GNU Octave  9.1.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
mx-op-defs.h
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 1996-2024 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if ! defined (octave_mx_op_defs_h)
27 #define octave_mx_op_defs_h 1
28 
29 #include "octave-config.h"
30 
31 #include "lo-array-errwarn.h"
32 #include "mx-op-decl.h"
33 #include "mx-inlines.cc"
34 
35 #define SNANCHK(s) \
36  if (octave::math::isnan (s)) \
37  octave::err_nan_to_logical_conversion ()
38 
39 #define MNANCHK(m, MT) \
40  if (do_mx_check (m, mx_inline_any_nan<MT>)) \
41  octave::err_nan_to_logical_conversion ()
42 
43 // vector by scalar operations.
44 
45 #define VS_BIN_OP(R, F, OP, V, S) \
46  R \
47  F (const V& v, const S& s) \
48  { \
49  return do_ms_binary_op<R::element_type, V::element_type, S> (v, s, OP); \
50  }
51 
52 #define VS_BIN_OPS(R, V, S) \
53  VS_BIN_OP (R, operator +, mx_inline_add, V, S) \
54  VS_BIN_OP (R, operator -, mx_inline_sub, V, S) \
55  VS_BIN_OP (R, operator *, mx_inline_mul, V, S) \
56  VS_BIN_OP (R, operator /, mx_inline_div, V, S)
57 
58 // scalar by vector by operations.
59 
60 #define SV_BIN_OP(R, F, OP, S, V) \
61  R \
62  F (const S& s, const V& v) \
63  { \
64  return do_sm_binary_op<R::element_type, S, V::element_type> (s, v, OP); \
65  }
66 
67 #define SV_BIN_OPS(R, S, V) \
68  SV_BIN_OP (R, operator +, mx_inline_add, S, V) \
69  SV_BIN_OP (R, operator -, mx_inline_sub, S, V) \
70  SV_BIN_OP (R, operator *, mx_inline_mul, S, V) \
71  SV_BIN_OP (R, operator /, mx_inline_div, S, V)
72 
73 // vector by vector operations.
74 
75 #define VV_BIN_OP(R, F, OP, V1, V2) \
76  R \
77  F (const V1& v1, const V2& v2) \
78  { \
79  return do_mm_binary_op<R::element_type, V1::element_type, V2::element_type> (v1, v2, OP, OP, OP, #F); \
80  }
81 
82 #define VV_BIN_OPS(R, V1, V2) \
83  VV_BIN_OP (R, operator +, mx_inline_add, V1, V2) \
84  VV_BIN_OP (R, operator -, mx_inline_sub, V1, V2) \
85  VV_BIN_OP (R, product, mx_inline_mul, V1, V2) \
86  VV_BIN_OP (R, quotient, mx_inline_div, V1, V2)
87 
88 // matrix by scalar operations.
89 
90 #define MS_BIN_OP(R, OP, M, S, F) \
91  R \
92  OP (const M& m, const S& s) \
93  { \
94  return do_ms_binary_op<R::element_type, M::element_type, S> (m, s, F); \
95  }
96 
97 #define MS_BIN_OPS(R, M, S) \
98  MS_BIN_OP (R, operator +, M, S, mx_inline_add) \
99  MS_BIN_OP (R, operator -, M, S, mx_inline_sub) \
100  MS_BIN_OP (R, operator *, M, S, mx_inline_mul) \
101  MS_BIN_OP (R, operator /, M, S, mx_inline_div)
102 
103 #define MS_CMP_OP(F, OP, M, S) \
104  boolMatrix \
105  F (const M& m, const S& s) \
106  { \
107  return do_ms_binary_op<bool, M::element_type, S> (m, s, OP); \
108  }
109 
110 #define MS_CMP_OPS(M, S) \
111  MS_CMP_OP (mx_el_lt, mx_inline_lt, M, S) \
112  MS_CMP_OP (mx_el_le, mx_inline_le, M, S) \
113  MS_CMP_OP (mx_el_ge, mx_inline_ge, M, S) \
114  MS_CMP_OP (mx_el_gt, mx_inline_gt, M, S) \
115  MS_CMP_OP (mx_el_eq, mx_inline_eq, M, S) \
116  MS_CMP_OP (mx_el_ne, mx_inline_ne, M, S)
117 
118 #define MS_BOOL_OP(F, OP, M, S) \
119  boolMatrix \
120  F (const M& m, const S& s) \
121  { \
122  MNANCHK (m, M::element_type); \
123  SNANCHK (s); \
124  return do_ms_binary_op<bool, M::element_type, S> (m, s, OP); \
125  }
126 
127 #define MS_BOOL_OPS(M, S) \
128  MS_BOOL_OP (mx_el_and, mx_inline_and, M, S) \
129  MS_BOOL_OP (mx_el_or, mx_inline_or, M, S)
130 
131 // scalar by matrix operations.
