GNU Octave  6.2.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
ccolamd.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 2005-2021 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 // This is the octave interface to ccolamd, which bore the copyright given
27 // in the help of the functions.
28 
29 #if defined (HAVE_CONFIG_H)
30 # include "config.h"
31 #endif
32 
33 #include <cstdlib>
34 
35 #include "CSparse.h"
36 #include "Sparse.h"
37 #include "dNDArray.h"
38 #include "oct-locbuf.h"
39 #include "oct-sparse.h"
40 
41 #include "defun.h"
42 #include "error.h"
43 #include "errwarn.h"
44 #include "ov.h"
45 #include "pager.h"
46 
47 DEFUN (ccolamd, args, nargout,
48  doc: /* -*- texinfo -*-
49 @deftypefn {} {@var{p} =} ccolamd (@var{S})
50 @deftypefnx {} {@var{p} =} ccolamd (@var{S}, @var{knobs})
51 @deftypefnx {} {@var{p} =} ccolamd (@var{S}, @var{knobs}, @var{cmember})
52 @deftypefnx {} {[@var{p}, @var{stats}] =} ccolamd (@dots{})
53 
54 Constrained column approximate minimum degree permutation.
55 
56 @code{@var{p} = ccolamd (@var{S})} returns the column approximate minimum
57 degree permutation vector for the sparse matrix @var{S}. For a
58 non-symmetric matrix @var{S}, @code{@var{S}(:, @var{p})} tends to have
59 sparser LU@tie{}factors than @var{S}.
60 @code{chol (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))} also tends to be
61 sparser than @code{chol (@var{S}' * @var{S})}.
62 @code{@var{p} = ccolamd (@var{S}, 1)} optimizes the ordering for
63 @code{lu (@var{S}(:, @var{p}))}. The ordering is followed by a column
64 elimination tree post-ordering.
65 
66 @var{knobs} is an optional 1-element to 5-element input vector, with a
67 default value of @code{[0 10 10 1 0]} if not present or empty. Entries not
68 present are set to their defaults.
69 
70 @table @code
71 @item @var{knobs}(1)
72 if nonzero, the ordering is optimized for @code{lu (S(:, p))}. It will be a
73 poor ordering for @code{chol (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))}.
74 This is the most important knob for ccolamd.
75 
76 @item @var{knobs}(2)
77 if @var{S} is m-by-n, rows with more than
78 @code{max (16, @var{knobs}(2) * sqrt (n))} entries are ignored.
79 
80 @item @var{knobs}(3)
81 columns with more than
82 @code{max (16, @var{knobs}(3) * sqrt (min (@var{m}, @var{n})))} entries are
83 ignored and ordered last in the output permutation
84 (subject to the cmember constraints).
85 
86 @item @var{knobs}(4)
87 if nonzero, aggressive absorption is performed.
88 
89 @item @var{knobs}(5)
90 if nonzero, statistics and knobs are printed.
91 
92 @end table
93 
94 @var{cmember} is an optional vector of length @math{n}. It defines the
95 constraints on the column ordering. If @code{@var{cmember}(j) = @var{c}},
96 then column @var{j} is in constraint set @var{c} (@var{c} must be in the
97 range 1 to n). In the output permutation @var{p}, all columns in set 1
98 appear first, followed by all columns in set 2, and so on.
99 @code{@var{cmember} = ones (1,n)} if not present or empty.
100 @code{ccolamd (@var{S}, [], 1 : n)} returns @code{1 : n}
101 
102 @code{@var{p} = ccolamd (@var{S})} is about the same as
103 @code{@var{p} = colamd (@var{S})}. @var{knobs} and its default values
104 differ. @code{colamd} always does aggressive absorption, and it finds an
105 ordering suitable for both @code{lu (@var{S}(:, @var{p}))} and @code{chol
106 (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))}; it cannot optimize its
107 ordering for @code{lu (@var{S}(:, @var{p}))} to the extent that
108 @code{ccolamd (@var{S}, 1)} can.
