GNU Octave
10.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
Loading...
Searching...
No Matches
mx-op-defs.h
Go to the documentation of this file.
1
////////////////////////////////////////////////////////////////////////
2
//
3
// Copyright (C) 1996-2025 The Octave Project Developers
4
//
5
// See the file COPYRIGHT.md in the top-level directory of this
6
// distribution or <https://octave.org/copyright/>.
7
//
8
// This file is part of Octave.
9
//
10
// Octave is free software: you can redistribute it and/or modify it
11
// under the terms of the GNU General Public License as published by
12
// the Free Software Foundation, either version 3 of the License, or
13
// (at your option) any later version.
14
//
15
// Octave is distributed in the hope that it will be useful, but
16
// WITHOUT ANY WARRANTY; without even the implied warranty of
17
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18
// GNU General Public License for more details.
19
//
20
// You should have received a copy of the GNU General Public License
21
// along with Octave; see the file COPYING. If not, see
22
// <https://www.gnu.org/licenses/>.
23
//
24
////////////////////////////////////////////////////////////////////////
25
26
#if ! defined (octave_mx_op_defs_h)
27
#define octave_mx_op_defs_h 1
28
29
#include "octave-config.h"
30
31
#include "
lo-array-errwarn.h
"
32
#include "
mx-op-decl.h
"
33
#include "
mx-inlines.cc
"
34
35
#define SNANCHK(s) \
36
if (octave::math::isnan (s)) \
37
octave::err_nan_to_logical_conversion ()
38
39
#define MNANCHK(m, MT) \
40
if (do_mx_check (m, mx_inline_any_nan<MT>)) \
41
octave::err_nan_to_logical_conversion ()
42
43
// vector by scalar operations.
44
45
#define VS_BIN_OP(R, F, OP, V, S) \
46
R \
47
F (const V& v, const S& s) \
48
{ \
49
return do_ms_binary_op<R::element_type, V::element_type, S> (v, s, OP); \
50
}
51
52
#define VS_BIN_OPS(R, V, S) \
53
VS_BIN_OP (R, operator +, mx_inline_add, V, S) \
54
VS_BIN_OP (R, operator -, mx_inline_sub, V, S) \
55
VS_BIN_OP (R, operator *, mx_inline_mul, V, S) \
56
VS_BIN_OP (R, operator /, mx_inline_div, V, S)
57
58
// scalar by vector by operations.
59
60
#define SV_BIN_OP(R, F, OP, S, V) \
61
R \
62
F (const S& s, const V& v) \
63
{ \
64
return do_sm_binary_op<R::element_type, S, V::element_type> (s, v, OP); \
65
}
66
67
#define SV_BIN_OPS(R, S, V) \
68
SV_BIN_OP (R, operator +, mx_inline_add, S, V) \
69
SV_BIN_OP (R, operator -, mx_inline_sub, S, V) \
70
SV_BIN_OP (R, operator *, mx_inline_mul, S, V) \
71
SV_BIN_OP (R, operator /, mx_inline_div, S, V)
72
73
// vector by vector operations.
74
75
#define VV_BIN_OP(R, F, OP, V1, V2) \
76
R \
77
F (const V1& v1, const V2& v2) \
78
{ \
79
return do_mm_binary_op<R::element_type, V1::element_type, V2::element_type> (v1, v2, OP, OP, OP, #F); \
80
}
81
82
#define VV_BIN_OPS(R, V1, V2) \
83
VV_BIN_OP (R, operator +, mx_inline_add, V1, V2) \
84
VV_BIN_OP (R, operator -, mx_inline_sub, V1, V2) \
85
VV_BIN_OP (R, product, mx_inline_mul, V1, V2) \
86
VV_BIN_OP (R, quotient, mx_inline_div, V1, V2)
87
88
// matrix by scalar operations.
