GNU Octave  6.2.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
ellipj.cc
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 2013-2021 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING. If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if defined (HAVE_CONFIG_H)
27 # include "config.h"
28 #endif
29 
30 #include "defun.h"
31 #include "error.h"
32 #include "lo-specfun.h"
33 
34 DEFUN (ellipj, args, ,
35  doc: /* -*- texinfo -*-
36 @deftypefn {} {[@var{sn}, @var{cn}, @var{dn}, @var{err}] =} ellipj (@var{u}, @var{m})
37 @deftypefnx {} {[@var{sn}, @var{cn}, @var{dn}, @var{err}] =} ellipj (@var{u}, @var{m}, @var{tol})
38 Compute the Jacobi elliptic functions @var{sn}, @var{cn}, and @var{dn}
39 of complex argument @var{u} and real parameter @var{m}.
40 
41 If @var{m} is a scalar, the results are the same size as @var{u}.
42 If @var{u} is a scalar, the results are the same size as @var{m}.
43 If @var{u} is a column vector and @var{m} is a row vector, the
44 results are matrices with @code{length (@var{u})} rows and
45 @code{length (@var{m})} columns. Otherwise, @var{u} and
46 @var{m} must conform in size and the results will be the same size as the
47 inputs.
48 
49 The value of @var{u} may be complex.
50 The value of @var{m} must be 0 @leq{} @var{m} @leq{} 1.
51 
52 The optional input @var{tol} is currently ignored (@sc{matlab} uses this to
53 allow faster, less accurate approximation).
54 
55 If requested, @var{err} contains the following status information
56 and is the same size as the result.
57 
58 @enumerate 0
59 @item
60 Normal return.
61 
62 @item
63 Error---no computation, algorithm termination condition not met,
64 return @code{NaN}.
65 @end enumerate
66 
67 Reference: Milton @nospell{Abramowitz} and Irene A @nospell{Stegun},
68 @cite{Handbook of Mathematical Functions}, Chapter 16 (Sections 16.4, 16.13,
69 and 16.15), Dover, 1965.
70 
71 @seealso{ellipke}
72 @end deftypefn */)
73 {
74  int nargin = args.length ();
75 
76  if (nargin < 2 || nargin > 3)
77  print_usage ();
78 
79  octave_value u_arg = args(0);
80  octave_value m_arg = args(1);
81 
82  if (m_arg.is_scalar_type ())
83  {
84  double m = args(1).xdouble_value ("ellipj: M must be a scalar or matrix");
85 
86  if (u_arg.is_scalar_type ())
87  {
88  if (u_arg.isreal ())
89  {
90  // u real, m scalar
91  double u = args(0).xdouble_value ("ellipj: U must be a scalar or matrix");
92 
93  double sn, cn, dn;
94  double err = 0;
95 
96  octave::math::ellipj (u, m, sn, cn, dn, err);
97 
98  return ovl (sn, cn, dn, err);
99  }
100  else
101  {
102  // u complex, m scalar
103  Complex u = u_arg.xcomplex_value ("ellipj: U must be a scalar or matrix");
104 
105  Complex sn, cn, dn;
106  double err = 0;
107 
108  octave::math::ellipj (u, m, sn, cn, dn, err);
109 
110  return ovl (sn, cn, dn, err);
111  }
112  }
113  else
114  {
115  // u is matrix, m is scalar
116  ComplexNDArray u = u_arg.xcomplex_array_value ("ellipj: U must be a scalar or matrix");
117 
118  dim_vector sz_u = u.dims ();
119 
120  ComplexNDArray sn (sz_u), cn (sz_u), dn (sz_u);
121  NDArray err (sz_u);
122 
123  const Complex *pu = u.data ();
124  Complex *psn = sn.fortran_vec ();
125  Complex *pcn = cn.fortran_vec ();
126  Complex *pdn = dn.fortran_vec ();
127  double *perr = err.fortran_vec ();
128  octave_idx_type nel = u.numel ();
129 
130  for (octave_idx_type i = 0; i < nel; i++)
131  octave::math::ellipj (pu[i], m, psn[i], pcn[i], pdn[i], perr[i]);
132 
133  return ovl (sn, cn, dn, err);
134  }
135  }
136  else
137  {
138  NDArray m = args(1).xarray_value ("ellipj: M must be a scalar or matrix");
139 
140  dim_vector sz_m = m.dims ();
141 
142  if (u_arg.is_scalar_type ())
143  {
144  // u is scalar, m is array
145  if (u_arg.isreal ())
146  {
147  // u is real scalar, m is array
148  double u = u_arg.xdouble_value ("ellipj: U must be a scalar or matrix");
149 
150  NDArray sn (sz_m), cn (sz_m), dn (sz_m);
151  NDArray err (sz_m);
152 
153  const double *pm = m.data ();
154  double *psn = sn.fortran_vec ();
155  double *pcn = cn.fortran_vec ();
156  double *pdn = dn.fortran_vec ();
157  double *perr = err.fortran_vec ();
158  octave_idx_type nel = m.numel ();
159 
160  for (octave_idx_type i = 0; i < nel; i++)
161  octave::math::ellipj (u, pm[i], psn[i], pcn[i], pdn[i], perr[i]);
162 
163  return ovl (sn, cn, dn, err);
164  }
165  else
166  {
167  // u is complex scalar, m is array
168  Complex u = u_arg.xcomplex_value ("ellipj: U must be a scalar or matrix");
169 