132 
133 #define SM_BIN_OP(R, OP, S, M, F) \
134  R \
135  OP (const S& s, const M& m) \
136  { \
137  return do_sm_binary_op<R::element_type, S, M::element_type> (s, m, F); \
138  }
139 
140 #define SM_BIN_OPS(R, S, M) \
141  SM_BIN_OP (R, operator +, S, M, mx_inline_add) \
142  SM_BIN_OP (R, operator -, S, M, mx_inline_sub) \
143  SM_BIN_OP (R, operator *, S, M, mx_inline_mul) \
144  SM_BIN_OP (R, operator /, S, M, mx_inline_div)
145 
146 #define SM_CMP_OP(F, OP, S, M) \
147  boolMatrix \
148  F (const S& s, const M& m) \
149  { \
150  return do_sm_binary_op<bool, S, M::element_type> (s, m, OP); \
151  }
152 
153 #define SM_CMP_OPS(S, M) \
154  SM_CMP_OP (mx_el_lt, mx_inline_lt, S, M) \
155  SM_CMP_OP (mx_el_le, mx_inline_le, S, M) \
156  SM_CMP_OP (mx_el_ge, mx_inline_ge, S, M) \
157  SM_CMP_OP (mx_el_gt, mx_inline_gt, S, M) \
158  SM_CMP_OP (mx_el_eq, mx_inline_eq, S, M) \
159  SM_CMP_OP (mx_el_ne, mx_inline_ne, S, M)
160 
161 #define SM_BOOL_OP(F, OP, S, M) \
162  boolMatrix \
163  F (const S& s, const M& m) \
164  { \
165  SNANCHK (s); \
166  MNANCHK (m, M::element_type); \
167  return do_sm_binary_op<bool, S, M::element_type> (s, m, OP); \
168  }
169 
170 #define SM_BOOL_OPS(S, M) \
171  SM_BOOL_OP (mx_el_and, mx_inline_and, S, M) \
172  SM_BOOL_OP (mx_el_or, mx_inline_or, S, M)
173 
174 // matrix by matrix operations.