89
90
#define MS_BIN_OP(R, OP, M, S, F) \
91
R \
92
OP (const M& m, const S& s) \
93
{ \
94
return do_ms_binary_op<R::element_type, M::element_type, S> (m, s, F); \
95
}
96
97
#define MS_BIN_OPS(R, M, S) \
98
MS_BIN_OP (R, operator +, M, S, mx_inline_add) \
99
MS_BIN_OP (R, operator -, M, S, mx_inline_sub) \
100
MS_BIN_OP (R, operator *, M, S, mx_inline_mul) \
101
MS_BIN_OP (R, operator /, M, S, mx_inline_div)
102
103
#define MS_CMP_OP(F, OP, M, S) \
104
boolMatrix \
105
F (const M& m, const S& s) \
106
{ \
107
return do_ms_binary_op<bool, M::element_type, S> (m, s, OP); \
108
}
109
110
#define MS_CMP_OPS(M, S) \
111
MS_CMP_OP (mx_el_lt, mx_inline_lt, M, S) \
112
MS_CMP_OP (mx_el_le, mx_inline_le, M, S) \
113
MS_CMP_OP (mx_el_ge, mx_inline_ge, M, S) \
114
MS_CMP_OP (mx_el_gt, mx_inline_gt, M, S) \
115
MS_CMP_OP (mx_el_eq, mx_inline_eq, M, S) \
116
MS_CMP_OP (mx_el_ne, mx_inline_ne, M, S)
117
118
#define MS_BOOL_OP(F, OP, M, S) \
119
boolMatrix \
120
F (const M& m, const S& s) \
121
{ \
122
MNANCHK (m, M::element_type); \
123
SNANCHK (s); \
124
return do_ms_binary_op<bool, M::element_type, S> (m, s, OP); \
125
}
126
127
#define MS_BOOL_OPS(M, S) \
128
MS_BOOL_OP (mx_el_and, mx_inline_and, M, S) \
129
MS_BOOL_OP (mx_el_or, mx_inline_or, M, S)
130
131
// scalar by matrix operations.
132
133
#define SM_BIN_OP(R, OP, S, M, F) \
134
R \
135
OP (const S& s, const M& m) \
136
{ \
137
return do_sm_binary_op<R::element_type, S, M::element_type> (s, m, F); \
138
}
139
140
#define SM_BIN_OPS(R, S, M) \
141
SM_BIN_OP (R, operator +, S, M, mx_inline_add) \
142
SM_BIN_OP (R, operator -, S, M, mx_inline_sub) \
143
SM_BIN_OP (R, operator *, S, M, mx_inline_mul) \
144
SM_BIN_OP (R, operator /, S, M, mx_inline_div)
145
146
#define SM_CMP_OP(F, OP, S, M) \
147
boolMatrix \
148
F (const S& s, const M& m) \
149
{ \
150
return do_sm_binary_op<bool, S, M::element_type> (s, m, OP); \
151
}
152
153
#define SM_CMP_OPS(S, M) \
154
SM_CMP_OP (mx_el_lt, mx_inline_lt, S, M) \
155
SM_CMP_OP (mx_el_le, mx_inline_le, S, M) \
156
SM_CMP_OP (mx_el_ge, mx_inline_ge, S, M) \
157
SM_CMP_OP (mx_el_gt, mx_inline_gt, S, M) \
158
SM_CMP_OP (mx_el_eq, mx_inline_eq, S, M) \
159
SM_CMP_OP (mx_el_ne, mx_inline_ne, S, M)
160
161
#define SM_BOOL_OP(F, OP, S, M) \
162
boolMatrix \
163
F (const S& s, const M& m) \
164
{ \
165
SNANCHK (s); \
166
MNANCHK (m, M::element_type); \
167
return do_sm_binary_op<bool, S, M::element_type> (s, m, OP); \
168
}
169
170
#define SM_BOOL_OPS(S, M) \
171
SM_BOOL_OP (mx_el_and, mx_inline_and, S, M) \
172
SM_BOOL_OP (mx_el_or, mx_inline_or, S, M)
173
174
// matrix by matrix operations.
