GNU Octave 10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 
Loading...
Searching...
No Matches
chol.cc
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////
2//
3// Copyright (C) 1996-2025 The Octave Project Developers
4//
5// See the file COPYRIGHT.md in the top-level directory of this
6// distribution or <https://octave.org/copyright/>.
7//
8// This file is part of Octave.
9//
10// Octave is free software: you can redistribute it and/or modify it
11// under the terms of the GNU General Public License as published by
12// the Free Software Foundation, either version 3 of the License, or
13// (at your option) any later version.
14//
15// Octave is distributed in the hope that it will be useful, but
16// WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with Octave; see the file COPYING. If not, see
22// <https://www.gnu.org/licenses/>.
23//
24////////////////////////////////////////////////////////////////////////
25
26#if defined (HAVE_CONFIG_H)
27# include "config.h"
28#endif
29
30#include <string>
31
32#include "Matrix.h"
33#include "chol.h"
34#include "oct-string.h"
35#include "sparse-chol.h"
36#include "sparse-util.h"
37
38#include "defun.h"
39#include "error.h"
40#include "errwarn.h"
41#include "ov.h"
42#include "ovl.h"
43
45
46template <typename CHOLT>
47static octave_value
48get_chol (const CHOLT& fact)
49{
50 return octave_value (fact.chol_matrix());
51}
52
53template <typename CHOLT>
54static octave_value
55get_chol_r (const CHOLT& fact)
56{
57 return octave_value (fact.chol_matrix (),
59}
60
61template <typename CHOLT>
62static octave_value
63get_chol_l (const CHOLT& fact)
64{
65 return octave_value (fact.chol_matrix ().transpose (),
67}
68
69DEFUN (chol, args, nargout,
70 doc: /* -*- texinfo -*-
71@deftypefn {} {@var{R} =} chol (@var{A})
72@deftypefnx {} {[@var{R}, @var{p}] =} chol (@var{A})
73@deftypefnx {} {[@var{R}, @var{p}, @var{Q}] =} chol (@var{A})
74@deftypefnx {} {[@var{R}, @var{p}, @var{Q}] =} chol (@var{A}, "vector")
75@deftypefnx {} {[@var{L}, @dots{}] =} chol (@dots{}, "lower")
76@deftypefnx {} {[@var{R}, @dots{}] =} chol (@dots{}, "upper")
77@cindex Cholesky factorization
78Compute the upper Cholesky@tie{}factor, @var{R}, of the real symmetric
79or complex Hermitian positive definite matrix @var{A}.
80
81The upper Cholesky@tie{}factor @var{R} is computed by using the upper
82triangular part of matrix @var{A} and is defined by
83@tex
84$ R^T R = A $.
85@end tex
86@ifnottex
87
88@example
89@var{R}' * @var{R} = @var{A}.
90@end example
91
92@end ifnottex
93
94Calling @code{chol} using the optional @qcode{"upper"} flag has the
95same behavior. In contrast, using the optional @qcode{"lower"} flag,
96@code{chol} returns the lower triangular factorization, computed by using
97the lower triangular part of matrix @var{A}, such that
98@tex
99$ L L^T = A $.
100@end tex
101@ifnottex
102
103@example
104@var{L} * @var{L}' = @var{A}.
105@end example
106
107@end ifnottex
108
109Called with one output argument @code{chol} fails if matrix @var{A} is
110not positive definite. Note that if matrix @var{A} is not real symmetric
111or complex Hermitian then the lower triangular part is considered to be
112the (complex conjugate) transpose of the upper triangular part, or vice
113versa, given the @qcode{"lower"} flag.
114
115Called with two or more output arguments @var{p} flags whether the matrix
116@var{A} was positive definite and @code{chol} does not fail. A zero value
117of @var{p} indicates that matrix @var{A} is positive definite and @var{R}
118gives the factorization. Otherwise, @var{p} will have a positive value.
119
120If called with three output arguments matrix @var{A} must be sparse and
121a sparsity preserving row/column permutation is applied to matrix @var{A}
122prior to the factorization. That is @var{R} is the factorization of
123@code{@var{A}(@var{Q},@var{Q})} such that
124@tex
125$ R^T R = Q^T A Q$.
126@end tex
127@ifnottex
128
129@example
130@var{R}' * @var{R} = @var{Q}' * @var{A} * @var{Q}.
131@end example
132
133@end ifnottex
134
135The sparsity preserving permutation is generally returned as a matrix.
136However, given the optional flag @qcode{"vector"}, @var{Q} will be
137returned as a vector such that
138@tex
139$ R^T R = A (Q, Q)$.
140@end tex
141@ifnottex
142
143@example
144@var{R}' * @var{R} = @var{A}(@var{Q}, @var{Q}).
145@end example
146
147@end ifnottex
148
149In general the lower triangular factorization is significantly faster for
150sparse matrices.