175 
176 #define MM_BIN_OP(R, OP, M1, M2, F) \
177  R \
178  OP (const M1& m1, const M2& m2) \
179  { \
180  return do_mm_binary_op<R::element_type, M1::element_type, M2::element_type> (m1, m2, F, F, F, #OP); \
181  }
182 
183 #define MM_BIN_OPS(R, M1, M2) \
184  MM_BIN_OP (R, operator +, M1, M2, mx_inline_add) \
185  MM_BIN_OP (R, operator -, M1, M2, mx_inline_sub) \
186  MM_BIN_OP (R, product, M1, M2, mx_inline_mul) \
187  MM_BIN_OP (R, quotient, M1, M2, mx_inline_div)
188 
189 #define MM_CMP_OP(F, OP, M1, M2) \
190  boolMatrix \
191  F (const M1& m1, const M2& m2) \
192  { \
193  return do_mm_binary_op<bool, M1::element_type, M2::element_type> (m1, m2, OP, OP, OP, #F); \
194  }
195 
196 #define MM_CMP_OPS(M1, M2) \
197  MM_CMP_OP (mx_el_lt, mx_inline_lt, M1, M2) \
198  MM_CMP_OP (mx_el_le, mx_inline_le, M1, M2) \
199  MM_CMP_OP (mx_el_ge, mx_inline_ge, M1, M2) \
200  MM_CMP_OP (mx_el_gt, mx_inline_gt, M1, M2) \
201  MM_CMP_OP (mx_el_eq, mx_inline_eq, M1, M2) \
202  MM_CMP_OP (mx_el_ne, mx_inline_ne, M1, M2)
203 
204 #define MM_BOOL_OP(F, OP, M1, M2) \
205  boolMatrix \
206  F (const M1& m1, const M2& m2) \
207  { \
208  MNANCHK (m1, M1::element_type); \
209  MNANCHK (m2, M2::element_type); \
210  return do_mm_binary_op<bool, M1::element_type, M2::element_type> (m1, m2, OP, OP, OP, #F); \
211  }
212 
213 #define MM_BOOL_OPS(M1, M2) \
214  MM_BOOL_OP (mx_el_and, mx_inline_and, M1, M2) \
215  MM_BOOL_OP (mx_el_or, mx_inline_or, M1, M2)
216 
217 // N-D matrix by scalar operations.
218 
219 #define NDS_BIN_OP(R, OP, ND, S, F) \
220  R \
221  OP (const ND& m, const S& s) \
222  { \
223  return do_ms_binary_op<R::element_type, ND::element_type, S> (m, s, F); \
224  }
225 
226 #define NDS_BIN_OPS(R, ND, S) \
227  NDS_BIN_OP (R, operator +, ND, S, mx_inline_add) \
228  NDS_BIN_OP (R, operator -, ND, S, mx_inline_sub) \
229  NDS_BIN_OP (R, operator *, ND, S, mx_inline_mul) \
230  NDS_BIN_OP (R, operator /, ND, S, mx_inline_div)
231 
232 #define NDS_CMP_OP(F, OP, ND, S) \
233  boolNDArray \
234  F (const ND& m, const S& s) \
235  { \
236  return do_ms_binary_op<bool, ND::element_type, S> (m, s, OP); \
237  }
238 
239 #define NDS_CMP_OPS(ND, S) \
240  NDS_CMP_OP (mx_el_lt, mx_inline_lt, ND, S) \
241  NDS_CMP_OP (mx_el_le, mx_inline_le, ND, S) \
242  NDS_CMP_OP (mx_el_ge, mx_inline_ge, ND, S) \
243  NDS_CMP_OP (mx_el_gt, mx_inline_gt, ND, S) \
244  NDS_CMP_OP (mx_el_eq, mx_inline_eq, ND, S) \
245  NDS_CMP_OP (mx_el_ne, mx_inline_ne, ND, S)
246 
247 #define NDS_BOOL_OP(F, OP, ND, S) \
248  boolNDArray \
249  F (const ND& m, const S& s) \
250  { \
251  MNANCHK (m, ND::element_type); \
252  SNANCHK (s); \
253  return do_ms_binary_op<bool, ND::element_type, S> (m, s, OP); \
254  }
255 
256 #define NDS_BOOL_OPS(ND, S) \
257  NDS_BOOL_OP (mx_el_and, mx_inline_and, ND, S) \
258  NDS_BOOL_OP (mx_el_or, mx_inline_or, ND, S) \
259  NDS_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND, S) \
260  NDS_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND, S) \
261  NDS_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND, S) \
262  NDS_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND, S)
263 
264 // scalar by N-D matrix operations.