175
176
#define MM_BIN_OP(R, OP, M1, M2, F) \
177
R \
178
OP (const M1& m1, const M2& m2) \
179
{ \
180
return do_mm_binary_op<R::element_type, M1::element_type, M2::element_type> (m1, m2, F, F, F, #OP); \
181
}
182
183
#define MM_BIN_OPS(R, M1, M2) \
184
MM_BIN_OP (R, operator +, M1, M2, mx_inline_add) \
185
MM_BIN_OP (R, operator -, M1, M2, mx_inline_sub) \
186
MM_BIN_OP (R, product, M1, M2, mx_inline_mul) \
187
MM_BIN_OP (R, quotient, M1, M2, mx_inline_div)
188
189
#define MM_CMP_OP(F, OP, M1, M2) \
190
boolMatrix \
191
F (const M1& m1, const M2& m2) \
192
{ \
193
return do_mm_binary_op<bool, M1::element_type, M2::element_type> (m1, m2, OP, OP, OP, #F); \
194
}
195
196
#define MM_CMP_OPS(M1, M2) \
197
MM_CMP_OP (mx_el_lt, mx_inline_lt, M1, M2) \
198
MM_CMP_OP (mx_el_le, mx_inline_le, M1, M2) \
199
MM_CMP_OP (mx_el_ge, mx_inline_ge, M1, M2) \
200
MM_CMP_OP (mx_el_gt, mx_inline_gt, M1, M2) \
201
MM_CMP_OP (mx_el_eq, mx_inline_eq, M1, M2) \
202
MM_CMP_OP (mx_el_ne, mx_inline_ne, M1, M2)
203
204
#define MM_BOOL_OP(F, OP, M1, M2) \
205
boolMatrix \
206
F (const M1& m1, const M2& m2) \
207
{ \
208
MNANCHK (m1, M1::element_type); \
209
MNANCHK (m2, M2::element_type); \
210
return do_mm_binary_op<bool, M1::element_type, M2::element_type> (m1, m2, OP, OP, OP, #F); \
211
}
212
213
#define MM_BOOL_OPS(M1, M2) \
214
MM_BOOL_OP (mx_el_and, mx_inline_and, M1, M2) \
215
MM_BOOL_OP (mx_el_or, mx_inline_or, M1, M2)
216
217
// N-D matrix by scalar operations.
218
219
#define NDS_BIN_OP(R, OP, ND, S, F) \
220
R \
221
OP (const ND& m, const S& s) \
222
{ \
223
return do_ms_binary_op<R::element_type, ND::element_type, S> (m, s, F); \
224
}
225
226
#define NDS_BIN_OPS(R, ND, S) \
227
NDS_BIN_OP (R, operator +, ND, S, mx_inline_add) \
228
NDS_BIN_OP (R, operator -, ND, S, mx_inline_sub) \
229
NDS_BIN_OP (R, operator *, ND, S, mx_inline_mul) \
230
NDS_BIN_OP (R, operator /, ND, S, mx_inline_div)
231
232
#define NDS_CMP_OP(F, OP, ND, S) \
233
boolNDArray \
234
F (const ND& m, const S& s) \
235
{ \
236
return do_ms_binary_op<bool, ND::element_type, S> (m, s, OP); \
237
}
238
239
#define NDS_CMP_OPS(ND, S) \
240
NDS_CMP_OP (mx_el_lt, mx_inline_lt, ND, S) \
241
NDS_CMP_OP (mx_el_le, mx_inline_le, ND, S) \
242
NDS_CMP_OP (mx_el_ge, mx_inline_ge, ND, S) \
243
NDS_CMP_OP (mx_el_gt, mx_inline_gt, ND, S) \
244
NDS_CMP_OP (mx_el_eq, mx_inline_eq, ND, S) \
245
NDS_CMP_OP (mx_el_ne, mx_inline_ne, ND, S)
246
247
#define NDS_BOOL_OP(F, OP, ND, S) \
248
boolNDArray \
249
F (const ND& m, const S& s) \
250
{ \
251
MNANCHK (m, ND::element_type); \
252
SNANCHK (s); \
253
return do_ms_binary_op<bool, ND::element_type, S> (m, s, OP); \
254
}
255
256
#define NDS_BOOL_OPS(ND, S) \
257
NDS_BOOL_OP (mx_el_and, mx_inline_and, ND, S) \
258
NDS_BOOL_OP (mx_el_or, mx_inline_or, ND, S) \
259
NDS_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND, S) \
260
NDS_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND, S) \
261
NDS_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND, S) \
262
NDS_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND, S)
263
264
// scalar by N-D matrix operations.