109 
110 @var{stats} is an optional 20-element output vector that provides data
111 about the ordering and the validity of the input matrix @var{S}. Ordering
112 statistics are in @code{@var{stats}(1 : 3)}. @code{@var{stats}(1)} and
113 @code{@var{stats}(2)} are the number of dense or empty rows and columns
114 ignored by @sc{ccolamd} and @code{@var{stats}(3)} is the number of garbage
115 collections performed on the internal data structure used by @sc{ccolamd}
116 (roughly of size @code{2.2 * nnz (@var{S}) + 4 * @var{m} + 7 * @var{n}}
117 integers).
118 
119 @code{@var{stats}(4 : 7)} provide information if CCOLAMD was able to
120 continue. The matrix is OK if @code{@var{stats}(4)} is zero, or 1 if
121 invalid. @code{@var{stats}(5)} is the rightmost column index that is
122 unsorted or contains duplicate entries, or zero if no such column exists.
123 @code{@var{stats}(6)} is the last seen duplicate or out-of-order row
124 index in the column index given by @code{@var{stats}(5)}, or zero if no
125 such row index exists. @code{@var{stats}(7)} is the number of duplicate
126 or out-of-order row indices. @code{@var{stats}(8 : 20)} is always zero in
127 the current version of @sc{ccolamd} (reserved for future use).
128 
129 The authors of the code itself are @nospell{S. Larimore, T. Davis} and
130 @nospell{S. Rajamanickam} in collaboration with @nospell{J. Bilbert and E. Ng}.
131 Supported by the National Science Foundation
132 @nospell{(DMS-9504974, DMS-9803599, CCR-0203270)}, and a grant from
133 @nospell{Sandia} National Lab.
134 See @url{http://faculty.cse.tamu.edu/davis/suitesparse.html} for ccolamd,
135 csymamd, amd, colamd, symamd, and other related orderings.
136 @seealso{colamd, csymamd}
137 @end deftypefn */)
138 {
139 #if defined (HAVE_CCOLAMD)
140 
141  int nargin = args.length ();
142 
143  if (nargin < 1 || nargin > 3)
144  print_usage ();
145 
146  octave_value_list retval (nargout == 2 ? 2 : 1);
147  int spumoni = 0;
148 
149  // Get knobs
150  static_assert (CCOLAMD_KNOBS <= 40,
151  "ccolamd: # of CCOLAMD_KNOBS exceeded. Please report this to bugs.octave.org");
152  double knob_storage[CCOLAMD_KNOBS];
153  double *knobs = &knob_storage[0];
154  CCOLAMD_NAME (_set_defaults) (knobs);
155 
156  // Check for user-passed knobs
157  if (nargin > 1)
158  {
159  NDArray User_knobs = args(1).array_value ();
160  int nel_User_knobs = User_knobs.numel ();
161 
162  if (nel_User_knobs > 0)
163  knobs[CCOLAMD_LU] = (User_knobs(0) != 0);
164  if (nel_User_knobs > 1)
165  knobs[CCOLAMD_DENSE_ROW] = User_knobs(1);
166  if (nel_User_knobs > 2)
167  knobs[CCOLAMD_DENSE_COL] = User_knobs(2);
168  if (nel_User_knobs > 3)
169  knobs[CCOLAMD_AGGRESSIVE] = (User_knobs(3) != 0);
170  if (nel_User_knobs > 4)
171  spumoni = (User_knobs(4) != 0);
172 
173  // print knob settings if spumoni is set
174  if (spumoni)
175  {
176  octave_stdout << "\nccolamd version " << CCOLAMD_MAIN_VERSION << '.'
