 (2)), 0.5)
246 %!assert (inv (uint64 (2)), 0.5)
247 
248 ## Normal scalar cases
249 %!assert (inv (2), 0.5)
250 %!test
251 %! [xinv, rcond] = inv (2);
252 %! assert (xinv, 0.5);
253 %! assert (rcond, 1);
254 %!assert (inv (single (2)), single (0.5))
255 %!test
256 %! [xinv, rcond] = inv (single (2));
257 %! assert (xinv, single (0.5));
258 %! assert (rcond, single (1));
259 %!assert (inv (complex (1, -1)), 0.5+0.5i)
260 %!test
261 %! [xinv, rcond] = inv (complex (1, -1));
262 %! assert (xinv, 0.5+0.5i);
263 %! assert (rcond, 1);
264 %!assert (inv (complex (single (1), -1)), single (0.5+0.5i))
265 %!test
266 %! [xinv, rcond] = inv (complex (single (1), -1));
267 %! assert (xinv, single (0.5+0.5i));
268 %! assert (rcond, single (1));
269 
270 ## Test special inputs
271 ## Empty matrix
272 %!assert (inv (zeros (2,0)), [])
273 
274 ## Scalar "0"
275 %!assert (inv (0), Inf)
276 %!test
277 %! [xinv, rcond] = inv (0);
278 %! assert (xinv, Inf);
279 %! assert (rcond, 0);
280 %!assert (inv (single (0)), single (Inf))
281 %!test
282 %! [xinv, rcond] = inv (single (0));
283 %! assert (xinv, single (Inf));
284 %! assert (rcond, single (0));
285 %!assert (inv (complex (0, 0)), Inf)
286 %!test
287 %! [xinv, rcond] = inv (complex (0, 0));
288 %! assert (xinv, Inf);
289 %! assert (rcond, 0);
290 %!assert (inv (complex (single (0), 0)), single (Inf))
291 %!test
292 %! [xinv, rcond] = inv (complex (single (0), 0));
293 %! assert (xinv, single (Inf));
294 %! assert (rcond, single (0));
295 ## NOTE: Matlab returns +Inf for -0 input, but it returns -Inf for 1/-0.
296 ## These should be the same, and in Octave they are.
297 %!assert (inv (-0), -Inf)
298 %!test
299 %! [xinv, rcond] = inv (-0);
300 %! assert (xinv, -Inf);
301 %! assert (rcond, 0);
302 
303 ## Scalar "Inf"
304 %!assert (inv (Inf), 0)
305 %!test
306 %! [xinv, rcond] = inv (Inf);
307 %! assert (xinv, 0);
308 %! assert (rcond, 0);
309 %!assert (inv (single (Inf)), single (0))
310 %!test
311 %! [xinv, rcond] = inv (single (Inf));
312 %! assert (xinv, single (0));
313 %! assert (rcond, single (0));
314 %!assert (inv (complex (1, Inf)), 0)
315 %!test
316 %! [xinv, rcond] = inv (complex (1, Inf));
317 %! assert (xinv, 0);
318 %! assert (rcond, 0);
319 %!assert (inv (complex (single (1), Inf)), single (0))
320 %!test
321 %! [xinv, rcond] = inv (complex (single (1), Inf));
322 %! assert (xinv, single (0));
323 %! assert (rcond, single (0));
324 
325 ## Scalar "NaN"
326 %!assert (inv (NaN), NaN)
327 %!test
328 %! [xinv, rcond] = inv (NaN);
329 %! assert (xinv, NaN);
330 %! assert (rcond, NaN);
331 %!assert (inv (single (NaN)), single (NaN))
332 %!test
333 %! [xinv, rcond] = inv (single (NaN));
334 %! assert (xinv, single (NaN));
335 %! assert (rcond, single (NaN));
336 %!assert (inv (complex (1, NaN)), complex (NaN, NaN))
337 %!test
338 %! [xinv, rcond] = inv (complex (1, NaN));
339 %! assert (xinv, complex (NaN, NaN));
340 %! assert (rcond, NaN);
341 %!assert (inv (complex (single (1), NaN)), complex (single (NaN), NaN))
342 %!test
343 %! [xinv, rcond] = inv (complex (single (1), NaN));
344 %! assert (xinv, complex (single (NaN), NaN));
345 %! assert (rcond, single (NaN));
346 
347 ## Matrix special values
348 ## Matrix of all zeroes
349 %!warning <matrix singular> assert (inv (zeros (2,2)), Inf (2,2))
350 %!test
351 %! [xinv, rcond] = inv (zeros (2,2));
352 %! assert (xinv, Inf (2,2));
353 %! assert (rcond, 0);
354 ## Matrix of all Inf
355 %!xtest <65054>
356 %! fail ("A = inv (Inf (2,2))", "warning", "matrix singular");
357 %! assert (A, NaN (2,2));
358 %!xtest <65054>
359 %! [xinv, rcond] = inv (Inf (2,2));
360 %! assert (xinv, NaN (2,2));
361 %! assert (rcond, NaN);
362 ## Matrix of all NaN
363 %!warning <rcond = > assert (inv (NaN (2,2)), NaN (2,2))
364 %!test
365 %! [xinv, rcond] = inv (NaN (2,2));
366 %! assert (xinv, NaN (2,2));
367 %! assert (rcond, NaN);
368 
369 ## Special diagonal matrices
370 %!test
371 %! fail ("A = inv (diag ([1, 0, 1]))", "warning", "matrix singular");
