GNU Octave  3.8.0
A high-level interpreted language, primarily intended for numerical computations, mostly compatible with Matlab
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
conv2.cc
Go to the documentation of this file.
1 /*
2 
3 Copyright (C) 1999-2013 Andy Adler
4 Copyright (C) 2010 VZLU Prague
5 
6 This file is part of Octave.
7 
8 Octave is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
12 
13 Octave is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with Octave; see the file COPYING. If not, see
20 <http://www.gnu.org/licenses/>.
21 
22 */
23 
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27 
28 #include "oct-convn.h"
29 
30 #include "defun.h"
31 #include "error.h"
32 #include "oct-obj.h"
33 #include "utils.h"
34 
36 
37 DEFUN (conv2, args, ,
38  "-*- texinfo -*-\n\
39 @deftypefn {Built-in Function} {} conv2 (@var{A}, @var{B})\n\
40 @deftypefnx {Built-in Function} {} conv2 (@var{v1}, @var{v2}, @var{m})\n\
41 @deftypefnx {Built-in Function} {} conv2 (@dots{}, @var{shape})\n\
42 Return the 2-D convolution of @var{A} and @var{B}. The size of the result\n\
43 is determined by the optional @var{shape} argument which takes the following\n\
44 values\n\
45 \n\
46 @table @asis\n\
47 @item @var{shape} = @qcode{\"full\"}\n\
48 Return the full convolution. (default)\n\
49 \n\
50 @item @var{shape} = @qcode{\"same\"}\n\
51 Return the central part of the convolution with the same size as @var{A}.\n\
52 The central part of the convolution begins at the indices\n\
53 @code{floor ([size(@var{B})/2] + 1)}.\n\
54 \n\
55 @item @var{shape} = @qcode{\"valid\"}\n\
56 Return only the parts which do not include zero-padded edges.\n\
57 The size of the result is @code{max (size (A) - size (B) + 1, 0)}.\n\
58 @end table\n\
59 \n\
60 When the third argument is a matrix, return the convolution of the matrix\n\
61 @var{m} by the vector @var{v1} in the column direction and by the vector\n\
62 @var{v2} in the row direction.\n\
63 @seealso{conv, convn}\n\
64 @end deftypefn")
65 {
66  octave_value retval;
67  octave_value tmp;
68  int nargin = args.length ();
69  std::string shape = "full"; // default
70  bool separable = false;
71  convn_type ct;
72 
73  if (nargin < 2)
74  {
75  print_usage ();
76  return retval;
77  }
78  else if (nargin == 3)
79  {
80  if (args(2).is_string ())
81  shape = args(2).string_value ();
82  else
83  separable = true;
84  }
85  else if (nargin >= 4)
86  {
87  separable = true;
88  shape = args(3).string_value ();
89  }
90 
91  if (args(0).ndims () > 2 || args(1).ndims () > 2)
92  {
93  error ("conv2: A and B must be 1-D vectors or 2-D matrices");
94  return retval;
95  }
96 
97  if (shape == "full")
98  ct = convn_full;
99  else if (shape == "same")
100  ct = convn_same;
101  else if (shape == "valid")
102  ct = convn_valid;
103  else
104  {
105  error ("conv2: SHAPE type not valid");
106  print_usage ();
107  return retval;
108  }
109 
110  if (separable)
111  {
112  // If user requests separable, check first two params are vectors
113 
114  if (! (1 == args(0).rows () || 1 == args(0).columns ())
115  || ! (1 == args(1).rows () || 1 == args(1).columns ()))
116  {
117  print_usage ();
118  return retval;
119  }
120 
121  if (args(0).is_single_type () || args(1).is_single_type ()
