GNU Octave  3.8.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
op-cs-sm.cc
Go to the documentation of this file.
1 /*
2 
3 Copyright (C) 2004-2013 David Bateman
4 Copyright (C) 1998-2004 Andy Adler
5 
6 This file is part of Octave.
7 
8 Octave is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
12 
13 Octave is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with Octave; see the file COPYING. If not, see
20 <http://www.gnu.org/licenses/>.
21 
22 */
23 
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27 
28 #include "gripes.h"
29 #include "oct-obj.h"
30 #include "ov.h"
31 #include "ov-typeinfo.h"
32 #include "ov-complex.h"
33 #include "ops.h"
34 #include "xpow.h"
35 
36 #include "sparse-xpow.h"
37 #include "sparse-xdiv.h"
38 #include "ov-re-sparse.h"
39 #include "ov-cx-sparse.h"
40 #include "smx-cs-sm.h"
41 #include "smx-sm-cs.h"
42 
43 // complex by sparse matrix ops.
44 
45 DEFBINOP_OP (add, complex, sparse_matrix, +)
46 DEFBINOP_OP (sub, complex, sparse_matrix, -)
47 DEFBINOP_OP (mul, complex, sparse_matrix, *)
48 
49 DEFBINOP (div, complex, sparse_matrix)
50 {
52 
53  if (v2.rows () == 1 && v2.columns () == 1)
54  {
55  double d = v2.scalar_value ();
56 
57  if (d == 0.0)
59 
60  return octave_value (SparseComplexMatrix (1, 1, v1.complex_value () / d));
61  }
62  else
63  {
64  MatrixType typ = v2.matrix_type ();
67  ComplexMatrix ret = xdiv (m1, m2, typ);
68  v2.matrix_type (typ);
69  return ret;
70  }
71 }
72 
73 DEFBINOP (pow, complex, sparse_matrix)
74 {
76  return xpow (v1.complex_value (), v2.matrix_value ());
77 }
78 
79 DEFBINOP (ldiv, complex, sparse_matrix)
80 {
82 
84  octave_value retval;
85 
86  if (d == 0.0)
88 
89  retval = octave_value (v2.sparse_matrix_value () / d);
90 
91  return retval;
92 }
93 
94 DEFBINOP_FN (lt, complex, sparse_matrix, mx_el_lt)
95 DEFBINOP_FN (le, complex, sparse_matrix, mx_el_le)
96 DEFBINOP_FN (eq, complex, sparse_matrix, mx_el_eq)
97 DEFBINOP_FN (ge, complex, sparse_matrix, mx_el_ge)
98 DEFBINOP_FN (gt, complex, sparse_matrix, mx_el_gt)
99 DEFBINOP_FN (ne, complex, sparse_matrix, mx_el_ne)
100 
101 DEFBINOP_OP (el_mul, complex, sparse_matrix, *)
102 DEFBINOP_FN (el_div, complex, sparse_matrix, x_el_div)
103 DEFBINOP_FN (el_pow, complex, sparse_matrix, elem_xpow)
104 
105 DEFBINOP (el_ldiv, complex, sparse_matrix)
106 {
108 
109  Complex d = v1.complex_value ();
110  octave_value retval;
111 
112  if (d == 0.0)
114 
115  retval = octave_value (v2.sparse_matrix_value () / d);
116 
117  return retval;
118 }
119 
120 DEFBINOP_FN (el_and, complex, sparse_matrix, mx_el_and)
121 DEFBINOP_FN (el_or, complex, sparse_matrix, mx_el_or)
122 
123 DEFCATOP (cs_sm, sparse_matrix, complex)
124 {
126  SparseComplexMatrix tmp (1, 1, v1.complex_value ());
127  return octave_value (tmp. concat (v2.sparse_matrix_value (), ra_idx));
128 }
129 
130 DEFCONV (sparse_matrix_conv, complex, sparse_matrix)
131 {
132  CAST_CONV_ARG (const octave_complex&);
133 
134  return new octave_sparse_matrix
135  (SparseMatrix (v.matrix_value ()));
136 }
137 
138 void
140 {
159 
161 
164 
165  INSTALL_WIDENOP (octave_complex, octave_sparse_matrix, sparse_matrix_conv);
166 }