372 %! assert (A, diag ([Inf, Inf, Inf]));
373 
374 ## Special sparse matrices
375 %!testif HAVE_UMFPACK <*56232>
376 %! fail ("A = inv (sparse ([1, 2;0 ,0]))", "warning", "matrix singular");
377 %! assert (A, sparse ([Inf, Inf; 0, 0]));
378 
379 %!testif HAVE_UMFPACK <*56232>
380 %! fail ("A = inv (sparse ([1i, 2;0 ,0]))", "warning", "matrix singular");
381 %! assert (A, sparse ([Inf, Inf; 0, 0]));
382 
383 %!testif HAVE_UMFPACK <*56232>
384 %! fail ("A = inv (sparse ([1, 0, 0; 0, 0, 0; 0, 0, 1]))",
385 %! "warning", "matrix singular");
386 %! assert (A, sparse ([Inf, 0, 0; 0, 0, 0; 0, 0, Inf]));
387 
388 %!error <Invalid call> inv ()
389 %!error <Invalid call> inv ([1, 2; 3, 4], 2)
390 %!error <wrong type argument> inv ("Hello World")
391 %!error <wrong type argument> inv ({1})
392 %!error <wrong type argument> inv (true)
393 %!error <must be a square matrix> inv ([1, 2; 3, 4; 5, 6])
394 %!error <inverse of the null matrix not defined> inv (sparse (2, 2, 0))
395 %!error <inverse of the null matrix not defined> inv (diag ([0, 0]))
396 %!error <inverse of the null matrix not defined> inv (diag (complex ([0, 0])))
397 */
398 
399 DEFALIAS (inverse, inv);
400 
401 OCTAVE_END_NAMESPACE(octave)
double rcond() const
Definition: CDiagMatrix.cc:507
ComplexDiagMatrix inverse(octave_idx_type &info) const
Definition: CDiagMatrix.cc:311
DiagMatrix inverse() const
Definition: dDiagMatrix.cc:227
double rcond() const
Definition: dDiagMatrix.cc:345
FloatComplexDiagMatrix inverse(octave_idx_type &info) const
float rcond() const
Definition: fDiagMatrix.cc:323
FloatDiagMatrix inverse() const
Definition: fDiagMatrix.cc:227
Definition: dMatrix.h:42
PermMatrix inverse() const
Definition: PermMatrix.cc:114
bool is_diag_matrix() const
Definition: ov.h:631
SparseMatrix sparse_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:900
DiagMatrix diag_matrix_value(bool force=false) const
Definition: ov.h:910
octave_idx_type rows() const
Definition: ov.h:545
bool is_scalar_type() const
Definition: ov.h:744
bool isreal() const
Definition: ov.h:738
bool isnumeric() const
Definition: ov.h:750
FloatDiagMatrix float_diag_matrix_value(bool force=false) const
Definition: ov.h:913
ComplexMatrix complex_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:871
FloatComplexDiagMatrix float_complex_diag_matrix_value(bool force=false) const
Definition: ov.h:920
bool is_perm_matrix() const
Definition: ov.h:634
bool is_single_type() const
Definition: ov.h:698
bool isempty() const
Definition: ov.h:601
bool issparse() const
Definition: ov.h:753
ComplexDiagMatrix complex_diag_matrix_value(bool force=false) const
Definition: ov.h:916
FloatMatrix float_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:856
bool iscomplex() const
Definition: ov.h:741
octave_idx_type columns() const
Definition: ov.h:547
Matrix matrix_value(bool frc_str_conv=false) const
Definition: ov.h:853
FloatComplexMatrix float_complex_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:875
PermMatrix perm_matrix_value() const
Definition: ov.h:923
SparseComplexMatrix sparse_complex_matrix_value(bool frc_str_conv=false) const
Definition: ov.h:904
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
void print_usage(void)
Definition: defun-int.h:72
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition: defun.h:56
#define DEFALIAS(alias, name)
Macro to define an alias for another existing function name.
Definition: defun.h:160
void err_square_matrix_required(const char *fcn, const char *name)
Definition: errwarn.cc:122
void err_wrong_type_arg(const char *name, const char *s)
Definition: errwarn.cc:166
void warn_singular_matrix(double rcond)
bool isnan(bool)
Definition: lo-mappers.h:178
T octave_idx_type m
Definition: mx-inlines.cc:781
return octave_value(v1.char_array_value() . concat(v2.char_array_value(), ra_idx),((a1.is_sq_string()||a2.is_sq_string()) ? '\'' :'"'))
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition: ovl.h:219