177  << CCOLAMD_SUB_VERSION << ", " << CCOLAMD_DATE
178  << ":\nknobs(1): " << User_knobs(0) << ", order for ";
179  if (knobs[CCOLAMD_LU] != 0)
180  octave_stdout << "lu (A)\n";
181  else
182  octave_stdout << "chol (A'*A)\n";
183 
184  if (knobs[CCOLAMD_DENSE_ROW] >= 0)
185  octave_stdout << "knobs(2): " << User_knobs(1)
186  << ", rows with > max (16,"
187  << knobs[CCOLAMD_DENSE_ROW]
188  << "*sqrt (size(A,2)))"
189  << " entries removed\n";
190  else
191  octave_stdout << "knobs(2): " << User_knobs(1)
192  << ", no dense rows removed\n";
193 
194  if (knobs[CCOLAMD_DENSE_COL] >= 0)
195  octave_stdout << "knobs(3): " << User_knobs(2)
196  << ", cols with > max (16,"
197  << knobs[CCOLAMD_DENSE_COL] << "*sqrt (size(A)))"
198  << " entries removed\n";
199  else
200  octave_stdout << "knobs(3): " << User_knobs(2)
201  << ", no dense columns removed\n";
202 
203  if (knobs[CCOLAMD_AGGRESSIVE] != 0)
204  octave_stdout << "knobs(4): " << User_knobs(3)
205  << ", aggressive absorption: yes";
206  else
207  octave_stdout << "knobs(4): " << User_knobs(3)
208  << ", aggressive absorption: no";
209 
210  octave_stdout << "knobs(5): " << User_knobs(4)
211  << ", statistics and knobs printed\n";
212  }
213  }
214 
215  octave_idx_type n_row, n_col, nnz;
216  octave_idx_type *ridx, *cidx;
218  SparseMatrix sm;
219 
220  if (args(0).issparse ())
221  {
222  if (args(0).iscomplex ())
223  {
224  scm = args(0).sparse_complex_matrix_value ();
225  n_row = scm.rows ();
226  n_col = scm.cols ();
227  nnz = scm.nnz ();
228  ridx = scm.xridx ();
229  cidx = scm.xcidx ();
230  }
231  else
232  {
233  sm = args(0).sparse_matrix_value ();
234 
235  n_row = sm.rows ();
236  n_col = sm.cols ();
237  nnz = sm.nnz ();
238  ridx = sm.xridx ();
239  cidx = sm.xcidx ();
240  }
241  }
242  else
243  {
244  if (args(0).iscomplex ())
245  sm = SparseMatrix (real (args(0).complex_matrix_value ()));
246  else
247  sm = SparseMatrix (args(0).matrix_value ());
248 
249  n_row = sm.rows ();
250  n_col = sm.cols ();
251  nnz = sm.nnz ();
252  ridx = sm.xridx ();
253  cidx = sm.xcidx ();
254  }
255 
256  // Allocate workspace for ccolamd
258  for (octave_idx_type i = 0; i < n_col+1; i++)
259  p[i] = cidx[i];
260 
261  octave_idx_type Alen = CCOLAMD_NAME (_recommended) (nnz, n_row, n_col);
263  for (octave_idx_type i = 0; i < nnz; i++)
264  A[i] = ridx[i];
265 
266  static_assert (CCOLAMD_STATS <= 40,
267  "ccolamd: # of CCOLAMD_STATS exceeded. Please report this to bugs.octave.org");
268  octave::suitesparse_integer stats_storage[CCOLAMD_STATS];
269  octave::suitesparse_integer *stats = &stats_storage[0];
270 
271  if (nargin > 2)
272  {
273  NDArray in_cmember = args(2).array_value ();
274  octave_idx_type cslen = in_cmember.numel ();
276  for (octave_idx_type i = 0; i < cslen; i++)
277  // convert cmember from 1-based to 0-based
278  cmember[i] = static_cast<octave::suitesparse_integer>(in_cmember(i) - 1);
279 
280  if (cslen != n_col)
281  error ("ccolamd: CMEMBER must be of length equal to #cols of A");
282 
283  // Order the columns (destroys A)
284  if (! CCOLAMD_NAME () (n_row, n_col, Alen, A, p, knobs, stats,cmember))
285  {
286  CCOLAMD_NAME (_report) (stats);
287 
288  error ("ccolamd: internal error!");
289  }
290  }
291  else
292  {
293  // Order the columns (destroys A)
294  if (! CCOLAMD_NAME () (n_row, n_col, Alen, A, p, knobs, stats, nullptr))
295  {
296  CCOLAMD_NAME (_report) (stats);
297 
298  error ("ccolamd: internal error!");
299  }
300  }
301 
302  // return the permutation vector
303  NDArray out_perm (dim_vector (1, n_col));
304  for (octave_idx_type i = 0; i < n_col; i++)
305  out_perm(i) = p[i] + 1;
306 