151@seealso{hess, lu, qr, qz, schur, svd, ichol, cholinv, chol2inv, cholupdate,
152cholinsert, choldelete, cholshift}
153@end deftypefn */)
154{
155 int nargin = args.length ();
156
157 if (nargin < 1 || nargin > 3 || nargout > 3)
158 print_usage ();
159 if (nargout > 2 && ! args(0).issparse ())
160 error ("chol: using three output arguments, matrix A must be sparse");
161
162 bool LLt = false;
163 bool vecout = false;
164
165 int n = 1;
166 while (n < nargin)
167 {
168 std::string tmp = args(n++).xstring_value ("chol: optional arguments must be strings");
169
170 if (string::strcmpi (tmp, "vector"))
171 vecout = true;
172 else if (string::strcmpi (tmp, "lower"))
173 LLt = true;
174 else if (string::strcmpi (tmp, "upper"))
175 LLt = false;
176 else
177 error (R"(chol: optional argument must be one of "vector", "lower", or "upper")");
178 }
179
180 octave_value_list retval;
181 octave_value arg = args(0);
182
183 if (arg.isempty ())
184 return ovl (Matrix ());
185
186 if (arg.issparse ())
187 {
188 octave_idx_type info;
189 bool natural = (nargout != 3);
190 bool force = nargout > 1;
191
192 if (arg.isreal ())
193 {
195
196 math::sparse_chol<SparseMatrix> fact (m, info, natural, force);
197
198 if (nargout == 3)
199 {
200 if (vecout)
201 retval(2) = fact.perm ();
202 else
203 retval(2) = fact.Q ();
204 }
205
206 if (nargout >= 2 || info == 0)
207 {
208 retval(1) = info;
209 if (LLt)
210 retval(0) = fact.L ();
211 else
212 retval(0) = fact.R ();
213 }
214 else
215 error ("chol: input matrix must be positive definite");
216 }
217 else if (arg.iscomplex ())
218 {
220
221 math::sparse_chol<SparseComplexMatrix> fact (m, info, natural, force);
222
223 if (nargout == 3)
224 {
225 if (vecout)
226 retval(2) = fact.perm ();
227 else
228 retval(2) = fact.Q ();
229 }
230
231 if (nargout >= 2 || info == 0)
232 {
233 retval(1) = info;
234 if (LLt)
235 retval(0) = fact.L ();
236 else
237 retval(0) = fact.R ();
238 }
239 else
240 error ("chol: input matrix must be positive definite");
241 }
242 else
243 err_wrong_type_arg ("chol", arg);
244 }
245 else if (arg.is_single_type ())
246 {
247 if (vecout)
248 error (R"(chol: A must be sparse for the "vector" option)");
249 if (arg.isreal ())
250 {
252
253 octave_idx_type info;
254
255 math::chol<FloatMatrix> fact (m, info, LLt != true);
256
257 if (nargout == 2 || info == 0)
258 retval = ovl (get_chol (fact), info);
259 else
260 error ("chol: input matrix must be positive definite");
261 }
262 else if (arg.iscomplex ())
263 {
265
266 octave_idx_type info;
267
268 math::chol<FloatComplexMatrix> fact (m, info, LLt != true);
269
270 if (nargout == 2 || info == 0)
271 retval = ovl (get_chol (fact), info);
272 else
273 error ("chol: input matrix must be positive definite");
274 }
275 else
276 err_wrong_type_arg ("chol", arg);
277 }
278 else
279 {
280 if (vecout)
281 error (R"(chol: A must be sparse for the "vector" option)");
282 if (arg.isreal ())
283 {
284 Matrix m = arg.matrix_value ();
285
286 octave_idx_type info;
287
288 math::chol<Matrix> fact (m, info, LLt != true);
289
290 if (nargout == 2 || info == 0)
291 retval = ovl (get_chol (fact), info);
292 else
293 error ("chol: input matrix must be positive definite");
294 }
295 else if (arg.iscomplex ())
296 {
298
299 octave_idx_type info;
300
301 math::chol<ComplexMatrix> fact (m, info, LLt != true);
302
303 if (nargout == 2 || info == 0)
304 retval = ovl (get_chol (fact), info);
305 else
306 error ("chol: input matrix must be positive definite");
307 }
308 else
309 err_wrong_type_arg ("chol", arg);
310 }
311
312 return retval;
313}
314
315/*
316%!assert (chol ([2, 1; 1, 1]), [sqrt(2), 1/sqrt(2); 0, 1/sqrt(2)], sqrt (eps))
317%!assert (chol (single ([2, 1; 1, 1])),
318%! single ([sqrt(2), 1/sqrt(2); 0, 1/sqrt(2)]), sqrt (eps ("single")))
319
320%!assert (chol ([2, 1; 1, 1], "upper"), [sqrt(2), 1/sqrt(2); 0, 1/sqrt(2)],
321%! sqrt (eps))
322%!assert (chol ([2, 1; 1, 1], "lower"), [sqrt(2), 0; 1/sqrt(2), 1/sqrt(2)],
323%! sqrt (eps))
324
325%!assert (chol ([2, 1; 1, 1], "lower"), chol ([2, 1; 1, 1], "LoweR"))
326%!assert (chol ([2, 1; 1, 1], "upper"), chol ([2, 1; 1, 1], "Upper"))
327
328## Check the "vector" option which only affects the 3rd argument and
329## is only valid for sparse input.
330%!testif HAVE_CHOLMOD
331%! a = sparse ([2 1; 1 1]);
332%! r = sparse ([sqrt(2), 1/sqrt(2); 0, 1/sqrt(2)]);
333%! [rd, pd, qd] = chol (a);
334%! [rv, pv, qv] = chol (a, "vector");
335%! assert (r, rd, eps)
336%! assert (r, rv, eps)
337%! assert (pd, 0)
338%! assert (pd, pv)
339%! assert (qd, sparse (eye (2)))
340%! assert (qv, [1 2])
341%!
342%! [rv, pv, qv] = chol (a, "Vector"); # check case sensitivity
343%! assert (r, rv, eps)
344%! assert (pd, pv)
345%! assert (qv, [1 2])
346
347%!testif HAVE_CHOLMOD <*42587>
348%! A = sparse ([1 0 8;0 1 8;8 8 1]);
349%! [Q, p] = chol (A);
350%! assert (p != 0);
351
352%!error chol ()
353%!error <matrix must be positive definite> chol ([1, 2; 3, 4])
354%!error <requires square matrix> chol ([1, 2; 3, 4; 5, 6])
355%!error <optional arguments must be strings> chol (1, 2)
356%!error <optional argument must be one of "vector", "lower"> chol (1, "foobar")
357%!error <matrix A must be sparse> [L,p,Q] = chol ([1, 2; 3, 4])
358%!error <A must be sparse> [L, p] = chol ([1, 2; 3, 4], "vector")
359*/
360
361DEFUN (cholinv, args, ,
362 doc: /* -*- texinfo -*-
363@deftypefn {} {@var{Ainv} =} cholinv (@var{A})
364Compute the inverse of the symmetric positive definite matrix @var{A} using
365the Cholesky@tie{}factorization.