265 
266 #define SND_BIN_OP(R, OP, S, ND, F) \
267  R \
268  OP (const S& s, const ND& m) \
269  { \
270  return do_sm_binary_op<R::element_type, S, ND::element_type> (s, m, F); \
271  }
272 
273 #define SND_BIN_OPS(R, S, ND) \
274  SND_BIN_OP (R, operator +, S, ND, mx_inline_add) \
275  SND_BIN_OP (R, operator -, S, ND, mx_inline_sub) \
276  SND_BIN_OP (R, operator *, S, ND, mx_inline_mul) \
277  SND_BIN_OP (R, operator /, S, ND, mx_inline_div)
278 
279 #define SND_CMP_OP(F, OP, S, ND) \
280  boolNDArray \
281  F (const S& s, const ND& m) \
282  { \
283  return do_sm_binary_op<bool, S, ND::element_type> (s, m, OP); \
284  }
285 
286 #define SND_CMP_OPS(S, ND) \
287  SND_CMP_OP (mx_el_lt, mx_inline_lt, S, ND) \
288  SND_CMP_OP (mx_el_le, mx_inline_le, S, ND) \
289  SND_CMP_OP (mx_el_ge, mx_inline_ge, S, ND) \
290  SND_CMP_OP (mx_el_gt, mx_inline_gt, S, ND) \
291  SND_CMP_OP (mx_el_eq, mx_inline_eq, S, ND) \
292  SND_CMP_OP (mx_el_ne, mx_inline_ne, S, ND)
293 
294 #define SND_BOOL_OP(F, OP, S, ND) \
295  boolNDArray \
296  F (const S& s, const ND& m) \
297  { \
298  SNANCHK (s); \
299  MNANCHK (m, ND::element_type); \
300  return do_sm_binary_op<bool, S, ND::element_type> (s, m, OP); \
301  }
302 
303 #define SND_BOOL_OPS(S, ND) \
304  SND_BOOL_OP (mx_el_and, mx_inline_and, S, ND) \
305  SND_BOOL_OP (mx_el_or, mx_inline_or, S, ND) \
306  SND_BOOL_OP (mx_el_not_and, mx_inline_not_and, S, ND) \
307  SND_BOOL_OP (mx_el_not_or, mx_inline_not_or, S, ND) \
308  SND_BOOL_OP (mx_el_and_not, mx_inline_and_not, S, ND) \
309  SND_BOOL_OP (mx_el_or_not, mx_inline_or_not, S, ND)
310 
311 // N-D matrix by N-D matrix operations.
312 
313 #define NDND_BIN_OP(R, OP, ND1, ND2, F) \
314  R \
315  OP (const ND1& m1, const ND2& m2) \
316  { \
317  return do_mm_binary_op<R::element_type, ND1::element_type, ND2::element_type> (m1, m2, F, F, F, #OP); \
318  }
319 
320 #define NDND_BIN_OPS(R, ND1, ND2) \
321  NDND_BIN_OP (R, operator +, ND1, ND2, mx_inline_add) \
322  NDND_BIN_OP (R, operator -, ND1, ND2, mx_inline_sub) \
323  NDND_BIN_OP (R, product, ND1, ND2, mx_inline_mul) \
324  NDND_BIN_OP (R, quotient, ND1, ND2, mx_inline_div)
325 
326 #define NDND_CMP_OP(F, OP, ND1, ND2) \
327  boolNDArray \
328  F (const ND1& m1, const ND2& m2) \
329  { \
330  return do_mm_binary_op<bool, ND1::element_type, ND2::element_type> (m1, m2, OP, OP, OP, #F); \
331  }
332 
333 #define NDND_CMP_OPS(ND1, ND2) \
334  NDND_CMP_OP (mx_el_lt, mx_inline_lt, ND1, ND2) \
335  NDND_CMP_OP (mx_el_le, mx_inline_le, ND1, ND2) \
336  NDND_CMP_OP (mx_el_ge, mx_inline_ge, ND1, ND2) \
337  NDND_CMP_OP (mx_el_gt, mx_inline_gt, ND1, ND2) \
338  NDND_CMP_OP (mx_el_eq, mx_inline_eq, ND1, ND2) \
339  NDND_CMP_OP (mx_el_ne, mx_inline_ne, ND1, ND2)
340 
341 #define NDND_BOOL_OP(F, OP, ND1, ND2) \
342  boolNDArray \
343  F (const ND1& m1, const ND2& m2) \
344  { \
345  MNANCHK (m1, ND1::element_type); \
346  MNANCHK (m2, ND2::element_type); \
347  return do_mm_binary_op<bool, ND1::element_type, ND2::element_type> (m1, m2, OP, OP, OP, #F); \
348  }
349 
350 #define NDND_BOOL_OPS(ND1, ND2) \
351  NDND_BOOL_OP (mx_el_and, mx_inline_and, ND1, ND2) \
352  NDND_BOOL_OP (mx_el_or, mx_inline_or, ND1, ND2) \
353  NDND_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND1, ND2) \
354  NDND_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND1, ND2) \
355  NDND_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND1, ND2) \
356  NDND_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND1, ND2)
357 
358 // scalar by diagonal matrix operations.