265
266
#define SND_BIN_OP(R, OP, S, ND, F) \
267
R \
268
OP (const S& s, const ND& m) \
269
{ \
270
return do_sm_binary_op<R::element_type, S, ND::element_type> (s, m, F); \
271
}
272
273
#define SND_BIN_OPS(R, S, ND) \
274
SND_BIN_OP (R, operator +, S, ND, mx_inline_add) \
275
SND_BIN_OP (R, operator -, S, ND, mx_inline_sub) \
276
SND_BIN_OP (R, operator *, S, ND, mx_inline_mul) \
277
SND_BIN_OP (R, operator /, S, ND, mx_inline_div)
278
279
#define SND_CMP_OP(F, OP, S, ND) \
280
boolNDArray \
281
F (const S& s, const ND& m) \
282
{ \
283
return do_sm_binary_op<bool, S, ND::element_type> (s, m, OP); \
284
}
285
286
#define SND_CMP_OPS(S, ND) \
287
SND_CMP_OP (mx_el_lt, mx_inline_lt, S, ND) \
288
SND_CMP_OP (mx_el_le, mx_inline_le, S, ND) \
289
SND_CMP_OP (mx_el_ge, mx_inline_ge, S, ND) \
290
SND_CMP_OP (mx_el_gt, mx_inline_gt, S, ND) \
291
SND_CMP_OP (mx_el_eq, mx_inline_eq, S, ND) \
292
SND_CMP_OP (mx_el_ne, mx_inline_ne, S, ND)
293
294
#define SND_BOOL_OP(F, OP, S, ND) \
295
boolNDArray \
296
F (const S& s, const ND& m) \
297
{ \
298
SNANCHK (s); \
299
MNANCHK (m, ND::element_type); \
300
return do_sm_binary_op<bool, S, ND::element_type> (s, m, OP); \
301
}
302
303
#define SND_BOOL_OPS(S, ND) \
304
SND_BOOL_OP (mx_el_and, mx_inline_and, S, ND) \
305
SND_BOOL_OP (mx_el_or, mx_inline_or, S, ND) \
306
SND_BOOL_OP (mx_el_not_and, mx_inline_not_and, S, ND) \
307
SND_BOOL_OP (mx_el_not_or, mx_inline_not_or, S, ND) \
308
SND_BOOL_OP (mx_el_and_not, mx_inline_and_not, S, ND) \
309
SND_BOOL_OP (mx_el_or_not, mx_inline_or_not, S, ND)
310
311
// N-D matrix by N-D matrix operations.
312
313
#define NDND_BIN_OP(R, OP, ND1, ND2, F) \
314
R \
315
OP (const ND1& m1, const ND2& m2) \
316
{ \
317
return do_mm_binary_op<R::element_type, ND1::element_type, ND2::element_type> (m1, m2, F, F, F, #OP); \
318
}
319
320
#define NDND_BIN_OPS(R, ND1, ND2) \
321
NDND_BIN_OP (R, operator +, ND1, ND2, mx_inline_add) \
322
NDND_BIN_OP (R, operator -, ND1, ND2, mx_inline_sub) \
323
NDND_BIN_OP (R, product, ND1, ND2, mx_inline_mul) \
324
NDND_BIN_OP (R, quotient, ND1, ND2, mx_inline_div)
325
326
#define NDND_CMP_OP(F, OP, ND1, ND2) \
327
boolNDArray \
328
F (const ND1& m1, const ND2& m2) \
329
{ \
330
return do_mm_binary_op<bool, ND1::element_type, ND2::element_type> (m1, m2, OP, OP, OP, #F); \
331
}
332
333
#define NDND_CMP_OPS(ND1, ND2) \
334
NDND_CMP_OP (mx_el_lt, mx_inline_lt, ND1, ND2) \
335
NDND_CMP_OP (mx_el_le, mx_inline_le, ND1, ND2) \
336
NDND_CMP_OP (mx_el_ge, mx_inline_ge, ND1, ND2) \
337
NDND_CMP_OP (mx_el_gt, mx_inline_gt, ND1, ND2) \
338
NDND_CMP_OP (mx_el_eq, mx_inline_eq, ND1, ND2) \
339
NDND_CMP_OP (mx_el_ne, mx_inline_ne, ND1, ND2)
340
341
#define NDND_BOOL_OP(F, OP, ND1, ND2) \
342
boolNDArray \
343
F (const ND1& m1, const ND2& m2) \
344
{ \
345
MNANCHK (m1, ND1::element_type); \
346
MNANCHK (m2, ND2::element_type); \
347
return do_mm_binary_op<bool, ND1::element_type, ND2::element_type> (m1, m2, OP, OP, OP, #F); \
348
}
349
350
#define NDND_BOOL_OPS(ND1, ND2) \
351
NDND_BOOL_OP (mx_el_and, mx_inline_and, ND1, ND2) \
352
NDND_BOOL_OP (mx_el_or, mx_inline_or, ND1, ND2) \
353
NDND_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND1, ND2) \
354
NDND_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND1, ND2) \
355
NDND_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND1, ND2) \
356
NDND_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND1, ND2)
357
358
// scalar by diagonal matrix operations.