366@seealso{chol, chol2inv, inv}
367@end deftypefn */)
368{
369 if (args.length () != 1)
370 print_usage ();
371
372 octave_value retval;
373 octave_value arg = args(0);
374
375 octave_idx_type nr = arg.rows ();
376 octave_idx_type nc = arg.columns ();
377
378 if (nr == 0 || nc == 0)
379 retval = Matrix ();
380 else
381 {
382 if (arg.issparse ())
383 {
384 octave_idx_type info;
385
386 if (arg.isreal ())
387 {
389
390 math::sparse_chol<SparseMatrix> chol (m, info);
391
392 if (info == 0)
393 retval = chol.inverse ();
394 else
395 error ("cholinv: A must be positive definite");
396 }
397 else if (arg.iscomplex ())
398 {
400
401 math::sparse_chol<SparseComplexMatrix> chol (m, info);
402
403 if (info == 0)
404 retval = chol.inverse ();
405 else
406 error ("cholinv: A must be positive definite");
407 }
408 else
409 err_wrong_type_arg ("cholinv", arg);
410 }
411 else if (arg.is_single_type ())
412 {
413 if (arg.isreal ())
414 {
416
417 octave_idx_type info;
418 math::chol<FloatMatrix> chol (m, info);
419 if (info == 0)
420 retval = chol.inverse ();
421 else
422 error ("cholinv: A must be positive definite");
423 }
424 else if (arg.iscomplex ())
425 {
427
428 octave_idx_type info;
429 math::chol<FloatComplexMatrix> chol (m, info);
430 if (info == 0)
431 retval = chol.inverse ();
432 else
433 error ("cholinv: A must be positive definite");
434 }
435 else
436 err_wrong_type_arg ("chol", arg);
437 }
438 else
439 {
440 if (arg.isreal ())
441 {
442 Matrix m = arg.matrix_value ();
443
444 octave_idx_type info;
445 math::chol<Matrix> chol (m, info);
446 if (info == 0)
447 retval = chol.inverse ();
448 else
449 error ("cholinv: A must be positive definite");
450 }
451 else if (arg.iscomplex ())
452 {
454
455 octave_idx_type info;
456 math::chol<ComplexMatrix> chol (m, info);
457 if (info == 0)
458 retval = chol.inverse ();
459 else
460 error ("cholinv: A must be positive definite");
461 }
462 else
463 err_wrong_type_arg ("chol", arg);
464 }
465 }
466
467 return retval;
468}
469
470/*
471%!shared A, Ainv
472%! A = [2,0.2;0.2,1];
473%! Ainv = inv (A);
474%!test
475%! Ainv1 = cholinv (A);
476%! assert (norm (Ainv-Ainv1), 0, 1e-10);
477%!testif HAVE_CHOLMOD
478%! Ainv2 = inv (sparse (A));
479%! assert (norm (Ainv-Ainv2), 0, 1e-10);
480%!testif HAVE_CHOLMOD
481%! Ainv3 = cholinv (sparse (A));
482%! assert (norm (Ainv-Ainv3), 0, 1e-10);
483*/
484
485DEFUN (chol2inv, args, ,
486 doc: /* -*- texinfo -*-
487@deftypefn {} {@var{Ainv} =} chol2inv (@var{R})
488Invert a symmetric, positive definite square matrix from its Cholesky
489decomposition, @var{R}.
490
491Note that @var{R} should be an upper-triangular matrix with positive diagonal
492elements. @code{chol2inv (@var{U})} provides @code{inv (@var{R}'*@var{R})} but
493is much faster than using @code{inv}.
494@seealso{chol, cholinv, inv}
495@end deftypefn */)
496{
497 if (args.length () != 1)
498 print_usage ();
499
500 octave_value retval;
501
502 octave_value arg = args(0);
503
504 octave_idx_type nr = arg.rows ();
505 octave_idx_type nc = arg.columns ();
506
507 if (nr == 0 || nc == 0)
508 retval = Matrix ();
509 else
510 {
511 if (arg.issparse ())
512 {
513 if (arg.isreal ())
514 {
516
517 retval = math::chol2inv (r);
518 }
519 else if (arg.iscomplex ())
520 {
522
523 retval = math::chol2inv (r);
524 }
525 else
526 err_wrong_type_arg ("chol2inv", arg);
527 }
528 else if (arg.is_single_type ())
529 {
530 if (arg.isreal ())
531 {
533
534 retval = math::chol2inv (r);
535 }
536 else if (arg.iscomplex ())
537 {
539
540 retval = math::chol2inv (r);
541 }
542 else
543 err_wrong_type_arg ("chol2inv", arg);
544
545 }
546 else
547 {
548 if (arg.isreal ())
549 {
550 Matrix r = arg.matrix_value ();
551
552 retval = math::chol2inv (r);
553 }
554 else if (arg.iscomplex ())
555 {
557
558 retval = math::chol2inv (r);
559 }
560 else
561 err_wrong_type_arg ("chol2inv", arg);
562 }
563 }
564
565 return retval;
566}
567
568/*
569
570## Test for bug #36437
571%!function sparse_chol2inv (T, tol)
572%! iT = inv (T);
573%! ciT = chol2inv (chol (T));
574%! assert (ciT, iT, tol);
575%! assert (chol2inv (chol ( full (T))), ciT, tol*2);
576%!endfunction
577
578%!testif HAVE_CHOLMOD
579%! A = gallery ("poisson", 3);
580%! sparse_chol2inv (A, eps);
581
582%!testif HAVE_CHOLMOD
583%! n = 10;
584%! B = spdiags (ones (n, 1) * [1 2 1], [-1 0 1], n, n);
585%! sparse_chol2inv (B, eps*100);
586
587%!testif HAVE_CHOLMOD
588%! C = gallery ("tridiag", 5);
589%! sparse_chol2inv (C, eps*10);
590
591%!testif HAVE_CHOLMOD
592%! D = gallery ("wathen", 1, 1);
593%! sparse_chol2inv (D, eps*10^4);
594
595*/
596
597DEFUN (cholupdate, args, nargout,
598 doc: /* -*- texinfo -*-
599@deftypefn {} {[@var{R1}, @var{info}] =} cholupdate (@var{R}, @var{u}, @var{op})
600Update or downdate a Cholesky@tie{}factorization.