359 
360 #define SDM_BIN_OP(R, OP, S, DM) \
361  R \
362  operator OP (const S& s, const DM& dm) \
363  { \
364  R r (dm.rows (), dm.cols ()); \
365  \
366  for (octave_idx_type i = 0; i < dm.length (); i++) \
367  r.dgxelem (i) = s OP dm.dgelem (i); \
368  \
369  return r; \
370  }
371 
372 #define SDM_BIN_OPS(R, S, DM) \
373  SDM_BIN_OP (R, *, S, DM)
374 
375 // diagonal matrix by scalar operations.
376 
377 #define DMS_BIN_OP(R, OP, DM, S) \
378  R \
379  operator OP (const DM& dm, const S& s) \
380  { \
381  R r (dm.rows (), dm.cols ()); \
382  \
383  for (octave_idx_type i = 0; i < dm.length (); i++) \
384  r.dgxelem (i) = dm.dgelem (i) OP s; \
385  \
386  return r; \
387  }
388 
389 #define DMS_BIN_OPS(R, DM, S) \
390  DMS_BIN_OP (R, *, DM, S) \
391  DMS_BIN_OP (R, /, DM, S)
392 
393 // matrix by diagonal matrix operations.
394 
395 #define MDM_BIN_OP(R, OP, M, DM, OPEQ) \
396  R \
397  OP (const M& m, const DM& dm) \
398  { \
399  R r; \
400  \
401  octave_idx_type m_nr = m.rows (); \
402  octave_idx_type m_nc = m.cols (); \
403  \
404  octave_idx_type dm_nr = dm.rows (); \
405  octave_idx_type dm_nc = dm.cols (); \
406  \
407  if (m_nr != dm_nr || m_nc != dm_nc) \
408  octave::err_nonconformant (#OP, m_nr, m_nc, dm_nr, dm_nc); \
409  \
410  r.resize (m_nr, m_nc); \
411  \
412  if (m_nr > 0 && m_nc > 0) \
413  { \
414  r = R (m); \
415  \
416  octave_idx_type len = dm.length (); \
417  \
418  for (octave_idx_type i = 0; i < len; i++) \
419  r.elem (i, i) OPEQ dm.elem (i, i); \
420  } \
421  \
422  return r; \
423  }
424 
425 #define MDM_MULTIPLY_OP(R, M, DM) \
426  R \
427  operator * (const M& m, const DM& dm) \
428  { \
429  R r; \
430  \
431  R::element_type r_zero = R::element_type (); \
432  \
433  octave_idx_type m_nr = m.rows (); \
434  octave_idx_type m_nc = m.cols (); \
435  \
436  octave_idx_type dm_nr = dm.rows (); \
437  octave_idx_type dm_nc = dm.cols (); \
438  \
439  if (m_nc != dm_nr) \
440  octave::err_nonconformant ("operator *", m_nr, m_nc, dm_nr, dm_nc); \
441  \
442  r = R (m_nr, dm_nc); \
443  R::element_type *rd = r.fortran_vec (); \
444  const M::element_type *md = m.data (); \
445  const DM::element_type *dd = dm.data (); \
446  \
447  octave_idx_type len = dm.length (); \
448  for (octave_idx_type i = 0; i < len; i++) \
449  { \
450  mx_inline_mul (m_nr, rd, md, dd[i]); \
451  rd += m_nr; md += m_nr; \
452  } \
453  mx_inline_fill (m_nr * (dm_nc - len), rd, r_zero); \
454  \
455  return r; \
456  }
457 
458 #define MDM_BIN_OPS(R, M, DM) \
459  MDM_BIN_OP (R, operator +, M, DM, +=) \
460  MDM_BIN_OP (R, operator -, M, DM, -=) \
461  MDM_MULTIPLY_OP (R, M, DM)
462 
463 // diagonal matrix by matrix operations.