359
360
#define SDM_BIN_OP(R, OP, S, DM) \
361
R \
362
operator OP (const S& s, const DM& dm) \
363
{ \
364
R r (dm.rows (), dm.cols ()); \
365
\
366
for (octave_idx_type i = 0; i < dm.length (); i++) \
367
r.dgxelem (i) = s OP dm.dgelem (i); \
368
\
369
return r; \
370
}
371
372
#define SDM_BIN_OPS(R, S, DM) \
373
SDM_BIN_OP (R, *, S, DM)
374
375
// diagonal matrix by scalar operations.
376
377
#define DMS_BIN_OP(R, OP, DM, S) \
378
R \
379
operator OP (const DM& dm, const S& s) \
380
{ \
381
R r (dm.rows (), dm.cols ()); \
382
\
383
for (octave_idx_type i = 0; i < dm.length (); i++) \
384
r.dgxelem (i) = dm.dgelem (i) OP s; \
385
\
386
return r; \
387
}
388
389
#define DMS_BIN_OPS(R, DM, S) \
390
DMS_BIN_OP (R, *, DM, S) \
391
DMS_BIN_OP (R, /, DM, S)
392
393
// matrix by diagonal matrix operations.
394
395
#define MDM_BIN_OP(R, OP, M, DM, OPEQ) \
396
R \
397
OP (const M& m, const DM& dm) \
398
{ \
399
R r; \
400
\
401
octave_idx_type m_nr = m.rows (); \
402
octave_idx_type m_nc = m.cols (); \
403
\
404
octave_idx_type dm_nr = dm.rows (); \
405
octave_idx_type dm_nc = dm.cols (); \
406
\
407
if (m_nr != dm_nr || m_nc != dm_nc) \
408
octave::err_nonconformant (#OP, m_nr, m_nc, dm_nr, dm_nc); \
409
\
410
r.resize (m_nr, m_nc); \
411
\
412
if (m_nr > 0 && m_nc > 0) \
413
{ \
414
r = R (m); \
415
\
416
octave_idx_type len = dm.length (); \
417
\
418
for (octave_idx_type i = 0; i < len; i++) \
419
r.elem (i, i) OPEQ dm.elem (i, i); \
420
} \
421
\
422
return r; \
423
}
424
425
#define MDM_MULTIPLY_OP(R, M, DM) \
426
R \
427
operator * (const M& m, const DM& dm) \
428
{ \
429
R r; \
430
\
431
R::element_type r_zero = R::element_type (); \
432
\
433
octave_idx_type m_nr = m.rows (); \
434
octave_idx_type m_nc = m.cols (); \
435
\
436
octave_idx_type dm_nr = dm.rows (); \
437
octave_idx_type dm_nc = dm.cols (); \
438
\
439
if (m_nc != dm_nr) \
440
octave::err_nonconformant ("operator *", m_nr, m_nc, dm_nr, dm_nc); \
441
\
442
r = R (m_nr, dm_nc); \
443
R::element_type *rd = r.rwdata (); \
444
const M::element_type *md = m.data (); \
445
const DM::element_type *dd = dm.data (); \
446
\
447
octave_idx_type len = dm.length (); \
448
for (octave_idx_type i = 0; i < len; i++) \
449
{ \
450
mx_inline_mul (m_nr, rd, md, dd[i]); \
451
rd += m_nr; md += m_nr; \
452
} \
453
mx_inline_fill (m_nr * (dm_nc - len), rd, r_zero); \
454
\
455
return r; \
456
}
457
458
#define MDM_BIN_OPS(R, M, DM) \
459
MDM_BIN_OP (R, operator +, M, DM, +=) \
460
MDM_BIN_OP (R, operator -, M, DM, -=) \
461
MDM_MULTIPLY_OP (R, M, DM)
462
463
// diagonal matrix by matrix operations.