601
602Given an upper triangular matrix @var{R} and a column vector @var{u},
603attempt to determine another upper triangular matrix @var{R1} such that
604
605@itemize @bullet
606@item
607@var{R1}'*@var{R1} = @var{R}'*@var{R} + @var{u}*@var{u}'
608if @var{op} is @qcode{"+"}
609
610@item
611@var{R1}'*@var{R1} = @var{R}'*@var{R} - @var{u}*@var{u}'
612if @var{op} is @qcode{"-"}
613@end itemize
614
615If @var{op} is @qcode{"-"}, @var{info} is set to
616
617@itemize
618@item 0 if the downdate was successful,
619
620@item 1 if @var{R}'*@var{R} - @var{u}*@var{u}' is not positive definite,
621
622@item 2 if @var{R} is singular.
623@end itemize
624
625If @var{info} is not present, an error message is printed in cases 1 and 2.
626@seealso{chol, cholinsert, choldelete, cholshift}
627@end deftypefn */)
628{
629 int nargin = args.length ();
630
631 if (nargin < 2 || nargin > 3)
632 print_usage ();
633
634 octave_value argr = args(0);
635 octave_value argu = args(1);
636
637 if (! argr.isnumeric () || ! argu.isnumeric ()
638 || (nargin > 2 && ! args(2).is_string ()))
639 print_usage ();
640
641 octave_value_list retval (nargout == 2 ? 2 : 1);
642
643 octave_idx_type n = argr.rows ();
644
645 std::string op = (nargin < 3) ? "+" : args(2).string_value ();
646
647 bool down = (op == "-");
648
649 if (! down && op != "+")
650 error (R"(cholupdate: OP must be "+" or "-")");
651
652 if (argr.columns () != n || argu.rows () != n || argu.columns () != 1)
653 error ("cholupdate: dimension mismatch between R and U");
654
655 int err = 0;
656 if (argr.is_single_type () || argu.is_single_type ())
657 {
658 if (argr.isreal () && argu.isreal ())
659 {
660 // real case
663
664 math::chol<FloatMatrix> fact;
665 fact.set (R);
666
667 if (down)
668 err = fact.downdate (u);
669 else
670 fact.update (u);
671
672 retval = ovl (get_chol_r (fact));
673 }
674 else
675 {
676 // complex case
680
681 math::chol<FloatComplexMatrix> fact;
682 fact.set (R);
683
684 if (down)
685 err = fact.downdate (u);
686 else
687 fact.update (u);
688
689 retval = ovl (get_chol_r (fact));
690 }
691 }
692 else
693 {
694 if (argr.isreal () && argu.isreal ())
695 {
696 // real case
697 Matrix R = argr.matrix_value ();
699
700 math::chol<Matrix> fact;
701 fact.set (R);
702
703 if (down)
704 err = fact.downdate (u);
705 else
706 fact.update (u);
707
708 retval = ovl (get_chol_r (fact));
709 }
710 else
711 {
712 // complex case
715
716 math::chol<ComplexMatrix> fact;
717 fact.set (R);
718
719 if (down)
720 err = fact.downdate (u);
721 else
722 fact.update (u);
723
724 retval = ovl (get_chol_r (fact));
725 }
726 }
727
728 if (nargout > 1)
729 retval(1) = err;
730 else if (err == 1)
731 error ("cholupdate: downdate violates positiveness");
732 else if (err == 2)
733 error ("cholupdate: singular matrix");
734
735 return retval;
736}
737
738/*
739%!shared A, u, Ac, uc
740%! A = [ 0.436997 -0.131721 0.124120 -0.061673 ;
741%! -0.131721 0.738529 0.019851 -0.140295 ;
742%! 0.124120 0.019851 0.354879 -0.059472 ;
743%! -0.061673 -0.140295 -0.059472 0.600939 ];
744%!
745%! u = [ 0.98950 ;
746%! 0.39844 ;
747%! 0.63484 ;
748%! 0.13351 ];
749%! Ac = [ 0.5585528 + 0.0000000i -0.1662088 - 0.0315341i 0.0107873 + 0.0236411i -0.0276775 - 0.0186073i ;
750%! -0.1662088 + 0.0315341i 0.6760061 + 0.0000000i 0.0011452 - 0.0475528i 0.0145967 + 0.0247641i ;
751%! 0.0107873 - 0.0236411i 0.0011452 + 0.0475528i 0.6263149 - 0.0000000i -0.1585837 - 0.0719763i ;
752%! -0.0276775 + 0.0186073i 0.0145967 - 0.0247641i -0.1585837 + 0.0719763i 0.6034234 - 0.0000000i ];
753%!
