GNU Octave  3.8.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
op-m-cs.cc
Go to the documentation of this file.
1 /*
2 
3 Copyright (C) 1996-2013 John W. Eaton
4 
5 This file is part of Octave.
6 
7 Octave is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3 of the License, or (at your
10 option) any later version.
11 
12 Octave is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with Octave; see the file COPYING. If not, see
19 <http://www.gnu.org/licenses/>.
20 
21 */
22 
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26 
27 #include "mx-m-cs.h"
28 #include "mx-cs-m.h"
29 #include "mx-nda-cs.h"
30 #include "mx-cs-nda.h"
31 
32 #include "gripes.h"
33 #include "oct-obj.h"
34 #include "ov.h"
35 #include "ov-re-mat.h"
36 #include "ov-flt-re-mat.h"
37 #include "ov-cx-mat.h"
38 #include "ov-flt-cx-mat.h"
39 #include "ov-complex.h"
40 #include "ov-typeinfo.h"
41 #include "ops.h"
42 #include "xdiv.h"
43 #include "xpow.h"
44 
45 // matrix by complex scalar ops.
46 
47 DEFNDBINOP_OP (add, matrix, complex, array, complex, +)
48 DEFNDBINOP_OP (sub, matrix, complex, array, complex, -)
49 DEFNDBINOP_OP (mul, matrix, complex, array, complex, *)
50 
51 DEFBINOP (div, matrix, complex)
52 {
54 
56 
57  if (d == 0.0)
59 
60  return octave_value (v1.array_value () / d);
61 }
62 
63 DEFBINOP_FN (pow, matrix, complex, xpow)
64 
65 DEFBINOP (ldiv, matrix, complex)
66 {
68 
69  Matrix m1 = v1.matrix_value ();
71  MatrixType typ = v1.matrix_type ();
72 
73  ComplexMatrix ret = xleftdiv (m1, m2, typ);
74 
75  v1.matrix_type (typ);
76  return ret;
77 }
78 
79 DEFNDCMPLXCMPOP_FN (lt, matrix, complex, array, complex, mx_el_lt)
80 DEFNDCMPLXCMPOP_FN (le, matrix, complex, array, complex, mx_el_le)
81 DEFNDCMPLXCMPOP_FN (eq, matrix, complex, array, complex, mx_el_eq)
82 DEFNDCMPLXCMPOP_FN (ge, matrix, complex, array, complex, mx_el_ge)
83 DEFNDCMPLXCMPOP_FN (gt, matrix, complex, array, complex, mx_el_gt)
84 DEFNDCMPLXCMPOP_FN (ne, matrix, complex, array, complex, mx_el_ne)
85 
86 DEFNDBINOP_OP (el_mul, matrix, complex, array, complex, *)
87 
88 DEFBINOP (el_div, matrix, complex)
89 {
91 
93 
94  if (d == 0.0)
96 
97  return octave_value (v1.array_value () / d);
98 }
99 
100 DEFNDBINOP_FN (el_pow, matrix, complex, array, complex, elem_xpow)
101 
102 DEFBINOP (el_ldiv, matrix, complex)
103 {
105 
106  return x_el_div (v2.complex_value (), v1.array_value ());
107 }
108 
109 DEFNDBINOP_FN (el_and, matrix, complex, array, complex, mx_el_and)
110 DEFNDBINOP_FN (el_or, matrix, complex, array, complex, mx_el_or)
111 
112 DEFNDCATOP_FN (m_cs, matrix, complex, array, complex_array, concat)
113 
114 void
116 {
135 
137 
141 }