122  || args(2).is_single_type ())
123  {
124  if (args(0).is_complex_type () || args(1).is_complex_type ()
125  || args(2).is_complex_type ())
126  {
127  FloatComplexMatrix a (args(2).float_complex_matrix_value ());
128  if (args(1).is_real_type () && args(2).is_real_type ())
129  {
130  FloatColumnVector v1 (args(0).float_vector_value ());
131  FloatRowVector v2 (args(1).float_vector_value ());
132  retval = convn (a, v1, v2, ct);
133  }
134  else
135  {
136  FloatComplexColumnVector v1 (args(0).float_complex_vector_value ());
137  FloatComplexRowVector v2 (args(1).float_complex_vector_value ());
138  retval = convn (a, v1, v2, ct);
139  }
140  }
141  else
142  {
143  FloatColumnVector v1 (args(0).float_vector_value ());
144  FloatRowVector v2 (args(1).float_vector_value ());
145  FloatMatrix a (args(2).float_matrix_value ());
146  retval = convn (a, v1, v2, ct);
147  }
148  }
149  else
150  {
151  if (args(0).is_complex_type () || args(1).is_complex_type ()
152  || args(2).is_complex_type ())
153  {
154  ComplexMatrix a (args(2).complex_matrix_value ());
155  if (args(1).is_real_type () && args(2).is_real_type ())
156  {
157  ColumnVector v1 (args(0).vector_value ());
158  RowVector v2 (args(1).vector_value ());
159  retval = convn (a, v1, v2, ct);
160  }
161  else
162  {
163  ComplexColumnVector v1 (args(0).complex_vector_value ());
164  ComplexRowVector v2 (args(1).complex_vector_value ());
165  retval = convn (a, v1, v2, ct);
166  }
167  }
168  else
169  {
170  ColumnVector v1 (args(0).vector_value ());
171  RowVector v2 (args(1).vector_value ());
172  Matrix a (args(2).matrix_value ());
173  retval = convn (a, v1, v2, ct);
174  }
175  }
176  } // if (separable)
177  else
178  {
179  if (args(0).is_single_type () || args(1).is_single_type ())
180  {
181  if (args(0).is_complex_type () || args(1).is_complex_type ())
182  {
183  FloatComplexMatrix a (args(0).float_complex_matrix_value ());
184  if (args(1).is_real_type ())
185  {
186  FloatMatrix b (args(1).float_matrix_value ());
187  retval = convn (a, b, ct);
188  }
189  else
190  {
191  FloatComplexMatrix b (args(1).float_complex_matrix_value ());
192  retval = convn (a, b, ct);
193  }
194  }
195  else
196  {
197  FloatMatrix a (args(0).float_matrix_value ());
198  FloatMatrix b (args(1).float_matrix_value ());
199  retval = convn (a, b, ct);
200  }
201  }
202  else
203  {
204  if (args(0).is_complex_type () || args(1).is_complex_type ())
205  {
206  ComplexMatrix a (args(0).complex_matrix_value ());
207  if (args(1).is_real_type ())
208  {
209  Matrix b (args(1).matrix_value ());
210  retval = convn (a, b, ct);
211  }
212  else
213  {
214  ComplexMatrix b (args(1).complex_matrix_value ());
215  retval = convn (a, b, ct);
216  }
217  }
218  else
219  {
220  Matrix a (args(0).matrix_value ());
221  Matrix b (args(1).matrix_value ());
222  retval = convn (a, b, ct);
223  }
224  }
225 
226  } // if (separable)
227 
228  return retval;
229 }
230 
231 /*
232 %!test
233 %! c = [0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18];
234 %! assert (conv2 ([0,1;1,2], [1,2,3;4,5,6;7,8,9]), c);
235 
236 %!test
237 %! c = single ([0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]);