307  retval(0) = out_perm;
308 
309  // print stats if spumoni > 0
310  if (spumoni > 0)
311  CCOLAMD_NAME (_report) (stats);
312 
313  // Return the stats vector
314  if (nargout == 2)
315  {
316  NDArray out_stats (dim_vector (1, CCOLAMD_STATS));
317  for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++)
318  out_stats(i) = stats[i];
319  retval(1) = out_stats;
320 
321  // fix stats (5) and (6), for 1-based information on
322  // jumbled matrix. note that this correction doesn't
323  // occur if symamd returns FALSE
324  out_stats(CCOLAMD_INFO1)++;
325  out_stats(CCOLAMD_INFO2)++;
326  }
327 
328  return retval;
329 
330 #else
331 
332  octave_unused_parameter (args);
333  octave_unused_parameter (nargout);
334 
335  err_disabled_feature ("ccolamd", "CCOLAMD");
336 
337 #endif
338 }
339 
340 DEFUN (csymamd, args, nargout,
341  doc: /* -*- texinfo -*-
342 @deftypefn {} {@var{p} =} csymamd (@var{S})
343 @deftypefnx {} {@var{p} =} csymamd (@var{S}, @var{knobs})
344 @deftypefnx {} {@var{p} =} csymamd (@var{S}, @var{knobs}, @var{cmember})
345 @deftypefnx {} {[@var{p}, @var{stats}] =} csymamd (@dots{})
346 
347 For a symmetric positive definite matrix @var{S}, return the permutation
348 vector @var{p} such that @code{@var{S}(@var{p},@var{p})} tends to have a
349 sparser Cholesky@tie{}factor than @var{S}.
350 
351 Sometimes @code{csymamd} works well for symmetric indefinite matrices too.
352 The matrix @var{S} is assumed to be symmetric; only the strictly lower
353 triangular part is referenced. @var{S} must be square. The ordering is
354 followed by an elimination tree post-ordering.
355 
356 @var{knobs} is an optional 1-element to 3-element input vector, with a
357 default value of @code{[10 1 0]}. Entries not present are set to their
358 defaults.
359 
360 @table @code
361 @item @var{knobs}(1)
362 If @var{S} is n-by-n, then rows and columns with more than
363 @code{max(16,@var{knobs}(1)*sqrt(n))} entries are ignored, and ordered
364 last in the output permutation (subject to the cmember constraints).
365 
366 @item @var{knobs}(2)
367 If nonzero, aggressive absorption is performed.
368 
369 @item @var{knobs}(3)
370 If nonzero, statistics and knobs are printed.
371 
372 @end table
373 
374 @var{cmember} is an optional vector of length n. It defines the constraints
375 on the ordering. If @code{@var{cmember}(j) = @var{S}}, then row/column j is
376 in constraint set @var{c} (@var{c} must be in the range 1 to n). In the
377 output permutation @var{p}, rows/columns in set 1 appear first, followed
378 by all rows/columns in set 2, and so on. @code{@var{cmember} = ones (1,n)}
379 if not present or empty. @code{csymamd (@var{S},[],1:n)} returns
380 @code{1:n}.
381 
382 @code{@var{p} = csymamd (@var{S})} is about the same as
383 @code{@var{p} = symamd (@var{S})}. @var{knobs} and its default values
384 differ.
385 
386 @code{@var{stats}(4:7)} provide information if CCOLAMD was able to
387 continue. The matrix is OK if @code{@var{stats}(4)} is zero, or 1 if
388 invalid. @code{@var{stats}(5)} is the rightmost column index that is
389 unsorted or contains duplicate entries, or zero if no such column exists.
390 @code{@var{stats}(6)} is the last seen duplicate or out-of-order row
391 index in the column index given by @code{@var{stats}(5)}, or zero if no
392 such row index exists. @code{@var{stats}(7)} is the number of duplicate
393 or out-of-order row indices. @code{@var{stats}(8:20)} is always zero in
394 the current version of @sc{ccolamd} (reserved for future use).
395 
396 The authors of the code itself are @nospell{S. Larimore, T. Davis} and
397 @nospell{S. Rajamanickam} in collaboration with @nospell{J. Bilbert and E. Ng}.