464 
465 #define DMM_BIN_OP(R, OP, DM, M, OPEQ, PREOP) \
466  R \
467  OP (const DM& dm, const M& m) \
468  { \
469  R r; \
470  \
471  octave_idx_type dm_nr = dm.rows (); \
472  octave_idx_type dm_nc = dm.cols (); \
473  \
474  octave_idx_type m_nr = m.rows (); \
475  octave_idx_type m_nc = m.cols (); \
476  \
477  if (dm_nr != m_nr || dm_nc != m_nc) \
478  octave::err_nonconformant (#OP, dm_nr, dm_nc, m_nr, m_nc); \
479  else \
480  { \
481  if (m_nr > 0 && m_nc > 0) \
482  { \
483  r = R (PREOP m); \
484  \
485  octave_idx_type len = dm.length (); \
486  \
487  for (octave_idx_type i = 0; i < len; i++) \
488  r.elem (i, i) OPEQ dm.elem (i, i); \
489  } \
490  else \
491  r.resize (m_nr, m_nc); \
492  } \
493  \
494  return r; \
495  }
496 
497 #define DMM_MULTIPLY_OP(R, DM, M) \
498  R \
499  operator * (const DM& dm, const M& m) \
500  { \
501  R r; \
502  \
503  R::element_type r_zero = R::element_type (); \
504  \
505  octave_idx_type dm_nr = dm.rows (); \
506  octave_idx_type dm_nc = dm.cols (); \
507  \
508  octave_idx_type m_nr = m.rows (); \
509  octave_idx_type m_nc = m.cols (); \
510  \
511  if (dm_nc != m_nr) \
512  octave::err_nonconformant ("operator *", dm_nr, dm_nc, m_nr, m_nc); \
513  \
514  r = R (dm_nr, m_nc); \
515  R::element_type *rd = r.fortran_vec (); \
516  const M::element_type *md = m.data (); \
517  const DM::element_type *dd = dm.data (); \
518  \
519  octave_idx_type len = dm.length (); \
520  for (octave_idx_type i = 0; i < m_nc; i++) \
521  { \
522  mx_inline_mul (len, rd, md, dd); \
523  rd += len; md += m_nr; \
524  mx_inline_fill (dm_nr - len, rd, r_zero); \
525  rd += dm_nr - len; \
526  } \
527  \
528  return r; \
529  }
530 
531 #define DMM_BIN_OPS(R, DM, M) \
532  DMM_BIN_OP (R, operator +, DM, M, +=, ) \
533  DMM_BIN_OP (R, operator -, DM, M, +=, -) \
534  DMM_MULTIPLY_OP (R, DM, M)
535 
536 // diagonal matrix by diagonal matrix operations.