238 %! assert (conv2 (single ([0,1;1,2]), single ([1,2,3;4,5,6;7,8,9])), c);
239 
240 %!test
241 %! c = [1,4,4;5,18,16;14,48,40;19,62,48;15,48,36];
242 %! assert (conv2 (1:3, 1:2, [1,2;3,4;5,6]), c);
243 
244 %!assert (conv2 (1:3, 1:2, [1,2;3,4;5,6], "full"),
245 %! conv2 (1:3, 1:2, [1,2;3,4;5,6]));
246 
247 %% Test shapes
248 %!shared A, B, C
249 %! A = rand (3, 4);
250 %! B = rand (4);
251 %! C = conv2 (A, B);
252 %!assert (conv2 (A,B, "full"), C)
253 %!assert (conv2 (A,B, "same"), C(3:5,3:6))
254 %!assert (conv2 (A,B, "valid"), zeros (0, 1))
255 %!assert (size (conv2 (B,A, "valid")), [2 1])
256 
257 %!test
258 %! B = rand (5);
259 %! C = conv2 (A, B);
260 %!assert (conv2 (A,B, "full"), C)
261 %!assert (conv2 (A,B, "same"), C(3:5,3:6))
262 %!assert (conv2 (A,B, "valid"), zeros (0, 0))
263 %!assert (size (conv2 (B,A, "valid")), [3 2])
264 
265 %% Clear shared variables so they are not reported for tests below
266 %!shared
267 
268 %% Test cases from Bug #34893
269 %!assert (conv2 ([1:5;1:5], [1:2], "same"), [4 7 10 13 10; 4 7 10 13 10])
270 %!assert (conv2 ([1:5;1:5]', [1:2]', "same"), [4 7 10 13 10; 4 7 10 13 10]')
271 %!assert (conv2 ([1:5;1:5], [1:2], "valid"), [4 7 10 13; 4 7 10 13])
272 %!assert (conv2 ([1:5;1:5]', [1:2]', "valid"), [4 7 10 13; 4 7 10 13]')
273 
274 %!test
275 %! rand ("seed", 42);
276 %! x = rand (100);
277 %! y = ones (5);
278 %! A = conv2 (x, y)(5:end-4,5:end-4);
279 %! B = conv2 (x, y, "valid");
280 %! assert (B, A); # Yes, this test is for *exact* equivalence.
281 
282 
283 %% Test input validation
284 %!error conv2 ()
285 %!error conv2 (1)
286 %!error <must be 1-D vectors or 2-D matrices> conv2 (ones (2), ones (2,2,2))
287 %!error <SHAPE type not valid> conv2 (1,2, "NOT_A_SHAPE")
288 %% Test alternate calling form which should be 2 vectors and a matrix
289 %!error conv2 (ones (2), 1, 1)
290 %!error conv2 (1, ones (2), 1)
291 */
292 
293 DEFUN (convn, args, ,
294  "-*- texinfo -*-\n\
295 @deftypefn {Built-in Function} {@var{C} =} convn (@var{A}, @var{B})\n\
296 @deftypefnx {Built-in Function} {@var{C} =} convn (@var{A}, @var{B}, @var{shape})\n\
297 Return the n-D convolution of @var{A} and @var{B}. The size of the result\n\
298 is determined by the optional @var{shape} argument which takes the following\n\
299 values\n\
300 \n\
301 @table @asis\n\
302 @item @var{shape} = @qcode{\"full\"}\n\
303 Return the full convolution. (default)\n\
304 \n\
305 @item @var{shape} = @qcode{\"same\"}\n\
306 Return central part of the convolution with the same size as @var{A}.\n\
307 The central part of the convolution begins at the indices\n\
308 @code{floor ([size(@var{B})/2] + 1)}.\n\
309 \n\
310 @item @var{shape} = @qcode{\"valid\"}\n\
311 Return only the parts which do not include zero-padded edges.\n\
312 The size of the result is @code{max (size (A) - size (B) + 1, 0)}.\n\
313 @end table\n\
314 \n\
315 @seealso{conv2, conv}\n\
316 @end deftypefn")
317 {
318  octave_value retval;
319  octave_value tmp;
320  int nargin = args.length ();
321  std::string shape = "full"; // default
322  convn_type ct;
323 
324  if (nargin < 2 || nargin > 3)
325  {
326  print_usage ();
327  return retval;
328  }
329  else if (nargin == 3)
330  {
331  if (args(2).is_string ())
332  shape = args(2).string_value ();