464
465
#define DMM_BIN_OP(R, OP, DM, M, OPEQ, PREOP) \
466
R \
467
OP (const DM& dm, const M& m) \
468
{ \
469
R r; \
470
\
471
octave_idx_type dm_nr = dm.rows (); \
472
octave_idx_type dm_nc = dm.cols (); \
473
\
474
octave_idx_type m_nr = m.rows (); \
475
octave_idx_type m_nc = m.cols (); \
476
\
477
if (dm_nr != m_nr || dm_nc != m_nc) \
478
octave::err_nonconformant (#OP, dm_nr, dm_nc, m_nr, m_nc); \
479
else \
480
{ \
481
if (m_nr > 0 && m_nc > 0) \
482
{ \
483
r = R (PREOP m); \
484
\
485
octave_idx_type len = dm.length (); \
486
\
487
for (octave_idx_type i = 0; i < len; i++) \
488
r.elem (i, i) OPEQ dm.elem (i, i); \
489
} \
490
else \
491
r.resize (m_nr, m_nc); \
492
} \
493
\
494
return r; \
495
}
496
497
#define DMM_MULTIPLY_OP(R, DM, M) \
498
R \
499
operator * (const DM& dm, const M& m) \
500
{ \
501
R r; \
502
\
503
R::element_type r_zero = R::element_type (); \
504
\
505
octave_idx_type dm_nr = dm.rows (); \
506
octave_idx_type dm_nc = dm.cols (); \
507
\
508
octave_idx_type m_nr = m.rows (); \
509
octave_idx_type m_nc = m.cols (); \
510
\
511
if (dm_nc != m_nr) \
512
octave::err_nonconformant ("operator *", dm_nr, dm_nc, m_nr, m_nc); \
513
\
514
r = R (dm_nr, m_nc); \
515
R::element_type *rd = r.rwdata (); \
516
const M::element_type *md = m.data (); \
517
const DM::element_type *dd = dm.data (); \
518
\
519
octave_idx_type len = dm.length (); \
520
for (octave_idx_type i = 0; i < m_nc; i++) \
521
{ \
522
mx_inline_mul (len, rd, md, dd); \
523
rd += len; md += m_nr; \
524
mx_inline_fill (dm_nr - len, rd, r_zero); \
525
rd += dm_nr - len; \
526
} \
527
\
528
return r; \
529
}
530
531
#define DMM_BIN_OPS(R, DM, M) \
532
DMM_BIN_OP (R, operator +, DM, M, +=, ) \
533
DMM_BIN_OP (R, operator -, DM, M, +=, -) \
534
DMM_MULTIPLY_OP (R, DM, M)
535
536
// diagonal matrix by diagonal matrix operations.