398 Supported by the National Science Foundation
399 @nospell{(DMS-9504974, DMS-9803599, CCR-0203270)}, and a grant from
400 @nospell{Sandia} National Lab.
401 See @url{http://faculty.cse.tamu.edu/davis/suitesparse.html} for ccolamd,
402 colamd, csymamd, amd, colamd, symamd, and other related orderings.
403 @seealso{symamd, ccolamd}
404 @end deftypefn */)
405 {
406 #if defined (HAVE_CCOLAMD)
407 
408  int nargin = args.length ();
409 
410  if (nargin < 1 || nargin > 3)
411  print_usage ();
412 
413  octave_value_list retval (nargout == 2 ? 2 : 1);
414  int spumoni = 0;
415 
416  // Get knobs
417  static_assert (CCOLAMD_KNOBS <= 40,
418  "csymamd: # of CCOLAMD_KNOBS exceeded. Please report this to bugs.octave.org");
419  double knob_storage[CCOLAMD_KNOBS];
420  double *knobs = &knob_storage[0];
421  CCOLAMD_NAME (_set_defaults) (knobs);
422 
423  // Check for user-passed knobs
424  if (nargin > 1)
425  {
426  NDArray User_knobs = args(1).array_value ();
427  int nel_User_knobs = User_knobs.numel ();
428 
429  if (nel_User_knobs > 0)
430  knobs[CCOLAMD_DENSE_ROW] = User_knobs(0);
431  if (nel_User_knobs > 1)
432  knobs[CCOLAMD_AGGRESSIVE] = User_knobs(1);
433  if (nel_User_knobs > 2)
434  spumoni = static_cast<int> (User_knobs(2));
435 
436  // print knob settings if spumoni is set
437  if (spumoni)
438  {
439  octave_stdout << "\ncsymamd version " << CCOLAMD_MAIN_VERSION
440  << '.' << CCOLAMD_SUB_VERSION
441  << ", " << CCOLAMD_DATE << "\n";
442 
443  if (knobs[CCOLAMD_DENSE_ROW] >= 0)
444  octave_stdout << "knobs(1): " << User_knobs(0)
445  << ", rows/cols with > max (16,"
446  << knobs[CCOLAMD_DENSE_ROW]
447  << "*sqrt (size(A,2)))"
448  << " entries removed\n";
449  else
450  octave_stdout << "knobs(1): " << User_knobs(0)
451  << ", no dense rows/cols removed\n";
452 
453  if (knobs[CCOLAMD_AGGRESSIVE] != 0)
454  octave_stdout << "knobs(2): " << User_knobs(1)
455  << ", aggressive absorption: yes";
456  else
457  octave_stdout << "knobs(2): " << User_knobs(1)
458  << ", aggressive absorption: no";
459 
460  octave_stdout << "knobs(3): " << User_knobs(2)
461  << ", statistics and knobs printed\n";
462  }
463  }
464 
465  octave_idx_type n_row, n_col;
466  octave_idx_type *ridx, *cidx;
467  SparseMatrix sm;
469 
470  if (args(0).issparse ())
471  {
472  if (args(0).iscomplex ())
473  {
474  scm = args(0).sparse_complex_matrix_value ();
475  n_row = scm.rows ();
476  n_col = scm.cols ();
477  ridx = scm.xridx ();
478  cidx = scm.xcidx ();
479  }
480  else
481  {
482  sm = args(0).sparse_matrix_value ();
483  n_row = sm.rows ();
484  n_col = sm.cols ();
485  ridx = sm.xridx ();
486  cidx = sm.xcidx ();
487  }
488  }
489  else
490  {
491  if (args(0).iscomplex ())
492  sm = SparseMatrix (real (args(0).complex_matrix_value ()));
493  else
494  sm = SparseMatrix (args(0).matrix_value ());
495 
496  n_row = sm.rows ();
497  n_col = sm.cols ();
498  ridx = sm.xridx ();
499  cidx = sm.xcidx ();
500  }
501 
502  if (n_row != n_col)
503  err_square_matrix_required ("csymamd", "S");
504 
505  // Allocate workspace for symamd
507  static_assert (CCOLAMD_STATS <= 40,
508  "csymamd: # of CCOLAMD_STATS exceeded. Please report this to bugs.octave.org");
509  octave::suitesparse_integer stats_storage[CCOLAMD_STATS];
510  octave::suitesparse_integer *stats = &stats_storage[0];