333  else
334  {
335  error ("convn: SHAPE must be a string");
336  return retval;
337  }
338  }
339 
340  if (shape == "full")
341  ct = convn_full;
342  else if (shape == "same")
343  ct = convn_same;
344  else if (shape == "valid")
345  ct = convn_valid;
346  else
347  {
348  error ("convn: SHAPE type not valid");
349  print_usage ();
350  return retval;
351  }
352 
353  if (args(0).is_single_type () || args(1).is_single_type ())
354  {
355  if (args(0).is_complex_type () || args(1).is_complex_type ())
356  {
357  FloatComplexNDArray a (args(0).float_complex_array_value ());
358  if (args(1).is_real_type ())
359  {
360  FloatNDArray b (args(1).float_array_value ());
361  retval = convn (a, b, ct);
362  }
363  else
364  {
365  FloatComplexNDArray b (args(1).float_complex_array_value ());
366  retval = convn (a, b, ct);
367  }
368  }
369  else
370  {
371  FloatNDArray a (args(0).float_array_value ());
372  FloatNDArray b (args(1).float_array_value ());
373  retval = convn (a, b, ct);
374  }
375  }
376  else
377  {
378  if (args(0).is_complex_type () || args(1).is_complex_type ())
379  {
380  ComplexNDArray a (args(0).complex_array_value ());
381  if (args(1).is_real_type ())
382  {
383  NDArray b (args(1).array_value ());
384  retval = convn (a, b, ct);
385  }
386  else
387  {
388  ComplexNDArray b (args(1).complex_array_value ());
389  retval = convn (a, b, ct);
390  }
391  }
392  else
393  {
394  NDArray a (args(0).array_value ());
395  NDArray b (args(1).array_value ());
396  retval = convn (a, b, ct);
397  }
398  }
399 
400  return retval;
401 }
402 
403 /*
404 ## Check for bug #39314
405 %!test
406 %! v = reshape ([1 2], [1 1 2]);
407 %! assert (convn (v, v), reshape ([1 4 4], [1 1 3]));
408 %! assert (convn (v, v, "same"), reshape ([4 4], [1 1 2]));
409 %! assert (convn (v, v, "valid"), 4);
410 
411 ## The following test may look weird since we are using the output
412 ## of convn to test itself. However, because calculations are done
413 ## differently based on the shape option, it will help to catch some
414 ## bugs. See also bug #39314.
415 ## FIXME: The "valid" option uses an entirely different code path
416 ## through C++ and Fortran to calculate inner convolution.
417 ## The terms in the convolution added in reverse order compared
418 ## to the "full" option. This produces differences on the order
419 ## of tens of eps. This should be fixed, but in the meantime
420 ## the tests will be marked as xtests.
421 %!shared a, b, c
422 %! ## test 3D by 3D
423 %! a = rand (10, 10, 10);
424 %! b = rand (3, 3, 3);
425 %! c = convn (a, b, "full");
426 %!assert (convn (a, b, "same"), c(2:11,2:11,2:11))
427 %!xtest
428 %! assert (convn (a, b, "valid"), c(3:10,3:10,3:10));
429 %!
430 %!test
431 %! ## test 3D by 2D
432 %! a = rand (10, 10, 10);
433 %! b = rand (3, 3);
434 %! c = convn (a, b, "full");
435 %!assert (convn (a, b, "same"), c(2:11,2:11,:))
436 %!xtest
437 %! assert (convn (a, b, "valid"), c(3:10,3:10,:))
438 %!
439 %!test
440 %! ## test 2D by 3D
441 %! a = rand (10, 10);
442 %! b = rand (3, 3, 3);
443 %! c = convn (a, b, "full");
444 %!assert (convn (a, b, "same"), c(2:11,2:11,2))
445 %!assert (convn (a, b, "valid"), c(3:10,3:10,3:2)) # a 7x7x0 matrix
446 %!