754%! uc = [ 0.54267 + 0.91519i ;
755%! 0.99647 + 0.43141i ;
756%! 0.83760 + 0.68977i ;
757%! 0.39160 + 0.90378i ];
758
759%!test
760%! R = chol (A);
761%! R1 = cholupdate (R, u);
762%! assert (norm (triu (R1)-R1, Inf), 0);
763%! assert (norm (R1'*R1 - R'*R - u*u', Inf), 0, 1e1*eps);
764%!
765%! R1 = cholupdate (R1, u, "-");
766%! assert (norm (triu (R1)-R1, Inf), 0);
767%! assert (norm (R1 - R, Inf), 0, 1e1*eps);
768
769%!test
770%! R = chol (Ac);
771%! R1 = cholupdate (R, uc);
772%! assert (norm (triu (R1)-R1, Inf), 0);
773%! assert (norm (R1'*R1 - R'*R - uc*uc', Inf), 0, 1e1*eps);
774%!
775%! R1 = cholupdate (R1, uc, "-");
776%! assert (norm (triu (R1)-R1, Inf), 0);
777%! assert (norm (R1 - R, Inf), 0, 11*eps);
778
779%!test
780%! R = chol (single (A));
781%! R1 = cholupdate (R, single (u));
782%! assert (norm (triu (R1)-R1, Inf), single (0));
783%! assert (norm (R1'*R1 - R'*R - single (u*u'), Inf), 0, 1e1* eps ("single"));
784%!
785%! R1 = cholupdate (R1, single (u), "-");
786%! assert (norm (triu (R1)-R1, Inf), single (0));
787%! assert (norm (R1 - R, Inf), 0, 2e1* eps ("single"));
788
789%!test
790%! R = chol (single (Ac));
791%! R1 = cholupdate (R, single (uc));
792%! assert (norm (triu (R1)-R1, Inf), single (0));
793%! assert (norm (R1'*R1 - R'*R - single (uc*uc'), Inf), 0, 1e1* eps ("single"));
794%!
795%! R1 = cholupdate (R1, single (uc), "-");
796%! assert (norm (triu (R1)-R1, Inf), single (0));
797%! assert (norm (R1 - R, Inf), 0, 2e1* eps ("single"));
798*/
799
800DEFUN (cholinsert, args, nargout,
801 doc: /* -*- texinfo -*-
802@deftypefn {} {@var{R1} =} cholinsert (@var{R}, @var{j}, @var{u})
803@deftypefnx {} {[@var{R1}, @var{info}] =} cholinsert (@var{R}, @var{j}, @var{u})
804Update a Cholesky factorization given a row or column to insert in the
805original factored matrix.
806
807Given a Cholesky@tie{}factorization of a real symmetric or complex Hermitian
808positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper
809triangular, return the Cholesky@tie{}factorization of
810@var{A1}, where @w{A1(p,p) = A}, @w{A1(:,j) = A1(j,:)' = u}@ and
811@w{p = [1:j-1,j+1:n+1]}. @w{u(j)}@ should be positive.
812
813On return, @var{info} is set to
814
815@itemize
816@item 0 if the insertion was successful,
817
818@item 1 if @var{A1} is not positive definite,
819
820@item 2 if @var{R} is singular.
821@end itemize
822
823If @var{info} is not present, an error message is printed in cases 1 and 2.
824@seealso{chol, cholupdate, choldelete, cholshift}
825@end deftypefn */)
826{
827 if (args.length () != 3)
828 print_usage ();
829
830 octave_value argr = args(0);
831 octave_value argj = args(1);
832 octave_value argu = args(2);
833
834 if (! argr.isnumeric () || ! argu.isnumeric ()
835 || ! argj.is_real_scalar ())
836 print_usage ();
837
838 octave_idx_type n = argr.rows ();
839 octave_idx_type j = argj.scalar_value ();
840
841 if (argr.columns () != n || argu.rows () != n+1 || argu.columns () != 1)
842 error ("cholinsert: dimension mismatch between R and U");
843
844 if (j < 1 || j > n+1)
845 error ("cholinsert: index J out of range");
846
847 octave_value_list retval (nargout == 2 ? 2 : 1);
848
849 int err = 0;
850 if (argr.is_single_type () || argu.is_single_type ())
851 {
852 if (argr.isreal () && argu.isreal ())
853 {
854 // real case
857
858 math::chol<FloatMatrix> fact;
859 fact.set (R);
860 err = fact.insert_sym (u, j-1);
861
862 retval = ovl (get_chol_r (fact));
863 }
864 else
865 {
866 // complex case
870
871 math::chol<FloatComplexMatrix> fact;
872 fact.set (R);
873 err = fact.insert_sym (u, j-1);
874
875 retval = ovl (get_chol_r (fact));
876 }
877 }
878 else
879 {
880 if (argr.isreal () && argu.isreal ())
881 {
882 // real case
883 Matrix R = argr.matrix_value ();
885
886 math::chol<Matrix> fact;
887 fact.set (R);
888 err = fact.insert_sym (u, j-1);
889
890 retval = ovl (get_chol_r (fact));
891 }
892 else
893 {
894 // complex case
897
898 math::chol<ComplexMatrix> fact;
899 fact.set (R);
900 err = fact.insert_sym (u, j-1);
901
902 retval = ovl (get_chol_r (fact));
903 }
904 }
905
906 if (nargout > 1)
907 retval(1) = err;
908 else if (err == 1)
909 error ("cholinsert: insertion violates positiveness");
910 else if (err == 2)
911 error ("cholinsert: singular matrix");
912 else if (err == 3)
913 error ("cholinsert: diagonal element must be real");
914
915 return retval;
916}
917
918/*
919%!test
920%! u2 = [ 0.35080 ;
921%! 0.63930 ;
922%! 3.31057 ;
923%! -0.13825 ;
924%! 0.45266 ];
925%!
926%! R = chol (A);
927%!
