GNU Octave  3.8.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
op-sm-cs.cc
Go to the documentation of this file.
1 /*
2 
3 Copyright (C) 2004-2013 David Bateman
4 Copyright (C) 1998-2004 Andy Adler
5 
6 This file is part of Octave.
7 
8 Octave is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
12 
13 Octave is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with Octave; see the file COPYING. If not, see
20 <http://www.gnu.org/licenses/>.
21 
22 */
23 
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27 
28 #include "gripes.h"
29 #include "oct-obj.h"
30 #include "ov.h"
31 #include "ov-typeinfo.h"
32 #include "ov-complex.h"
33 #include "ops.h"
34 #include "xpow.h"
35 
36 #include "sparse-xpow.h"
37 #include "sparse-xdiv.h"
38 #include "ov-re-sparse.h"
39 #include "ov-cx-sparse.h"
40 #include "smx-sm-cs.h"
41 #include "smx-cs-sm.h"
42 
43 // sparse matrix by scalar ops.
44 
45 DEFBINOP_OP (add, sparse_matrix, complex, +)
46 DEFBINOP_OP (sub, sparse_matrix, complex, -)
47 DEFBINOP_OP (mul, sparse_matrix, complex, *)
48 
49 DEFBINOP (div, sparse_matrix, complex)
50 {
52 
54  octave_value retval;
55 
56  if (d == 0.0)
58 
59  retval = octave_value (v1.sparse_matrix_value () / d);
60 
61  return retval;
62 }
63 
64 DEFBINOP (pow, sparse_matrix, complex)
65 {
67  return xpow (v1.matrix_value (), v2.complex_value ());
68 }
69 
70 DEFBINOP (ldiv, sparse_matrix, complex)
71 {
73 
74  if (v1.rows () == 1 && v1.columns () == 1)
75  {
76  double d = v1.scalar_value ();
77 
78  if (d == 0.0)
80 
81  return octave_value (SparseComplexMatrix (1, 1, v2.complex_value () / d));
82  }
83  else
84  {
85  MatrixType typ = v1.matrix_type ();
88  ComplexMatrix ret = xleftdiv (m1, m2, typ);
89  v1.matrix_type (typ);
90  return ret;
91  }
92 }
93 
94 DEFBINOP_FN (lt, sparse_matrix, complex, mx_el_lt)
95 DEFBINOP_FN (le, sparse_matrix, complex, mx_el_le)
96 DEFBINOP_FN (eq, sparse_matrix, complex, mx_el_eq)
97 DEFBINOP_FN (ge, sparse_matrix, complex, mx_el_ge)
98 DEFBINOP_FN (gt, sparse_matrix, complex, mx_el_gt)
99 DEFBINOP_FN (ne, sparse_matrix, complex, mx_el_ne)
100 
101 DEFBINOP_OP (el_mul, sparse_matrix, complex, *)
102 
103 DEFBINOP (el_div, sparse_matrix, complex)
104 {
106 
107  Complex d = v2.complex_value ();
108  octave_value retval;
109 
110  if (d == 0.0)
112 
113  retval = octave_value (v1.sparse_matrix_value () / d);
114 
115  return retval;
116 }
117 
118 DEFBINOP_FN (el_pow, sparse_matrix, complex, elem_xpow)
119 
120 DEFBINOP (el_ldiv, sparse_matrix, complex)
121 {
123 
125  v1.sparse_matrix_value ()));
126 }
127 
128 DEFBINOP_FN (el_and, sparse_matrix, complex, mx_el_and)
129 DEFBINOP_FN (el_or, sparse_matrix, complex, mx_el_or)
130 
131 DEFCATOP (sm_cs, sparse_matrix, complex)
132 {
134  SparseComplexMatrix tmp (1, 1, v2.complex_value ());
135  return octave_value (v1.sparse_matrix_value (). concat (tmp, ra_idx));
136 }
137 
138 void
140 {
147 
160 
162 
165 }