170  ComplexNDArray sn (sz_m), cn (sz_m), dn (sz_m);
171  NDArray err (sz_m);
172 
173  const double *pm = m.data ();
174  Complex *psn = sn.fortran_vec ();
175  Complex *pcn = cn.fortran_vec ();
176  Complex *pdn = dn.fortran_vec ();
177  double *perr = err.fortran_vec ();
178  octave_idx_type nel = m.numel ();
179 
180  for (octave_idx_type i = 0; i < nel; i++)
181  octave::math::ellipj (u, pm[i], psn[i], pcn[i], pdn[i], perr[i]);
182 
183  return ovl (sn, cn, dn, err);
184  }
185  }
186  else
187  {
188  // u is array, m is array
189  if (u_arg.isreal ())
190  {
191  // u is real array, m is array
192  NDArray u = u_arg.xarray_value ("ellipj: U must be a scalar or matrix");
193 
194  dim_vector sz_u = u.dims ();
195 
196  if (sz_u.ndims () == 2 && sz_m.ndims () == 2
197  && sz_u(1) == 1 && sz_m(0) == 1)
198  {
199  // u is real column vector, m is row vector
200  octave_idx_type ur = sz_u(0);
201  octave_idx_type mc = sz_m(1);
202  dim_vector sz_out (ur, mc);
203 
204  NDArray sn (sz_out), cn (sz_out), dn (sz_out);
205  NDArray err (sz_out);
206 
207  const double *pu = u.data ();
208  const double *pm = m.data ();
209 
210  for (octave_idx_type j = 0; j < mc; j++)
211  for (octave_idx_type i = 0; i < ur; i++)
212  octave::math::ellipj (pu[i], pm[j], sn(i,j), cn(i,j), dn(i,j), err(i,j));
213 
214  return ovl (sn, cn, dn, err);
215  }
216  else if (sz_m == sz_u)
217  {
218  NDArray sn (sz_m), cn (sz_m), dn (sz_m);
219  NDArray err (sz_m);
220 
221  const double *pu = u.data ();
222  const double *pm = m.data ();
223  double *psn = sn.fortran_vec ();
224  double *pcn = cn.fortran_vec ();
225  double *pdn = dn.fortran_vec ();
226  double *perr = err.fortran_vec ();
227  octave_idx_type nel = m.numel ();
228 
229  for (octave_idx_type i = 0; i < nel; i++)
230  octave::math::ellipj (pu[i], pm[i], psn[i], pcn[i], pdn[i], perr[i]);
231 
232  return ovl (sn, cn, dn, err);
233  }
234  else
235  error ("ellipj: Invalid size combination for U and M");
236  }
237  else
238  {
239  // u is complex array, m is array
240  ComplexNDArray u = u_arg.xcomplex_array_value ("ellipj: U must be a scalar or matrix");
241 
242  dim_vector sz_u = u.dims ();
243 
244  if (sz_u.ndims () == 2 && sz_m.ndims () == 2
245  && sz_u(1) == 1 && sz_m(0) == 1)
246  {
247  // u is complex column vector, m is row vector
248  octave_idx_type ur = sz_u(0);
249  octave_idx_type mc = sz_m(1);
250  dim_vector sz_out (ur, mc);
251 
252  ComplexNDArray sn (sz_out), cn (sz_out), dn (sz_out);
253  NDArray err (sz_out);
254 
255  const Complex *pu = u.data ();
256  const double *pm = m.data ();
257 
258  for (octave_idx_type j = 0; j < mc; j++)
259  for (octave_idx_type i = 0; i < ur; i++)
260  octave::math::ellipj (pu[i], pm[j], sn(i,j), cn(i,j), dn(i,j), err(i,j));
261 
262  return ovl (sn, cn, dn, err);
263  }
264  else if (sz_m == sz_u)
265  {
266  ComplexNDArray sn (sz_m), cn (sz_m), dn (sz_m);
267  NDArray err (sz_m);
268 
269  const Complex *pu = u.data ();
270  const double *pm = m.data ();
271  Complex *psn = sn.fortran_vec ();
272  Complex *pcn = cn.fortran_vec ();
273  Complex *pdn = dn.fortran_vec ();
274  double *perr = err.fortran_vec ();
275  octave_idx_type nel = m.numel ();
276 
277  for (octave_idx_type i = 0; i < nel; i++)
278  octave::math::ellipj (pu[i], pm[i], psn[i], pcn[i], pdn[i], perr[i]);
279 
280  return ovl (sn, cn, dn, err);
281  }
282  else
283  error ("ellipj: Invalid size combination for U and M");
284  }
285  }
286  } // m matrix
287 
288  return ovl ();
289 }
290 
291 /*
292 ## demos taken from inst/ellipj.m
293 
294 %!demo
295 %! N = 150;
296 %! # m = [1-logspace(0,log(eps),N-1), 1]; # m near 1
297 %! # m = [0, logspace(log(eps),0,N-1)]; # m near 0
298 %! m = linspace (0,1,N); # m equally spaced
299 %! u = linspace (-20, 20, N);
300 %! M = ones (length (u), 1) * m;
301 %! U = u' * ones (1, length (m));
302 %! [sn, cn, dn] = ellipj (U,M);
303 %!
304 %! ## Plotting
305 %! data = {sn,cn,dn};
306 %! dname = {"sn","cn","dn"};
307 %! for i=1:3
308 %! subplot (1,3,i);
309 %! data{i}(data{i} > 1) = 1;
310 %! data{i}(data{i} < -1) = -1;
311 %! image (m,u,32*data{i}+32);
312 %! title (dname{i});
313 %! endfor
314 %! colormap (hot (64));
315 
316 %!demo
317 %! N = 200;
318 %! # m = [1-logspace(0,log(eps),N-1), 1]; # m near 1
319 %! # m = [0, logspace(log(eps),0,N-1)]; # m near 0
320 %! m = linspace (0,1,N); # m equally spaced
321 %! u = linspace (0,20,5);
322 %! M = ones (length (u), 1) * m;
323 %! U = u' * ones (1, length (m));
324 %! [sn, cn, dn] = ellipj (U,M);
325 %!