928%! j = 3; p = [1:j-1, j+1:5];
929%! R1 = cholinsert (R, j, u2);
930%! A1 = R1'*R1;
931%!
932%! assert (norm (triu (R1)-R1, Inf), 0);
933%! assert (norm (A1(p,p) - A, Inf), 0, 1e1*eps);
934
935%!test
936%! u2 = [ 0.35080 + 0.04298i;
937%! 0.63930 + 0.23778i;
938%! 3.31057 + 0.00000i;
939%! -0.13825 + 0.19879i;
940%! 0.45266 + 0.50020i];
941%!
942%! R = chol (Ac);
943%!
944%! j = 3; p = [1:j-1, j+1:5];
945%! R1 = cholinsert (R, j, u2);
946%! A1 = R1'*R1;
947%!
948%! assert (norm (triu (R1)-R1, Inf), 0);
949%! assert (norm (A1(p,p) - Ac, Inf), 0, 1e1*eps);
950
951%!test
952%! u2 = single ([ 0.35080 ;
953%! 0.63930 ;
954%! 3.31057 ;
955%! -0.13825 ;
956%! 0.45266 ]);
957%!
958%! R = chol (single (A));
959%!
960%! j = 3; p = [1:j-1, j+1:5];
961%! R1 = cholinsert (R, j, u2);
962%! A1 = R1'*R1;
963%!
964%! assert (norm (triu (R1)-R1, Inf), single (0));
965%! assert (norm (A1(p,p) - A, Inf), 0, 1e1* eps ("single"));
966
967%!test
968%! u2 = single ([ 0.35080 + 0.04298i;
969%! 0.63930 + 0.23778i;
970%! 3.31057 + 0.00000i;
971%! -0.13825 + 0.19879i;
972%! 0.45266 + 0.50020i]);
973%!
974%! R = chol (single (Ac));
975%!
976%! j = 3; p = [1:j-1, j+1:5];
977%! R1 = cholinsert (R, j, u2);
978%! A1 = R1'*R1;
979%!
980%! assert (norm (triu (R1)-R1, Inf), single (0));
981%! assert (norm (A1(p,p) - single (Ac), Inf), 0, 2e1* eps ("single"));
982
983%!test
984%! cu = chol (triu (A), "upper");
985%! cl = chol (tril (A), "lower");
986%! assert (cu, cl', eps);
987
988%!test
989%! cca = chol (Ac);
990%!
991%! ccal = chol (Ac, "lower");
992%! ccal2 = chol (tril (Ac), "lower");
993%!
994%! ccau = chol (Ac, "upper");
995%! ccau2 = chol (triu (Ac), "upper");
996%!
997%! assert (cca'*cca, Ac, eps);
998%! assert (ccau'*ccau, Ac, eps);
999%! assert (ccau2'*ccau2, Ac, eps);
1000%!
1001%! assert (cca, ccal', eps);
1002%! assert (cca, ccau, eps);
1003%! assert (cca, ccal2', eps);
1004%! assert (cca, ccau2, eps);
1005
1006%!test
1007%! cca = chol (single (Ac));
1008%!
1009%! ccal = chol (single (Ac), "lower");
1010%! ccal2 = chol (tril (single (Ac)), "lower");
1011%!
1012%! ccau = chol (single (Ac), "upper");
1013%! ccau2 = chol (triu (single (Ac)), "upper");
1014%!
1015%! assert (cca'*cca, single (Ac), eps ("single"));
1016%! assert (ccau'*ccau, single (Ac), eps ("single"));
1017%! assert (ccau2'*ccau2, single (Ac), eps ("single"));
1018%!
1019%! assert (cca, ccal', eps ("single"));
1020%! assert (cca, ccau, eps ("single"));
1021%! assert (cca, ccal2', eps ("single"));
1022%! assert (cca, ccau2, eps ("single"));
1023
1024%!test
1025%! a = [12, 2, 3, 4;
1026%! 2, 14, 5, 3;
1027%! 3, 5, 16, 6;
1028%! 4, 3, 6, 16];
1029%!
1030%! b = [0, 1, 2, 3;
1031%! -1, 0, 1, 2;
1032%! -2, -1, 0, 1;
1033%! -3, -2, -1, 0];
1034%!
1035%! ca = a + i*b;
1036%!
1037%! cca = chol (ca);
1038%!
1039%! ccal = chol (ca, "lower");
1040%! ccal2 = chol (tril (ca), "lower");
1041%!
1042%! ccau = chol (ca, "upper");
1043%! ccau2 = chol (triu (ca), "upper");
1044%!
1045%! assert (cca'*cca, ca, 16*eps);
1046%! assert (ccau'*ccau, ca, 16*eps);
1047%! assert (ccau2'*ccau2, ca, 16*eps);
1048%!
1049%! assert (cca, ccal', 16*eps);
1050%! assert (cca, ccau, 16*eps);
1051%! assert (cca, ccal2', 16*eps);
1052%! assert (cca, ccau2, 16*eps);
1053*/
1054
1055DEFUN (choldelete, args, ,
1056 doc: /* -*- texinfo -*-
1057@deftypefn {} {@var{R1} =} choldelete (@var{R}, @var{j})
1058Update a Cholesky factorization given a row or column to delete from the
1059original factored matrix.
1060
1061Given a Cholesky@tie{}factorization of a real symmetric or complex Hermitian
1062positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper
1063triangular, return the Cholesky@tie{}factorization of @w{A(p,p)}, where
1064@w{p = [1:j-1,j+1:n+1]}.