447 %!test
448 %! ## test multiple different number of dimensions, with odd and even numbers
449 %! a = rand (10, 15, 7, 8, 10);
450 %! b = rand (4, 3, 2, 3);
451 %! c = convn (a, b, "full");
452 %!assert (convn (a, b, "same"), c(3:12,2:16,2:8,2:9,:))
453 %!xtest
454 %! assert (convn (a, b, "valid"), c(4:10,3:15,2:7,3:8,:))
455 
456 %!test
457 %! a = reshape (floor (magic (16) /10), [4 8 4 2]);
458 %! b = reshape (magic (6), [4 3 3]);
459 %! c = zeros (7, 10, 6, 2);
460 %! c(:,:,1,1) = [
461 %! 875 1415 1215 741 288 264 635 1109 687 171
462 %! 110 467 1551 1790 1891 1651 1165 900 659 568
463 %! 883 1047 1475 1964 2181 2302 2117 1674 579 234
464 %! 940 2330 3099 2573 2306 2207 2442 2918 2272 1004
465 %! 161 500 1564 2066 2355 2270 2099 1621 1144 831
466 %! 644 622 886 1121 1652 1967 1907 1668 529 228
467 %! 160 752 1232 768 360 284 668 1132 1380 864];
468 %! c(:,:,2,1) = [
469 %! 150 1174 1903 1971 2030 1719 1467 1420 1220 472
470 %! 986 2243 2603 2385 2308 2530 2971 3181 2266 768
471 %! 914 2443 3750 3782 3976 3821 3723 3709 2599 1178
472 %! 1922 3374 5198 5472 5563 5853 5794 5543 3578 1820
473 %! 1060 2471 3846 3724 3682 3803 3812 3927 2876 1390
474 %! 470 2078 3283 3225 2701 2265 2165 2261 2324 1124
475 %! 700 1130 1486 1515 1830 2097 2081 2028 1009 348];
476 %! c(:,:,3,1) = [
477 %! 1350 2127 2461 2082 1694 1909 2230 2621 1681 683
478 %! 877 2473 4362 4556 4543 4314 3879 3703 2863 1497
479 %! 1934 4219 5874 6117 5966 6051 5984 5714 3891 1562
480 %! 1927 5997 8573 8456 8517 8025 7957 8101 6121 2500
481 %! 1558 3533 5595 6064 6453 6491 6275 5743 3794 1832
482 %! 1950 2762 3455 3423 4019 4578 4807 4857 2304 907
483 %! 525 1860 2731 2392 1872 1724 1961 2312 2315 1141];
484 %! c(:,:,4,1) = [
485 %! 150 1317 2230 2621 2996 2767 2472 2049 1514 583
486 %! 1429 3056 3879 3703 3756 3964 4394 4570 3111 1250
487 %! 1833 4037 5984 5714 5846 5788 5883 6129 4157 2011
488 %! 3143 5469 7957 8101 8063 8475 8564 8439 5306 2538
489 %! 2001 4514 6275 5743 5391 5389 5578 6110 4473 1953
490 %! 817 3196 4807 4857 4229 3659 3477 3375 3208 1400
491 %! 750 1365 1961 2312 2840 2993 2722 2344 1092 323];
492 %! c(:,:,5,1) = [
493 %! 475 734 1296 1352 1400 1595 1557 1517 960 490
494 %! 751 1977 2831 2746 2607 2665 2733 2833 2186 912
495 %! 1065 3142 4344 4150 3768 3734 3876 4086 3366 1327
496 %! 976 3712 5530 5921 6158 5802 5481 5071 3821 1491
497 %! 1397 2996 3971 4003 4088 4180 4199 4146 2649 985
498 %! 1273 2121 2555 2247 2378 2624 2908 3229 1788 705
499 %! 365 1108 1530 1652 1550 1407 1274 1127 889 264];
500 %! c(:,:,6,1) = [
501 %! 0 133 345 683 982 1058 960 623 310 100
502 %! 437 806 1313 1332 1383 1391 1397 1370 864 495
503 %! 928 1573 2201 1928 1864 1932 2183 2445 1557 855
504 %! 1199 2083 2739 2573 2507 2656 2786 2928 1795 736
505 %! 912 1997 2404 2028 1692 1591 1803 2159 1603 599
506 %! 345 1092 1526 1666 1593 1437 1275 1116 863 253
507 %! 50 235 510 811 998 894 615 318 77 0];
508 %! c(:,:,1,2) = [
509 %! 840 1350 1176 697 293 320 674 1153 717 180
510 %! 142 490 1563 1824 1929 1604 1132 857 624 587
511 %! 890 1084 1539 1979 2238 2333 2072 1610 509 202