326 %! ## Plotting
327 %! data = {sn,cn,dn};
328 %! dname = {"sn","cn","dn"};
329 %! for i=1:3
330 %! subplot (1,3,i);
331 %! plot (m, data{i});
332 %! title (dname{i});
333 %! grid on;
334 %! endfor
335 */
336 
337 /*
338 ## tests taken from inst/test_sncndn.m
339 
340 %!test
341 %! k = (tan(pi/8.))^2; m = k*k;
342 %! SN = [
343 %! -1. + I * 0. , -0.8392965923 + 0. * I
344 %! -1. + I * 0.2 , -0.8559363407 + 0.108250955 * I
345 %! -1. + I * 0.4 , -0.906529758 + 0.2204040232 * I
346 %! -1. + I * 0.6 , -0.9931306727 + 0.3403783409 * I
347 %! -1. + I * 0.8 , -1.119268095 + 0.4720784944 * I
348 %! -1. + I * 1. , -1.29010951 + 0.6192468708 * I
349 %! -1. + I * 1.2 , -1.512691987 + 0.7850890595 * I
350 %! -1. + I * 1.4 , -1.796200374 + 0.9714821804 * I
351 %! -1. + I * 1.6 , -2.152201882 + 1.177446413 * I
352 %! -1. + I * 1.8 , -2.594547417 + 1.396378892 * I
353 %! -1. + I * 2. , -3.138145339 + 1.611394819 * I
354 %! -0.8 + I * 0. , -0.7158157937 + 0. * I
355 %! -0.8 + I * 0.2 , -0.7301746722 + 0.1394690862 * I
356 %! -0.8 + I * 0.4 , -0.7738940898 + 0.2841710966 * I
357 %! -0.8 + I * 0.6 , -0.8489542135 + 0.4394411376 * I
358 %! -0.8 + I * 0.8 , -0.9588386397 + 0.6107824358 * I
359 %! -0.8 + I * 1. , -1.108848724 + 0.8038415767 * I
360 %! -0.8 + I * 1.2 , -1.306629972 + 1.024193359 * I
361 %! -0.8 + I * 1.4 , -1.563010199 + 1.276740951 * I
362 %! -0.8 + I * 1.6 , -1.893274688 + 1.564345558 * I
363 %! -0.8 + I * 1.8 , -2.318944084 + 1.88491973 * I
364 %! -0.8 + I * 2. , -2.869716809 + 2.225506523 * I
365 %! -0.6 + I * 0. , -0.5638287208 + 0. * I
366 %! -0.6 + I * 0.2 , -0.5752723012 + 0.1654722474 * I
367 %! -0.6 + I * 0.4 , -0.610164314 + 0.3374004736 * I
368 %! -0.6 + I * 0.6 , -0.6702507087 + 0.5224614298 * I
369 %! -0.6 + I * 0.8 , -0.7586657365 + 0.7277663879 * I
370 %! -0.6 + I * 1. , -0.8803349115 + 0.9610513652 * I
371 %! -0.6 + I * 1.2 , -1.042696526 + 1.230800819 * I
372 %! -0.6 + I * 1.4 , -1.256964505 + 1.546195843 * I
373 %! -0.6 + I * 1.6 , -1.540333527 + 1.916612621 * I
374 %! -0.6 + I * 1.8 , -1.919816065 + 2.349972151 * I
375 %! -0.6 + I * 2. , -2.438761841 + 2.848129496 * I
376 %! -0.4 + I * 0. , -0.3891382858 + 0. * I
377 %! -0.4 + I * 0.2 , -0.3971152026 + 0.1850563793 * I
378 %! -0.4 + I * 0.4 , -0.4214662882 + 0.3775700801 * I
379 %! -0.4 + I * 0.6 , -0.4635087491 + 0.5853434119 * I
380 %! -0.4 + I * 0.8 , -0.5256432877 + 0.8168992398 * I
381 %! -0.4 + I * 1. , -0.611733177 + 1.081923504 * I
382 %! -0.4 + I * 1.2 , -0.7278102331 + 1.391822501 * I
383 %! -0.4 + I * 1.4 , -0.8833807998 + 1.760456461 * I
384 %! -0.4 + I * 1.6 , -1.093891878 + 2.205107766 * I
385 %! -0.4 + I * 1.8 , -1.385545188 + 2.747638761 * I
386 %! -0.4 + I * 2. , -1.805081271 + 3.41525351 * I
387 %! -0.2 + I * 0. , -0.1986311721 + 0. * I
388 %! -0.2 + I * 0.2 , -0.2027299916 + 0.1972398665 * I
389 %! -0.2 + I * 0.4 , -0.2152524522 + 0.402598347 * I
390 %! -0.2 + I * 0.6 , -0.2369100139 + 0.6246336356 * I
391 %! -0.2 + I * 0.8 , -0.2690115146 + 0.8728455227 * I
392 %! -0.2 + I * 1. , -0.3136938773 + 1.158323088 * I
393 %! -0.2 + I * 1.2 , -0.3743615191 + 1.494672508 * I
394 %! -0.2 + I * 1.4 , -0.4565255082 + 1.899466033 * I
395 %! -0.2 + I * 1.6 , -0.5694611346 + 2.39667232 * I
396 %! -0.2 + I * 1.8 , -0.7296612675 + 3.020990664 * I
397 %! -0.2 + I * 2. , -0.9685726188 + 3.826022536 * I
398 %! 0. + I * 0. , 0. + 0. * I
399 %! 0. + I * 0.2 , 0. + 0.201376364 * I
400 %! 0. + I * 0.4 , 0. + 0.4111029248 * I
401 %! 0. + I * 0.6 , 0. + 0.6380048435 * I
402 %! 0. + I * 0.8 , 0. + 0.8919321473 * I
403 %! 0. + I * 1. , 0. + 1.184486615 * I
404 %! 0. + I * 1.2 , 0. + 1.530096023 * I
405 %! 0. + I * 1.4 , 0. + 1.947754612 * I
406 %! 0. + I * 1.6 , 0. + 2.464074356 * I
407 %! 0. + I * 1.8 , 0. + 3.119049475 * I
408 %! 0. + I * 2. , 0. + 3.97786237 * I
409 %! 0.2 + I * 0. , 0.1986311721 + 0. * I
410 %! 0.2 + I * 0.2 , 0.2027299916 + 0.1972398665 * I
411 %! 0.2 + I * 0.4 , 0.2152524522 + 0.402598347 * I
412 %! 0.2 + I * 0.6 , 0.2369100139 + 0.6246336356 * I
413 %! 0.2 + I * 0.8 , 0.2690115146 + 0.8728455227 * I
414 %! 0.2 + I * 1. , 0.3136938773 + 1.158323088 * I
415 %! 0.2 + I * 1.2 , 0.3743615191 + 1.494672508 * I