1065@seealso{chol, cholupdate, cholinsert, cholshift}
1066@end deftypefn */)
1067{
1068 if (args.length () != 2)
1069 print_usage ();
1070
1071 octave_value argr = args(0);
1072 octave_value argj = args(1);
1073
1074 if (! argr.isnumeric () || ! argj.is_real_scalar ())
1075 print_usage ();
1076
1077 octave_idx_type n = argr.rows ();
1078 octave_idx_type j = argj.scalar_value ();
1079
1080 if (argr.columns () != n)
1081 err_square_matrix_required ("choldelete", "R");
1082
1083 if (j < 0 && j > n)
1084 error ("choldelete: index J out of range");
1085
1086 octave_value_list retval;
1087
1088 if (argr.is_single_type ())
1089 {
1090 if (argr.isreal ())
1091 {
1092 // real case
1093 FloatMatrix R = argr.float_matrix_value ();
1094
1095 math::chol<FloatMatrix> fact;
1096 fact.set (R);
1097 fact.delete_sym (j-1);
1098
1099 retval = ovl (get_chol_r (fact));
1100 }
1101 else
1102 {
1103 // complex case
1105
1106 math::chol<FloatComplexMatrix> fact;
1107 fact.set (R);
1108 fact.delete_sym (j-1);
1109
1110 retval = ovl (get_chol_r (fact));
1111 }
1112 }
1113 else
1114 {
1115 if (argr.isreal ())
1116 {
1117 // real case
1118 Matrix R = argr.matrix_value ();
1119
1120 math::chol<Matrix> fact;
1121 fact.set (R);
1122 fact.delete_sym (j-1);
1123
1124 retval = ovl (get_chol_r (fact));
1125 }
1126 else
1127 {
1128 // complex case
1130
1131 math::chol<ComplexMatrix> fact;
1132 fact.set (R);
1133 fact.delete_sym (j-1);
1134
1135 retval = ovl (get_chol_r (fact));
1136 }
1137 }
1138
1139 return retval;
1140}
1141
1142/*
1143%!test
1144%! R = chol (A);
1145%!
1146%! j = 3; p = [1:j-1,j+1:4];
1147%! R1 = choldelete (R, j);
1148%!
1149%! assert (norm (triu (R1)-R1, Inf), 0);
1150%! assert (norm (R1'*R1 - A(p,p), Inf), 0, 1e1*eps);
1151
1152%!test
1153%! R = chol (Ac);
1154%!
1155%! j = 3; p = [1:j-1,j+1:4];
1156%! R1 = choldelete (R, j);
1157%!
1158%! assert (norm (triu (R1)-R1, Inf), 0);
1159%! assert (norm (R1'*R1 - Ac(p,p), Inf), 0, 1e1*eps);
1160
1161%!test
1162%! R = chol (single (A));
1163%!
1164%! j = 3; p = [1:j-1,j+1:4];
1165%! R1 = choldelete (R, j);
1166%!
1167%! assert (norm (triu (R1)-R1, Inf), single (0));
1168%! assert (norm (R1'*R1 - single (A(p,p)), Inf), 0, 1e1* eps ("single"));
1169
1170%!test
1171%! R = chol (single (Ac));
1172%!
1173%! j = 3; p = [1:j-1,j+1:4];
1174%! R1 = choldelete (R,j);
1175%!
1176%! assert (norm (triu (R1)-R1, Inf), single (0));
1177%! assert (norm (R1'*R1 - single (Ac(p,p)), Inf), 0, 1e1* eps ("single"));
1178*/
1179
1180DEFUN (cholshift, args, ,
1181 doc: /* -*- texinfo -*-
1182@deftypefn {} {@var{R1} =} cholshift (@var{R}, @var{i}, @var{j})
1183Update a Cholesky factorization given a range of columns to shift in the
1184original factored matrix.
1185
1186Given a Cholesky@tie{}factorization of a real symmetric or complex Hermitian
1187positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper
1188triangular, return the Cholesky@tie{}factorization of
1189@w{@var{A}(p,p)}, where p is the permutation @*
1190@code{p = [1:i-1, circshift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*
1191 or @*
1192@code{p = [1:j-1, circshift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}. @*
1193
1194@seealso{chol, cholupdate, cholinsert, choldelete}
1195@end deftypefn */)
1196{
1197 if (args.length () != 3)
1198 print_usage ();
1199
1200 octave_value argr = args(0);
1201 octave_value argi = args(1);
1202 octave_value argj = args(2);
1203
1204 if (! argr.isnumeric () || ! argi.is_real_scalar ()
1205 || ! argj.is_real_scalar ())
1206 print_usage ();
1207
1208 octave_idx_type n = argr.rows ();
1209 octave_idx_type i = argi.scalar_value ();
1210 octave_idx_type j = argj.scalar_value ();
1211
1212 if (argr.columns () != n)
1213 err_square_matrix_required ("cholshift", "R");
1214
1215 if (j < 0 || j > n+1 || i < 0 || i > n+1)
1216 error ("cholshift: index I or J is out of range");
1217
1218 octave_value_list retval;
1219
1220 if (argr.is_single_type () && argi.is_single_type ()
1221 && argj.is_single_type ())
1222 {
1223 if (argr.isreal ())
1224 {
1225 // real case
1226 FloatMatrix R = argr.float_matrix_value ();
1227
1228 math::chol<FloatMatrix> fact;
1229 fact.set (R);
1230 fact.shift_sym (i-1, j-1);
1231
1232 retval = ovl (get_chol_r (fact));
1233 }
1234 else
1235 {
1236 // complex case
1238
1239 math::chol<FloatComplexMatrix> fact;
1240 fact.set (R);
1241 fact.shift_sym (i-1, j-1);
1242
1243 retval = ovl (get_chol_r (fact));
1244 }
1245 }
1246 else
1247 {
1248 if (argr.isreal ())
1249 {
1250 // real case
1251 Matrix R = argr.matrix_value ();
1252
1253 math::chol<Matrix> fact;
1254 fact.set (R);
1255 fact.shift_sym (i-1, j-1);
1256
1257 retval = ovl (get_chol_r (fact));
1258 }
1259 else
1260 {
1261 // complex case
1263
1264 math::chol<ComplexMatrix> fact;
1265 fact.set (R);
1266 fact.shift_sym (i-1, j-1);
1267
1268 retval = ovl (get_chol_r (fact));
1269 }
1270 }
1271
1272 return retval;
1273}
1274
1275/*
1276%!test
1277%! R = chol (A);
1278%!