512 %! 966 2263 3034 2518 2250 2235 2512 2992 2305 1016
513 %! 200 561 1607 2107 2361 2277 2030 1548 1102 818
514 %! 652 631 922 1128 1670 1997 1895 1665 467 197
515 %! 160 744 1192 692 292 256 708 1208 1448 900];
516 %! c(:,:,2,2) = [
517 %! 179 1199 1886 1987 1997 1716 1479 1383 1215 485
518 %! 988 2213 2552 2358 2304 2615 3011 3210 2246 744
519 %! 921 2483 3747 3768 3960 3835 3712 3698 2588 1183
520 %! 1903 3416 5254 5490 5572 5826 5761 5505 3502 1814
521 %! 1064 2507 3825 3666 3680 3748 3821 3958 2892 1395
522 %! 495 2129 3277 3228 2566 2216 2154 2250 2390 1154
523 %! 700 1105 1472 1524 1856 2113 2059 2019 975 325];
524 %! c(:,:,3,2) = [
525 %! 1302 2104 2439 2006 1723 1931 2280 2685 1678 690
526 %! 877 2507 4408 4580 4523 4233 3852 3647 2850 1516
527 %! 1949 4238 5895 6143 6018 6063 5930 5656 3847 1538
528 %! 1953 5975 8547 8433 8407 8060 7955 8069 6170 2506
529 %! 1621 3536 5624 6117 6459 6456 6180 5666 3735 1815
530 %! 1904 2751 3429 3366 4122 4622 4840 4864 2242 882
531 %! 517 1843 2674 2337 1777 1686 2005 2367 2385 1175];
532 %! c(:,:,4,2) = [
533 %! 198 1346 2280 2685 2980 2759 2396 1982 1497 576
534 %! 1413 2994 3852 3647 3756 4035 4418 4595 3109 1231
535 %! 1873 4025 5930 5656 5792 5772 5909 6152 4185 2035
536 %! 3110 5510 7955 8069 8139 8456 8541 8439 5276 2541
537 %! 1964 4462 6180 5666 5315 5409 5631 6178 4536 1998
538 %! 869 3215 4840 4864 4121 3579 3420 3386 3271 1430
539 %! 725 1361 2005 2367 2925 3006 2667 2297 1054 325];
540 %! c(:,:,5,2) = [
541 %! 462 754 1285 1359 1441 1605 1556 1488 938 488
542 %! 729 1967 2788 2732 2608 2683 2744 2830 2195 912
543 %! 1052 3139 4302 4101 3742 3730 3895 4103 3403 1335
544 %! 1007 3725 5577 5964 6165 5754 5407 5006 3846 1507
545 %! 1375 2969 3951 3990 4144 4183 4200 4150 2661 998
546 %! 1258 2090 2495 2188 2403 2664 2954 3279 1814 723
547 %! 388 1127 1551 1673 1525 1390 1253 1139 912 275];
548 %! c(:,:,6,2) = [
549 %! 19 147 384 716 1016 1059 927 570 276 80
550 %! 441 791 1298 1320 1401 1396 1409 1367 865 500
551 %! 932 1537 2155 1870 1860 1946 2221 2487 1584 874
552 %! 1201 2067 2705 2538 2512 2687 2806 2971 1812 756
553 %! 925 1976 2363 1971 1636 1600 1844 2239 1664 626
554 %! 372 1133 1558 1687 1570 1401 1243 1122 883 264
555 %! 60 270 556 857 1024 870 569 282 66 0];
556 %!assert (convn(a, b, "full"), c)
557 %!assert (convn(a, b, "same"), c(3:6,2:9,2:5,:))
558 %!assert (convn(a, b, "valid"), c(4,3:8,3:4,:))
559 
560 ## test correct class
561 %!assert (class (convn (rand(5), rand(3))), "double")
562 %!assert (class (convn (rand(5, "single"), rand(3))), "single")
563 %!assert (class (convn (rand(5), rand(3, "single"))), "single")
564 %!assert (class (convn (true (5), rand(3))), "double")
565 %!assert (class (convn (true (5), rand(3, "single"))), "single")
566 %!assert (class (convn (ones(5, "uint8"), rand(3))), "double")
567 %!assert (class (convn (rand (3, "single"), ones(5, "uint8"))), "single")
568 
569 %!error convn ()
570 %!error convn (1)
571 %!error <SHAPE type not valid> convn (1,2, "NOT_A_SHAPE")
572 %!error convn (rand (3), 1, 1)
573 */