511 
512  if (nargin > 2)
513  {
514  NDArray in_cmember = args(2).array_value ();
515  octave_idx_type cslen = in_cmember.numel ();
517  for (octave_idx_type i = 0; i < cslen; i++)
518  // convert cmember from 1-based to 0-based
519  cmember[i] = static_cast<octave_idx_type> (in_cmember(i) - 1);
520 
521  if (cslen != n_col)
522  error ("csymamd: CMEMBER must be of length equal to #cols of A");
523 
524  if (! CSYMAMD_NAME () (n_col,
527  perm, knobs, stats, &calloc, &free, cmember, -1))
528  {
529  CSYMAMD_NAME (_report)(stats);
530 
531  error ("csymamd: internal error!");
532  }
533  }
534  else
535  {
536  if (! CSYMAMD_NAME () (n_col,
539  perm, knobs, stats, &calloc, &free, nullptr, -1))
540  {
541  CSYMAMD_NAME (_report)(stats);
542 
543  error ("csymamd: internal error!");
544  }
545  }
546 
547  // return the permutation vector
548  NDArray out_perm (dim_vector (1, n_col));
549  for (octave_idx_type i = 0; i < n_col; i++)
550  out_perm(i) = perm[i] + 1;
551 
552  retval(0) = out_perm;
553 
554  // print stats if spumoni > 0
555  if (spumoni > 0)
556  CSYMAMD_NAME (_report)(stats);
557 
558  // Return the stats vector
559  if (nargout == 2)
560  {
561  NDArray out_stats (dim_vector (1, CCOLAMD_STATS));
562  for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++)
563  out_stats(i) = stats[i];
564  retval(1) = out_stats;
565 
566  // fix stats (5) and (6), for 1-based information on
567  // jumbled matrix. note that this correction doesn't
568  // occur if symamd returns FALSE
569  out_stats(CCOLAMD_INFO1)++;
570  out_stats(CCOLAMD_INFO2)++;
571  }
572 
573  return retval;
574 
575 #else
576 
577  octave_unused_parameter (args);
578  octave_unused_parameter (nargout);
579 
580  err_disabled_feature ("csymamd", "CCOLAMD");
581 
582 #endif
583 }
octave_idx_type numel(void) const
Number of elements in the array.
Definition: Array.h:377
octave_idx_type cols(void) const
Definition: Sparse.h:251
octave_idx_type * xridx(void)
Definition: Sparse.h:485
octave_idx_type nnz(void) const
Actual number of nonzero terms.
Definition: Sparse.h:238
octave_idx_type rows(void) const
Definition: Sparse.h:250
octave_idx_type * xcidx(void)
Definition: Sparse.h:498
Vector representing the dimensions (size) of an Array.
Definition: dim-vector.h:95
ColumnVector real(const ComplexColumnVector &a)
Definition: dColVector.cc:137
OCTINTERP_API void print_usage(void)
Definition: defun.cc:53
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition: defun.h:56
void error(const char *fmt,...)
Definition: error.cc:968
void err_square_matrix_required(const char *fcn, const char *name)
Definition: errwarn.cc:122
void err_disabled_feature(const std::string &fcn, const std::string &feature, const std::string &pkg)
Definition: errwarn.cc:53
F77_RET_T const F77_INT F77_CMPLX * A
int suitesparse_integer
Definition: oct-sparse.h:171
suitesparse_integer * to_suitesparse_intptr(octave_idx_type *i)
Definition: oct-sparse.cc:51
#define OCTAVE_LOCAL_BUFFER(T, buf, size)
Definition: oct-locbuf.h:44
#define CCOLAMD_NAME(name)
Definition: oct-sparse.h:119
#define CSYMAMD_NAME(name)
Definition: oct-sparse.h:120
void free(void *)
octave_value::octave_value(const Array< char > &chm, char type) return retval
Definition: ov.cc:811
#define octave_stdout
Definition: pager.h:313