537
538
#define DMDM_BIN_OP(R, OP, DM1, DM2, F) \
539
R \
540
OP (const DM1& dm1, const DM2& dm2) \
541
{ \
542
R r; \
543
\
544
octave_idx_type dm1_nr = dm1.rows (); \
545
octave_idx_type dm1_nc = dm1.cols (); \
546
\
547
octave_idx_type dm2_nr = dm2.rows (); \
548
octave_idx_type dm2_nc = dm2.cols (); \
549
\
550
if (dm1_nr != dm2_nr || dm1_nc != dm2_nc) \
551
octave::err_nonconformant (#OP, dm1_nr, dm1_nc, dm2_nr, dm2_nc); \
552
\
553
r.resize (dm1_nr, dm1_nc); \
554
\
555
if (dm1_nr > 0 && dm1_nc > 0) \
556
F (dm1.length (), r.rwdata (), dm1.data (), dm2.data ()); \
557
\
558
return r; \
559
}
560
561
#define DMDM_BIN_OPS(R, DM1, DM2) \
562
DMDM_BIN_OP (R, operator +, DM1, DM2, mx_inline_add) \
563
DMDM_BIN_OP (R, operator -, DM1, DM2, mx_inline_sub) \
564
DMDM_BIN_OP (R, product, DM1, DM2, mx_inline_mul)
565
566
// scalar by N-D array min/max ops
567
568
#define SND_MINMAX_FCN(FCN, OP, T, S) \
569
T \
570
FCN (S d, const T& m) \
571
{ \
572
return do_sm_binary_op<T::element_type, S, T::element_type> (d, m, mx_inline_x##FCN); \
573
}
574
575
#define NDS_MINMAX_FCN(FCN, OP, T, S) \
576
T \
577
FCN (const T& m, S d) \
578
{ \
579
return do_ms_binary_op<T::element_type, T::element_type, S> (m, d, mx_inline_x##FCN); \
580
}
581
582
#define NDND_MINMAX_FCN(FCN, OP, T, S) \
583
T \
584
FCN (const T& a, const T& b) \
585
{ \
586
return do_mm_binary_op<T::element_type, T::element_type, T::element_type> (a, b, mx_inline_x##FCN, mx_inline_x##FCN, mx_inline_x##FCN, #FCN); \
587
}
588
589
#define MINMAX_FCNS(T, S) \
590
SND_MINMAX_FCN (min, <, T, S) \
591
NDS_MINMAX_FCN (min, <, T, S) \
592
NDND_MINMAX_FCN (min, <, T, S) \
593
SND_MINMAX_FCN (max, >, T, S) \
594
NDS_MINMAX_FCN (max, >, T, S) \
595
NDND_MINMAX_FCN (max, >, T, S)
596
597
// permutation matrix by matrix ops and vice versa
598
599
#define PMM_MULTIPLY_OP(PM, M) \
600
M operator * (const PM& p, const M& x) \
601
{ \
602
octave_idx_type nr = x.rows (); \
603
octave_idx_type nc = x.columns (); \
604
M result; \
605
if (p.columns () != nr) \
606
octave::err_nonconformant ("operator *", p.rows (), p.columns (), nr, nc); \
607
else \
608
{ \
609
result = M (nr, nc); \
610
result.assign (p.col_perm_vec (), octave::idx_vector::colon, x); \
611
} \
612
\
613
return result; \
614
}
615
616
#define MPM_MULTIPLY_OP(M, PM) \
617
M operator * (const M& x, const PM& p) \
618
{ \
619
octave_idx_type nr = x.rows (); \
620
octave_idx_type nc = x.columns (); \
621
M result; \
622
if (p.rows () != nc) \
623
octave::err_nonconformant ("operator *", nr, nc, p.rows (), p.columns ()); \
624
\
625
result = x.index (octave::idx_vector::colon, p.col_perm_vec ()); \
626
\
627
return result; \
628
}
629
630
#define PMM_BIN_OPS(R, PM, M) \
631
PMM_MULTIPLY_OP(PM, M);
632
633
#define MPM_BIN_OPS(R, M, PM) \
634
MPM_MULTIPLY_OP(M, PM);
635
636
#define NDND_MAPPER_BODY(R, NAME) \
637
R retval (dims ()); \
638
octave_idx_type n = numel (); \
639
for (octave_idx_type i = 0; i < n; i++) \
640
retval.xelem (i) = NAME (elem (i)); \
641
return retval;
642
643
#endif
lo-array-errwarn.h
mx-inlines.cc
mx-op-decl.h
liboctave
operators
mx-op-defs.h
Generated on Sat Aug 2 2025 06:52:15 for GNU Octave by
1.9.8