1279%! i = 1; j = 3; p = [1:i-1, circshift(i:j,-1), j+1:4];
1280%! R1 = cholshift (R, i, j);
1281%!
1282%! assert (norm (triu (R1)-R1, Inf), 0);
1283%! assert (norm (R1'*R1 - A(p,p), Inf), 0, 1e1*eps);
1284%!
1285%! j = 1; i = 3; p = [1:j-1, circshift(j:i,+1), i+1:4];
1286%! R1 = cholshift (R, i, j);
1287%!
1288%! assert (norm (triu (R1) - R1, Inf), 0);
1289%! assert (norm (R1'*R1 - A(p,p), Inf), 0, 1e1*eps);
1290
1291%!test
1292%! R = chol (Ac);
1293%!
1294%! i = 1; j = 3; p = [1:i-1, circshift(i:j,-1), j+1:4];
1295%! R1 = cholshift (R, i, j);
1296%!
1297%! assert (norm (triu (R1)-R1, Inf), 0);
1298%! assert (norm (R1'*R1 - Ac(p,p), Inf), 0, 1e1*eps);
1299%!
1300%! j = 1; i = 3; p = [1:j-1, circshift(j:i,+1), i+1:4];
1301%! R1 = cholshift (R, i, j);
1302%!
1303%! assert (norm (triu (R1)-R1, Inf), 0);
1304%! assert (norm (R1'*R1 - Ac(p,p), Inf), 0, 1e1*eps);
1305
1306%!test
1307%! R = chol (single (A));
1308%!
1309%! i = 1; j = 3; p = [1:i-1, circshift(i:j,-1), j+1:4];
1310%! R1 = cholshift (R, i, j);
1311%!
1312%! assert (norm (triu (R1)-R1, Inf), 0);
1313%! assert (norm (R1'*R1 - single (A(p,p)), Inf), 0, 1e1* eps ("single"));
1314%!
1315%! j = 1; i = 3; p = [1:j-1, circshift(j:i,+1), i+1:4];
1316%! R1 = cholshift (R, i, j);
1317%!
1318%! assert (norm (triu (R1)-R1, Inf), 0);
1319%! assert (norm (R1'*R1 - single (A(p,p)), Inf), 0, 1e1* eps ("single"));
1320
1321%!test
1322%! R = chol (single (Ac));
1323%!
1324%! i = 1; j = 3; p = [1:i-1, circshift(i:j,-1), j+1:4];
1325%! R1 = cholshift (R, i, j);
1326%!
1327%! assert (norm (triu (R1)-R1, Inf), 0);
1328%! assert (norm (R1'*R1 - single (Ac(p,p)), Inf), 0, 1e1* eps ("single"));
1329%!
1330%! j = 1; i = 3; p = [1:j-1, circshift(j:i,+1), i+1:4];
1331%! R1 = cholshift (R, i, j);
1332%!
1333%! assert (norm (triu (R1)-R1, Inf), 0);
1334%! assert (norm (R1'*R1 - single (Ac(p,p)), Inf), 0, 1e1* eps ("single"));
1335*/
1336
1337OCTAVE_END_NAMESPACE(octave)
Definition chol.h:37
T inverse() const
Definition chol.cc:250
SparseMatrix sparse_matrix_value(bool frc_str_conv=false) const
Definition ov.h:909
bool is_real_scalar() const
Definition ov.h:610
octave_idx_type rows() const
Definition ov.h:545
bool isreal() const
Definition ov.h:738
bool isnumeric() const
Definition ov.h:750
ComplexMatrix complex_matrix_value(bool frc_str_conv=false) const
Definition ov.h:877
bool is_single_type() const
Definition ov.h:698
bool isempty() const
Definition ov.h:601
FloatColumnVector float_column_vector_value(bool frc_str_conv=false, bool frc_vec_conv=false) const
bool issparse() const
Definition ov.h:753
double scalar_value(bool frc_str_conv=false) const
Definition ov.h:853
FloatComplexColumnVector float_complex_column_vector_value(bool frc_str_conv=false, bool frc_vec_conv=false) const
FloatMatrix float_matrix_value(bool frc_str_conv=false) const
Definition ov.h:862
bool iscomplex() const
Definition ov.h:741
ComplexColumnVector complex_column_vector_value(bool frc_str_conv=false, bool frc_vec_conv=false) const
octave_idx_type length() const
ColumnVector column_vector_value(bool frc_str_conv=false, bool frc_vec_conv=false) const
octave_idx_type columns() const
Definition ov.h:547
Matrix matrix_value(bool frc_str_conv=false) const
Definition ov.h:859
FloatComplexMatrix float_complex_matrix_value(bool frc_str_conv=false) const
Definition ov.h:881
SparseComplexMatrix sparse_complex_matrix_value(bool frc_str_conv=false) const
Definition ov.h:913
OCTAVE_BEGIN_NAMESPACE(octave) static octave_value daspk_fcn
void print_usage()
Definition defun-int.h:72
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition defun.h:56
void error(const char *fmt,...)
Definition error.cc:1003
void err_square_matrix_required(const char *fcn, const char *name)
Definition errwarn.cc:122
void err_wrong_type_arg(const char *name, const char *s)
Definition errwarn.cc:166
T chol2inv(const T &r)
Definition chol.cc:242
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition ovl.h:217