416 %! 0.2 + I * 1.4 , 0.4565255082 + 1.899466033 * I
417 %! 0.2 + I * 1.6 , 0.5694611346 + 2.39667232 * I
418 %! 0.2 + I * 1.8 , 0.7296612675 + 3.020990664 * I
419 %! 0.2 + I * 2. , 0.9685726188 + 3.826022536 * I
420 %! 0.4 + I * 0. , 0.3891382858 + 0. * I
421 %! 0.4 + I * 0.2 , 0.3971152026 + 0.1850563793 * I
422 %! 0.4 + I * 0.4 , 0.4214662882 + 0.3775700801 * I
423 %! 0.4 + I * 0.6 , 0.4635087491 + 0.5853434119 * I
424 %! 0.4 + I * 0.8 , 0.5256432877 + 0.8168992398 * I
425 %! 0.4 + I * 1. , 0.611733177 + 1.081923504 * I
426 %! 0.4 + I * 1.2 , 0.7278102331 + 1.391822501 * I
427 %! 0.4 + I * 1.4 , 0.8833807998 + 1.760456461 * I
428 %! 0.4 + I * 1.6 , 1.093891878 + 2.205107766 * I
429 %! 0.4 + I * 1.8 , 1.385545188 + 2.747638761 * I
430 %! 0.4 + I * 2. , 1.805081271 + 3.41525351 * I
431 %! 0.6 + I * 0. , 0.5638287208 + 0. * I
432 %! 0.6 + I * 0.2 , 0.5752723012 + 0.1654722474 * I
433 %! 0.6 + I * 0.4 , 0.610164314 + 0.3374004736 * I
434 %! 0.6 + I * 0.6 , 0.6702507087 + 0.5224614298 * I
435 %! 0.6 + I * 0.8 , 0.7586657365 + 0.7277663879 * I
436 %! 0.6 + I * 1. , 0.8803349115 + 0.9610513652 * I
437 %! 0.6 + I * 1.2 , 1.042696526 + 1.230800819 * I
438 %! 0.6 + I * 1.4 , 1.256964505 + 1.546195843 * I
439 %! 0.6 + I * 1.6 , 1.540333527 + 1.916612621 * I
440 %! 0.6 + I * 1.8 , 1.919816065 + 2.349972151 * I
441 %! 0.6 + I * 2. , 2.438761841 + 2.848129496 * I
442 %! 0.8 + I * 0. , 0.7158157937 + 0. * I
443 %! 0.8 + I * 0.2 , 0.7301746722 + 0.1394690862 * I
444 %! 0.8 + I * 0.4 , 0.7738940898 + 0.2841710966 * I
445 %! 0.8 + I * 0.6 , 0.8489542135 + 0.4394411376 * I
446 %! 0.8 + I * 0.8 , 0.9588386397 + 0.6107824358 * I
447 %! 0.8 + I * 1. , 1.108848724 + 0.8038415767 * I
448 %! 0.8 + I * 1.2 , 1.306629972 + 1.024193359 * I
449 %! 0.8 + I * 1.4 , 1.563010199 + 1.276740951 * I
450 %! 0.8 + I * 1.6 , 1.893274688 + 1.564345558 * I
451 %! 0.8 + I * 1.8 , 2.318944084 + 1.88491973 * I
452 %! 0.8 + I * 2. , 2.869716809 + 2.225506523 * I
453 %! 1. + I * 0. , 0.8392965923 + 0. * I
454 %! 1. + I * 0.2 , 0.8559363407 + 0.108250955 * I
455 %! 1. + I * 0.4 , 0.906529758 + 0.2204040232 * I
456 %! 1. + I * 0.6 , 0.9931306727 + 0.3403783409 * I
457 %! 1. + I * 0.8 , 1.119268095 + 0.4720784944 * I
458 %! 1. + I * 1. , 1.29010951 + 0.6192468708 * I
459 %! 1. + I * 1.2 , 1.512691987 + 0.7850890595 * I
460 %! 1. + I * 1.4 , 1.796200374 + 0.9714821804 * I
461 %! 1. + I * 1.6 , 2.152201882 + 1.177446413 * I
462 %! 1. + I * 1.8 , 2.594547417 + 1.396378892 * I
463 %! 1. + I * 2. , 3.138145339 + 1.611394819 * I
464 %! ];
465 %! CN = [
466 %! -1. + I * 0. , 0.5436738271 + 0. * I
467 %! -1. + I * 0.2 , 0.5541219664 + 0.1672121517 * I
468 %! -1. + I * 0.4 , 0.5857703552 + 0.3410940893 * I
469 %! -1. + I * 0.6 , 0.6395034233 + 0.5285979063 * I
470 %! -1. + I * 0.8 , 0.716688504 + 0.7372552987 * I
471 %! -1. + I * 1. , 0.8189576795 + 0.9755037374 * I
472 %! -1. + I * 1.2 , 0.9477661951 + 1.253049471 * I
473 %! -1. + I * 1.4 , 1.103540657 + 1.581252712 * I
474 %! -1. + I * 1.6 , 1.284098214 + 1.973449038 * I
475 %! -1. + I * 1.8 , 1.481835651 + 2.4449211 * I
476 %! -1. + I * 2. , 1.679032464 + 3.011729224 * I
477 %! -0.8 + I * 0. , 0.6982891589 + 0. * I
478 %! -0.8 + I * 0.2 , 0.71187169 + 0.1430549855 * I
479 %! -0.8 + I * 0.4 , 0.7530744458 + 0.2920273465 * I
480 %! -0.8 + I * 0.6 , 0.8232501212 + 0.4531616768 * I
481 %! -0.8 + I * 0.8 , 0.9245978896 + 0.6334016187 * I
482 %! -0.8 + I * 1. , 1.060030206 + 0.8408616109 * I
483 %! -0.8 + I * 1.2 , 1.232861756 + 1.085475913 * I
484 %! -0.8 + I * 1.4 , 1.446126965 + 1.379933558 * I
485 %! -0.8 + I * 1.6 , 1.701139468 + 1.741030588 * I
486 %! -0.8 + I * 1.8 , 1.994526268 + 2.191509596 * I
487 %! -0.8 + I * 2. , 2.312257188 + 2.762051518 * I
488 %! -0.6 + I * 0. , 0.8258917445 + 0. * I
489 %! -0.6 + I * 0.2 , 0.842151698 + 0.1130337928 * I
490 %! -0.6 + I * 0.4 , 0.8915487431 + 0.2309124769 * I
491 %! -0.6 + I * 0.6 , 0.975948103 + 0.3588102098 * I
492 %! -0.6 + I * 0.8 , 1.098499209 + 0.5026234141 * I
493 %! -0.6 + I * 1. , 1.263676101 + 0.6695125973 * I
494 %! -0.6 + I * 1.2 , 1.477275851 + 0.8687285705 * I
495 %! -0.6 + I * 1.4 , 1.746262523 + 1.112955966 * I