537 
538 #define DMDM_BIN_OP(R, OP, DM1, DM2, F) \
539  R \
540  OP (const DM1& dm1, const DM2& dm2) \
541  { \
542  R r; \
543  \
544  octave_idx_type dm1_nr = dm1.rows (); \
545  octave_idx_type dm1_nc = dm1.cols (); \
546  \
547  octave_idx_type dm2_nr = dm2.rows (); \
548  octave_idx_type dm2_nc = dm2.cols (); \
549  \
550  if (dm1_nr != dm2_nr || dm1_nc != dm2_nc) \
551  octave::err_nonconformant (#OP, dm1_nr, dm1_nc, dm2_nr, dm2_nc); \
552  \
553  r.resize (dm1_nr, dm1_nc); \
554  \
555  if (dm1_nr > 0 && dm1_nc > 0) \
556  F (dm1.length (), r.fortran_vec (), dm1.data (), dm2.data ()); \
557  \
558  return r; \
559  }
560 
561 #define DMDM_BIN_OPS(R, DM1, DM2) \
562  DMDM_BIN_OP (R, operator +, DM1, DM2, mx_inline_add) \
563  DMDM_BIN_OP (R, operator -, DM1, DM2, mx_inline_sub) \
564  DMDM_BIN_OP (R, product, DM1, DM2, mx_inline_mul)
565 
566 // scalar by N-D array min/max ops
567 
568 #define SND_MINMAX_FCN(FCN, OP, T, S) \
569  T \
570  FCN (S d, const T& m) \
571  { \
572  return do_sm_binary_op<T::element_type, S, T::element_type> (d, m, mx_inline_x##FCN); \
573  }
574 
575 #define NDS_MINMAX_FCN(FCN, OP, T, S) \
576  T \
577  FCN (const T& m, S d) \
578  { \
579  return do_ms_binary_op<T::element_type, T::element_type, S> (m, d, mx_inline_x##FCN); \
580  }
581 
582 #define NDND_MINMAX_FCN(FCN, OP, T, S) \
583  T \
584  FCN (const T& a, const T& b) \
585  { \
586  return do_mm_binary_op<T::element_type, T::element_type, T::element_type> (a, b, mx_inline_x##FCN, mx_inline_x##FCN, mx_inline_x##FCN, #FCN); \
587  }
588 
589 #define MINMAX_FCNS(T, S) \
590  SND_MINMAX_FCN (min, <, T, S) \
591  NDS_MINMAX_FCN (min, <, T, S) \
592  NDND_MINMAX_FCN (min, <, T, S) \
593  SND_MINMAX_FCN (max, >, T, S) \
594  NDS_MINMAX_FCN (max, >, T, S) \
595  NDND_MINMAX_FCN (max, >, T, S)
596 
597 // permutation matrix by matrix ops and vice versa
598 
599 #define PMM_MULTIPLY_OP(PM, M) \
600  M operator * (const PM& p, const M& x) \
601  { \
602  octave_idx_type nr = x.rows (); \
603  octave_idx_type nc = x.columns (); \
604  M result; \
605  if (p.columns () != nr) \
606  octave::err_nonconformant ("operator *", p.rows (), p.columns (), nr, nc); \
607  else \
608  { \
609  result = M (nr, nc); \
610  result.assign (p.col_perm_vec (), octave::idx_vector::colon, x); \
611  } \
612  \
613  return result; \
614  }
615 
616 #define MPM_MULTIPLY_OP(M, PM) \
617  M operator * (const M& x, const PM& p) \
618  { \
619  octave_idx_type nr = x.rows (); \
620  octave_idx_type nc = x.columns (); \
621  M result; \
622  if (p.rows () != nc) \
623  octave::err_nonconformant ("operator *", nr, nc, p.rows (), p.columns ()); \
624  \
625  result = x.index (octave::idx_vector::colon, p.col_perm_vec ()); \
626  \
627  return result; \
628  }
629 
630 #define PMM_BIN_OPS(R, PM, M) \
631  PMM_MULTIPLY_OP(PM, M);
632 
633 #define MPM_BIN_OPS(R, M, PM) \
634  MPM_MULTIPLY_OP(M, PM);
635 
636 #define NDND_MAPPER_BODY(R, NAME) \
637  R retval (dims ()); \
638  octave_idx_type n = numel (); \
639  for (octave_idx_type i = 0; i < n; i++) \
640  retval.xelem (i) = NAME (elem (i)); \
641  return retval;
642 
643 #endif