496 %! -0.6 + I * 1.6 , 2.078179075 + 1.420581466 * I
497 %! -0.6 + I * 1.8 , 2.479425208 + 1.819580713 * I
498 %! -0.6 + I * 2. , 2.950586798 + 2.354077344 * I
499 %! -0.4 + I * 0. , 0.9211793498 + 0. * I
500 %! -0.4 + I * 0.2 , 0.9395019377 + 0.07822091534 * I
501 %! -0.4 + I * 0.4 , 0.9952345231 + 0.1598950363 * I
502 %! -0.4 + I * 0.6 , 1.090715991 + 0.2487465067 * I
503 %! -0.4 + I * 0.8 , 1.229998843 + 0.34910407 * I
504 %! -0.4 + I * 1. , 1.419103868 + 0.4663848201 * I
505 %! -0.4 + I * 1.2 , 1.666426377 + 0.607877235 * I
506 %! -0.4 + I * 1.4 , 1.983347336 + 0.7841054404 * I
507 %! -0.4 + I * 1.6 , 2.385101684 + 1.01134031 * I
508 %! -0.4 + I * 1.8 , 2.89185416 + 1.316448705 * I
509 %! -0.4 + I * 2. , 3.529393374 + 1.74670531 * I
510 %! -0.2 + I * 0. , 0.9800743122 + 0. * I
511 %! -0.2 + I * 0.2 , 0.9997019476 + 0.03999835809 * I
512 %! -0.2 + I * 0.4 , 1.059453907 + 0.08179712295 * I
513 %! -0.2 + I * 0.6 , 1.16200643 + 0.1273503824 * I
514 %! -0.2 + I * 0.8 , 1.312066413 + 0.1789585449 * I
515 %! -0.2 + I * 1. , 1.516804331 + 0.2395555269 * I
516 %! -0.2 + I * 1.2 , 1.786613221 + 0.313189147 * I
517 %! -0.2 + I * 1.4 , 2.136422971 + 0.405890925 * I
518 %! -0.2 + I * 1.6 , 2.588021972 + 0.527357091 * I
519 %! -0.2 + I * 1.8 , 3.174302819 + 0.6944201617 * I
520 %! -0.2 + I * 2. , 3.947361147 + 0.9387994989 * I
521 %! 0. + I * 0. , 1. + 0. * I
522 %! 0. + I * 0.2 , 1.020074723 + 0. * I
523 %! 0. + I * 0.4 , 1.08120563 + 0. * I
524 %! 0. + I * 0.6 , 1.18619146 + 0. * I
525 %! 0. + I * 0.8 , 1.339978715 + 0. * I
526 %! 0. + I * 1. , 1.550164037 + 0. * I
527 %! 0. + I * 1.2 , 1.827893279 + 0. * I
528 %! 0. + I * 1.4 , 2.189462954 + 0. * I
529 %! 0. + I * 1.6 , 2.659259752 + 0. * I
530 %! 0. + I * 1.8 , 3.275434266 + 0. * I
531 %! 0. + I * 2. , 4.101632484 + 0. * I
532 %! 0.2 + I * 0. , 0.9800743122 + 0. * I
533 %! 0.2 + I * 0.2 , 0.9997019476 - 0.03999835809 * I
534 %! 0.2 + I * 0.4 , 1.059453907 - 0.08179712295 * I
535 %! 0.2 + I * 0.6 , 1.16200643 - 0.1273503824 * I
536 %! 0.2 + I * 0.8 , 1.312066413 - 0.1789585449 * I
537 %! 0.2 + I * 1. , 1.516804331 - 0.2395555269 * I
538 %! 0.2 + I * 1.2 , 1.786613221 - 0.313189147 * I
539 %! 0.2 + I * 1.4 , 2.136422971 - 0.405890925 * I
540 %! 0.2 + I * 1.6 , 2.588021972 - 0.527357091 * I
541 %! 0.2 + I * 1.8 , 3.174302819 - 0.6944201617 * I
542 %! 0.2 + I * 2. , 3.947361147 - 0.9387994989 * I
543 %! 0.4 + I * 0. , 0.9211793498 + 0. * I
544 %! 0.4 + I * 0.2 , 0.9395019377 - 0.07822091534 * I
545 %! 0.4 + I * 0.4 , 0.9952345231 - 0.1598950363 * I
546 %! 0.4 + I * 0.6 , 1.090715991 - 0.2487465067 * I
547 %! 0.4 + I * 0.8 , 1.229998843 - 0.34910407 * I
548 %! 0.4 + I * 1. , 1.419103868 - 0.4663848201 * I
549 %! 0.4 + I * 1.2 , 1.666426377 - 0.607877235 * I
550 %! 0.4 + I * 1.4 , 1.983347336 - 0.7841054404 * I
551 %! 0.4 + I * 1.6 , 2.385101684 - 1.01134031 * I
552 %! 0.4 + I * 1.8 , 2.89185416 - 1.316448705 * I
553 %! 0.4 + I * 2. , 3.529393374 - 1.74670531 * I
554 %! 0.6 + I * 0. , 0.8258917445 + 0. * I
555 %! 0.6 + I * 0.2 , 0.842151698 - 0.1130337928 * I
556 %! 0.6 + I * 0.4 , 0.8915487431 - 0.2309124769 * I
557 %! 0.6 + I * 0.6 , 0.975948103 - 0.3588102098 * I
558 %! 0.6 + I * 0.8 , 1.098499209 - 0.5026234141 * I
559 %! 0.6 + I * 1. , 1.263676101 - 0.6695125973 * I
560 %! 0.6 + I * 1.2 , 1.477275851 - 0.8687285705 * I
561 %! 0.6 + I * 1.4 , 1.746262523 - 1.112955966 * I
562 %! 0.6 + I * 1.6 , 2.078179075 - 1.420581466 * I
563 %! 0.6 + I * 1.8 , 2.479425208 - 1.819580713 * I
564 %! 0.6 + I * 2. , 2.950586798 - 2.354077344 * I
565 %! 0.8 + I * 0. , 0.6982891589 + 0. * I
566 %! 0.8 + I * 0.2 , 0.71187169 - 0.1430549855 * I
567 %! 0.8 + I * 0.4 , 0.7530744458 - 0.2920273465 * I
568 %! 0.8 + I * 0.6 , 0.8232501212 - 0.4531616768 * I
569 %! 0.8 + I * 0.8 , 0.9245978896 - 0.6334016187 * I
570 %! 0.8 + I * 1. , 1.060030206 - 0.8408616109 * I
571 %! 0.8 + I * 1.2 , 1.232861756 - 1.085475913 * I
572 %! 0.8 + I * 1.4 , 1.446126965 - 1.379933558 * I
573 %! 0.8 + I * 1.6 , 1.701139468 - 1.741030588 * I
574 %! 0.8 + I * 1.8 , 1.994526268 - 2.191509596 * I
575 %! 0.8 + I * 2. , 2.312257188 - 2.762051518 * I
576 %! 1. + I * 0. , 0.5436738271 + 0. * I
577 %! 1. + I * 0.2 , 0.5541219664 - 0.1672121517 * I
578 %! 1. + I * 0.4 , 0.5857703552 - 0.3410940893 * I
579 %! 1. + I * 0.6 , 0.6395034233 - 0.5285979063 * I
580 %! 1. + I * 0.8 , 0.716688504 - 0.7372552987 * I
581 %! 1. + I * 1. , 0.8189576795 - 0.9755037374 * I
582 %! 1. + I * 1.2 , 0.9477661951 - 1.253049471 * I
583 %! 1. + I * 1.4 , 1.103540657 - 1.581252712 * I
584 %! 1. + I * 1.6 , 1.284098214 - 1.973449038 * I
585 %! 1. + I * 1.8 , 1.481835651 - 2.4449211 * I
586 %! 1. + I * 2. , 1.679032464 - 3.011729224 * I
587 %! ];
588 %! DN = [
589 %! -1. + I * 0. , 0.9895776106 + 0. * I
590 %! -1. + I * 0.2 , 0.9893361555 + 0.002756935338 * I
591 %! -1. + I * 0.4 , 0.9885716856 + 0.005949639805 * I
592 %! -1. + I * 0.6 , 0.9871564855 + 0.01008044183 * I
593 %! -1. + I * 0.8 , 0.9848512162 + 0.01579337596 * I
594 %! -1. + I * 1. , 0.9812582484 + 0.02396648455 * I
595 %! -1. + I * 1.2 , 0.9757399152 + 0.0358288294 * I
596 %! -1. + I * 1.4 , 0.9672786056 + 0.0531049859 * I
597 %! -1. + I * 1.6 , 0.954237868 + 0.0781744383 * I
598 %! -1. + I * 1.8 , 0.933957524 + 0.1141918269 * I
599 %! -1. + I * 2. , 0.9020917489 + 0.1650142936 * I
600 %! -0.8 + I * 0. , 0.992429635 + 0. * I
601 %! -0.8 + I * 0.2 , 0.9924147861 + 0.003020708044 * I
602 %! -0.8 + I * 0.4 , 0.99236555 + 0.00652359532 * I
603 %! -0.8 + I * 0.6 , 0.9922655715 + 0.0110676219 * I
604 %! -0.8 + I * 0.8 , 0.9920785856 + 0.01737733806 * I
605 %! -0.8 + I * 1. , 0.9917291795 + 0.02645738598 * I
606 %! -0.8 + I * 1.2 , 0.9910606387 + 0.03974949378 * I
607 %! -0.8 + I * 1.4 , 0.9897435004 + 0.05935252515 * I
608 %! -0.8 + I * 1.6 , 0.987077644 + 0.08832675281 * I
609 %! -0.8 + I * 1.8 , 0.9815667458 + 0.1310872821 * I
610 %! -0.8 + I * 2. , 0.970020127 + 0.1938136793 * I
611 %! -0.6 + I * 0. , 0.9953099088 + 0. * I
612 %! -0.6 + I * 0.2 , 0.995526009 + 0.002814772354 * I
613 %! -0.6 + I * 0.4 , 0.9962071136 + 0.006083312292 * I
614 %! -0.6 + I * 0.6 , 0.9974557125 + 0.01033463525 * I
615 %! -0.6 + I * 0.8 , 0.9994560563 + 0.01626207722 * I
616 %! -0.6 + I * 1. , 1.00249312 + 0.02484336286 * I
617 %! -0.6 + I * 1.2 , 1.006973922 + 0.0375167093 * I
618 %! -0.6 + I * 1.4 , 1.013436509 + 0.05645315628 * I
619 %! -0.6 + I * 1.6 , 1.022504295 + 0.08499262247 * I
620 %! -0.6 + I * 1.8 , 1.034670023 + 0.1283564595 * I
621 %! -0.6 + I * 2. , 1.049599899 + 0.194806122 * I
622 %! -0.4 + I * 0. , 0.9977686897 + 0. * I
623 %! -0.4 + I * 0.2 , 0.9981836165 + 0.002167241934 * I
624 %! -0.4 + I * 0.4 , 0.9994946045 + 0.004686808612 * I
625 %! -0.4 + I * 0.6 , 1.001910789 + 0.00797144174 * I
626 %! -0.4 + I * 0.8 , 1.005817375 + 0.01256717724 * I
627 %! -0.4 + I * 1. , 1.011836374 + 0.01925509038 * I
628 %! -0.4 + I * 1.2 , 1.020923572 + 0.02920828367 * I
629 %! -0.4 + I * 1.4 , 1.034513743 + 0.04425213602 * I
630 %! -0.4 + I * 1.6 , 1.054725746 + 0.06732276244 * I
631 %! -0.4 + I * 1.8 , 1.08462027 + 0.1033236812 * I
632 %! -0.4 + I * 2. , 1.128407402 + 0.1608240664 * I
633 %! -0.2 + I * 0. , 0.9994191176 + 0. * I
634 %! -0.2 + I * 0.2 , 0.9999683719 + 0.001177128019 * I
635 %! -0.2 + I * 0.4 , 1.001705496 + 0.00254669712 * I
636 %! -0.2 + I * 0.6 , 1.004913944 + 0.004334880912 * I
637 %! -0.2 + I * 0.8 , 1.010120575 + 0.006842775622 * I
638 %! -0.2 + I * 1. , 1.018189543 + 0.01050520136 * I
639 %! -0.2 + I * 1.2 , 1.030482479 + 0.01598431001 * I
640 %! -0.2 + I * 1.4 , 1.049126108 + 0.02433134655 * I
641 %! -0.2 + I * 1.6 , 1.077466003 + 0.0372877718 * I
642 %! -0.2 + I * 1.8 , 1.120863308 + 0.05789156398 * I
643 %! -0.2 + I * 2. , 1.188162088 + 0.09181238708 * I
644 %! 0. + I * 0. , 1. + 0. * I
645 %! 0. + I * 0.2 , 1.000596698 + 0. * I
646 %! 0. + I * 0.4 , 1.002484444 + 0. * I
647 %! 0. + I * 0.6 , 1.005973379 + 0. * I
648 %! 0. + I * 0.8 , 1.011641536 + 0. * I
649 %! 0. + I * 1. , 1.020441432 + 0. * I
650 %! 0. + I * 1.2 , 1.033885057 + 0. * I
651 %! 0. + I * 1.4 , 1.054361188 + 0. * I
652 %! 0. + I * 1.6 , 1.085694733 + 0. * I
653 %! 0. + I * 1.8 , 1.134186672 + 0. * I
654 %! 0. + I * 2. , 1.210701071 + 0. * I
655 %! 0.2 + I * 0. , 0.9994191176 + 0. * I
656 %! 0.2 + I * 0.2 , 0.9999683719 - 0.001177128019 * I
657 %! 0.2 + I * 0.4 , 1.001705496 - 0.00254669712 * I
658 %! 0.2 + I * 0.6 , 1.004913944 - 0.004334880912 * I
659 %! 0.2 + I * 0.8 , 1.010120575 - 0.006842775622 * I
660 %! 0.2 + I * 1. , 1.018189543 - 0.01050520136 * I
661 %! 0.2 + I * 1.2 , 1.030482479 - 0.01598431001 * I
662 %! 0.2 + I * 1.4 , 1.049126108 - 0.02433134655 * I
663 %! 0.2 + I * 1.6 , 1.077466003 - 0.0372877718 * I
664 %! 0.2 + I * 1.8 , 1.120863308 - 0.05789156398 * I
665 %! 0.2 + I * 2. , 1.188162088 - 0.09181238708 * I
666 %! 0.4 + I * 0. , 0.9977686897 + 0. * I
667 %! 0.4 + I * 0.2 , 0.9981836165 - 0.002167241934 * I
668 %! 0.4 + I * 0.4 , 0.9994946045 - 0.004686808612 * I
669 %! 0.4 + I * 0.6 , 1.001910789 - 0.00797144174 * I
670 %! 0.4 + I * 0.8 , 1.005817375 - 0.01256717724 * I
671 %! 0.4 + I * 1. , 1.011836374 - 0.01925509038 * I
672 %! 0.4 + I * 1.2 , 1.020923572 - 0.02920828367 * I
673 %! 0.4 + I * 1.4 , 1.034513743 - 0.04425213602 * I
674 %! 0.4 + I * 1.6 , 1.054725746 - 0.06732276244 * I
675 %! 0.4 + I * 1.8 , 1.08462027 - 0.1033236812 * I
676 %! 0.4 + I * 2. , 1.128407402 - 0.1608240664 * I
677 %! 0.6 + I * 0. , 0.9953099088 + 0. * I
678 %! 0.6 + I * 0.2 , 0.995526009 - 0.002814772354 * I
679 %! 0.6 + I * 0.4 , 0.9962071136 - 0.006083312292 * I
680 %! 0.6 + I * 0.6 , 0.9974557125 - 0.01033463525 * I
681 %! 0.6 + I * 0.8 , 0.9994560563 - 0.01626207722 * I
682 %! 0.6 + I * 1. , 1.00249312 - 0.02484336286 * I
683 %! 0.6 + I * 1.2 , 1.006973922 - 0.0375167093 * I
684 %! 0.6 + I * 1.4 , 1.013436509 - 0.05645315628 * I
685 %! 0.6 + I * 1.6 , 1.022504295 - 0.08499262247 * I
686 %! 0.6 + I * 1.8 , 1.034670023 - 0.1283564595 * I
687 %! 0.6 + I * 2. , 1.049599899 - 0.194806122 * I
688 %! 0.8 + I * 0. , 0.992429635 + 0. * I
689 %! 0.8 + I * 0.2 , 0.9924147861 - 0.003020708044 * I
690 %! 0.8 + I * 0.4 , 0.99236555 - 0.00652359532 * I
691 %! 0.8 + I * 0.6 , 0.9922655715 - 0.0110676219 * I
692 %! 0.8 + I * 0.8 , 0.9920785856 - 0.01737733806 * I
693 %! 0.8 + I * 1. , 0.9917291795 - 0.02645738598 * I
694 %! 0.8 + I * 1.2 , 0.9910606387 - 0.03974949378 * I
695 %! 0.8 + I * 1.4 , 0.9897435004 - 0.05935252515 * I
696 %! 0.8 + I * 1.6 , 0.987077644 - 0.08832675281 * I
697 %! 0.8 + I * 1.8 , 0.9815667458 - 0.1310872821 * I
698 %! 0.8 + I * 2. , 0.970020127 - 0.1938136793 * I
699 %! 1. + I * 0. , 0.9895776106 + 0. * I
700 %! 1. + I * 0.2 , 0.9893361555 - 0.002756935338 * I
701 %! 1. + I * 0.4 , 0.9885716856 - 0.005949639805 * I
702 %! 1. + I * 0.6 , 0.9871564855 - 0.01008044183 * I
703 %! 1. + I * 0.8 , 0.9848512162 - 0.01579337596 * I
704 %! 1. + I * 1. , 0.9812582484 - 0.02396648455 * I
705 %! 1. + I * 1.2 , 0.9757399152 - 0.0358288294 * I
706 %! 1. + I * 1.4 , 0.9672786056 - 0.0531049859 * I
707 %! 1. + I * 1.6 , 0.954237868 - 0.0781744383 * I
708 %! 1. + I * 1.8 , 0.933957524 - 0.1141918269 * I
709 %! 1. + I * 2. , 0.9020917489 - 0.1650142936 * I
710 %! ];
711 %! tol = 1e-9;
712 %! for x = 0:10
713 %! for y = 0:10
714 %! ur = -1 + x * 0.2;
715 %! ui = y * 0.2;
716 %! ii = 1 + y + x*11;
717 %! [sn, cn, dn] = ellipj (ur + I * ui, m);
718 %! assert (sn, SN(ii, 2), tol);
719 %! assert (cn, CN(ii, 2), tol);
720 %! assert (dn, DN(ii, 2), tol);
721 %! endfor
722 %! endfor
723 
724 ## tests taken from test_ellipj.m
725 %!test
726 %! u1 = pi/3; m1 = 0;
727 %! res1 = [sin(pi/3), cos(pi/3), 1];
728 %! [sn,cn,dn] = ellipj (u1,m1);
729 %! assert ([sn,cn,dn], res1, 10*eps);
730 
731 %!test
732 %! u2 = log(2); m2 = 1;
733 %! res2 = [ 3/5, 4/5, 4/5 ];
734 %! [sn,cn,dn] = ellipj (u2,m2);
735 %! assert ([sn,cn,dn], res2, 10*eps);
736 
737 %!test
738 %! u3 = log(2)*1i; m3 = 0;
739 %! res3 = [3i/4,5/4,1];
740 %! [sn,cn,dn] = ellipj (u3,m3);
741 %! assert ([sn,cn,dn], res3, 10*eps);
742 
743 %!test
744 %! u4 = -1; m4 = tan (pi/8)^4;
745 %! res4 = [-0.8392965923,0.5436738271,0.9895776106];
746 %! [sn,cn,dn] = ellipj (u4, m4);
747 %! assert ([sn,cn,dn], res4, 1e-10);
748 
749 %!test
750 %! u5 = -0.2 + 0.4i; m5 = tan(pi/8)^4;
751 %! res5 = [ -0.2152524522 + 0.402598347i, ...
752 %! 1.059453907 + 0.08179712295i, ...
753 %! 1.001705496 + 0.00254669712i ];
754 %! [sn,cn,dn] = ellipj (u5,m5);
755 %! assert ([sn,cn,dn], res5, 1e-9);
756 
757 %!test
758 %! u6 = 0.2 + 0.6i; m6 = tan(pi/8)^4;
759 %! res6 = [ 0.2369100139 + 0.624633635i, ...
760 %! 1.16200643 - 0.1273503824i, ...
761 %! 1.004913944 - 0.004334880912i ];
762 %! [sn,cn,dn] = ellipj (u6,m6);
763 %! assert ([sn,cn,dn], res6, 1e-8);
764 
765 %!test
766 %! u7 = 0.8 + 0.8i; m7 = tan (pi/8)^4;
767 %! res7 = [0.9588386397 + 0.6107824358i, ...
768 %! 0.9245978896 - 0.6334016187i, ...
769 %! 0.9920785856 - 0.01737733806i ];
770 %! [sn,cn,dn] = ellipj (u7,m7);
771 %! assert ([sn,cn,dn], res7, 1e-10);
772 
773 %!test
774 %! u = [0,pi/6,pi/4,pi/2]; m=0;
775 %! res = [0,1/2,1/sqrt(2),1;1,cos(pi/6),1/sqrt(2),0;1,1,1,1];
776 %! [sn,cn,dn] = ellipj (u,m);
777 %! assert ([sn;cn;dn], res, 100*eps);
778 %! [sn,cn,dn] = ellipj (u',0);
779 %! assert ([sn,cn,dn], res', 100*eps);
780 
781 ## FIXME: need to check [real,complex]x[scalar,rowvec,colvec,matrix]x[u,m]
782 
783 ## One test for u column vector x m row vector
784 %!test
785 %! u = [0,pi/6,pi/4,pi/2]'; m = [0 0 0 0];
786 %! res = [0,1/2,1/sqrt(2),1;1,cos(pi/6),1/sqrt(2),0;1,1,1,1]';
787 %! [sn,cn,dn] = ellipj (u,m);
788 %! assert (sn, repmat (res(:,1), [1,4]), 100*eps);
789 %! assert (cn, repmat (res(:,2), [1,4]), 100*eps);
790 %! assert (dn, repmat (res(:,3), [1,4]), 100*eps);
791 
792 %!test
793 %! ## Test Jacobi elliptic functions
794 %! ## against "exact" solution from Mathematica 3.0
795 %! ## David Billinghurst <David.Billinghurst@riotinto.com>
796 %! ## 1 February 2001
797 %! u = [ 0.25; 0.25; 0.20; 0.20; 0.672; 0.5];
798 %! m = [ 0.0; 1.0; 0.19; 0.81; 0.36; 0.9999999999];
799 %! S = [ sin(0.25);
800 %! tanh(0.25);
801 %! 0.19842311013970879516;
802 %! 0.19762082367187648571;
803 %! 0.6095196917919021945;
804 %! 0.4621171572617320908 ];
805 %! C = [ cos(0.25);
806 %! sech(0.25);
807 %! 0.9801164570409401062;
808 %! 0.9802785369736752032;
809 %! 0.7927709286533560550;
810 %! 0.8868188839691764094 ];
811 %! D = [ 1.0;
812 %! sech(0.25);
813 %! 0.9962526643271134302;
814 %! 0.9840560289645665155;
815 %! 0.9307281387786906491;
816 %! 0.8868188839812167635 ];
817 %! [sn,cn,dn] = ellipj (u,m);
818 %! assert (sn, S, 8*eps);
819 %! assert (cn, C, 8*eps);
820 %! assert (dn, D, 8*eps);
821 
822 %!test <*43344>
823 %! ## Test continuity of dn when cn is near zero
824 %! m = 0.5;
825 %! u = ellipke (0.5);
826 %! x = [-1e-3, -1e-12, 0, 1e-12, 1e-3];
827 %! [~, ~, dn] = ellipj (u + x, m);
828 %! D = 1/sqrt (2) * ones (size (x));
829 %! assert (dn, D, 1e-6);
830 
831 %!error ellipj ()
832 %!error ellipj (1)
833 %!error ellipj (1,2,3,4)
834 %!warning <required value 0 <= M <= 1> ellipj (1,2);
835 ## FIXME: errors commented out until lasterr() truly returns the last error.
836 %!#error <M must be a scalar or matrix> ellipj (1, "1")
837 %!#error <U must be a scalar or matrix> ellipj ("1", 1)
838 %!#error <U must be a scalar or matrix> ellipj ({1}, 1)
839 %!#error <U must be a scalar or matrix> ellipj ({1, 2}, 1)
840 %!#error <M must be a scalar or matrix> ellipj (1, {1, 2})
841 %!#error <U must be a scalar or matrix> ellipj ("1", [1, 2])
842 %!#error <U must be a scalar or matrix> ellipj ({1}, [1, 2])
843 %!#error <U must be a scalar or matrix> ellipj ({1}, [1, 2])
844 %!#error <U must be a scalar or matrix> ellipj ("1,2", [1, 2])
845 %!#error <U must be a scalar or matrix> ellipj ({1, 2}, [1, 2])
846 %!error <Invalid size combination for U and M> ellipj ([1:4], [1:3])
847 %!error <Invalid size combination for U and M> ellipj (complex (1:4,1:4), [1:3])
848 
849 */
octave_idx_type numel(void) const
Number of elements in the array.
Definition: Array.h:377
const T * data(void) const
Size of the specified dimension.
Definition: Array.h:581
const dim_vector & dims(void) const
Return a const-reference so that dims ()(i) works efficiently.
Definition: Array.h:453
const T * fortran_vec(void) const
Size of the specified dimension.
Definition: Array.h:583
Vector representing the dimensions (size) of an Array.
Definition: dim-vector.h:95
octave_idx_type ndims(void) const
Number of dimensions.
Definition: dim-vector.h:334
bool isreal(void) const
Definition: ov.h:691
bool is_scalar_type(void) const
Definition: ov.h:697
Complex xcomplex_value(const char *fmt,...) const
double xdouble_value(const char *fmt,...) const
ComplexNDArray xcomplex_array_value(const char *fmt,...) const
NDArray xarray_value(const char *fmt,...) const
OCTINTERP_API void print_usage(void)
Definition: defun.cc:53
#define DEFUN(name, args_name, nargout_name, doc)
Macro to define a builtin function.
Definition: defun.h:56
void error(const char *fmt,...)
Definition: error.cc:968
T octave_idx_type m
Definition: mx-inlines.cc:773
void ellipj(double u, double m, double &sn, double &cn, double &dn, double &err)
Definition: lo-specfun.cc:1536
std::complex< double > Complex
Definition: oct-cmplx.h:33
octave_value_list ovl(const OV_Args &... args)
Construct an octave_value_list with less typing.
Definition: ovl.h:211