00001 SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR) 00002 C***BEGIN PROLOGUE ZBESI 00003 C***DATE WRITTEN 830501 (YYMMDD) 00004 C***REVISION DATE 890801 (YYMMDD) 00005 C***CATEGORY NO. B5K 00006 C***KEYWORDS I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION, 00007 C MODIFIED BESSEL FUNCTION OF THE FIRST KIND 00008 C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES 00009 C***PURPOSE TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT 00010 C***DESCRIPTION 00011 C 00012 C ***A DOUBLE PRECISION ROUTINE*** 00013 C ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX 00014 C BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE 00015 C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE 00016 C -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED 00017 C FUNCTIONS 00018 C 00019 C CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z) J = 1,...,N , X=REAL(Z) 00020 C 00021 C WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND 00022 C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION 00023 C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS 00024 C (REF. 1). 00025 C 00026 C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION 00027 C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI 00028 C FNU - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0 00029 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION 00030 C KODE= 1 RETURNS 00031 C CY(J)=I(FNU+J-1,Z), J=1,...,N 00032 C = 2 RETURNS 00033 C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N 00034 C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1 00035 C 00036 C OUTPUT CYR,CYI ARE DOUBLE PRECISION 00037 C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS 00038 C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE 00039 C CY(J)=I(FNU+J-1,Z) OR 00040 C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)) J=1,...,N 00041 C DEPENDING ON KODE, X=REAL(Z) 00042 C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW, 00043 C NZ= 0 , NORMAL RETURN 00044 C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO 00045 C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0) 00046 C J = N-NZ+1,...,N 00047 C IERR - ERROR FLAG 00048 C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED 00049 C IERR=1, INPUT ERROR - NO COMPUTATION 00050 C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z) TOO 00051 C LARGE ON KODE=1 00052 C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE 00053 C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT 00054 C REDUCTION PRODUCE LESS THAN HALF OF MACHINE 00055 C ACCURACY 00056 C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA- 00057 C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI- 00058 C CANCE BY ARGUMENT REDUCTION 00059 C IERR=5, ERROR - NO COMPUTATION, 00060 C ALGORITHM TERMINATION CONDITION NOT MET 00061 C 00062 C***LONG DESCRIPTION 00063 C 00064 C THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR 00065 C SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z), 00066 C THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A 00067 C NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE 00068 C UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z) 00069 C FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE 00070 C SEQUENCES OR REDUCE ORDERS WHEN NECESSARY. 00071 C 00072 C THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND 00073 C CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA 00074 C 00075 C I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z) REAL(Z).GT.0.0 00076 C M = +I OR -I, I**2=-1 00077 C 00078 C FOR NEGATIVE ORDERS,THE FORMULA 00079 C 00080 C I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z) 00081 C 00082 C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE 00083 C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE 00084 C INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE 00085 C NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER, 00086 C K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF 00087 C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY 00088 C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN 00089 C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE, 00090 C LARGE MEANS FNU.GT.CABS(Z). 00091 C 00092 C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- 00093 C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS 00094 C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. 00095 C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN 00096 C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG 00097 C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS 00098 C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. 00099 C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS 00100 C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS 00101 C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE 00102 C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS 00103 C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3 00104 C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION 00105 C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION 00106 C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN 00107 C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT 00108 C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS 00109 C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC. 00110 C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES. 00111 C 00112 C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX 00113 C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT 00114 C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- 00115 C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE 00116 C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), 00117 C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF 00118 C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY 00119 C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN 00120 C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY 00121 C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER 00122 C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, 00123 C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS 00124 C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER 00125 C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY 00126 C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER 00127 C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE 00128 C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, 00129 C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, 00130 C OR -PI/2+P. 00131 C 00132 C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ 00133 C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF 00134 C COMMERCE, 1955. 00135 C 00136 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT 00137 C BY D. E. AMOS, SAND83-0083, MAY, 1983. 00138 C 00139 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT 00140 C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 00141 C 00142 C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX 00143 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- 00144 C 1018, MAY, 1985 00145 C 00146 C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX 00147 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. 00148 C MATH. SOFTWARE, 1986 00149 C 00150 C***ROUTINES CALLED ZBINU,I1MACH,D1MACH 00151 C***END PROLOGUE ZBESI 00152 C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN 00153 DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI, 00154 * CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, 00155 * ZR, D1MACH, AZ, BB, FN, XZABS, ASCLE, RTOL, ATOL, STI 00156 INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH 00157 DIMENSION CYR(N), CYI(N) 00158 DATA PI /3.14159265358979324D0/ 00159 DATA CONER, CONEI /1.0D0,0.0D0/ 00160 C 00161 C***FIRST EXECUTABLE STATEMENT ZBESI 00162 IERR = 0 00163 NZ=0 00164 IF (FNU.LT.0.0D0) IERR=1 00165 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 00166 IF (N.LT.1) IERR=1 00167 IF (IERR.NE.0) RETURN 00168 C----------------------------------------------------------------------- 00169 C SET PARAMETERS RELATED TO MACHINE CONSTANTS. 00170 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. 00171 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. 00172 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND 00173 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR 00174 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. 00175 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. 00176 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). 00177 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU. 00178 C----------------------------------------------------------------------- 00179 TOL = DMAX1(D1MACH(4),1.0D-18) 00180 K1 = I1MACH(15) 00181 K2 = I1MACH(16) 00182 R1M5 = D1MACH(5) 00183 K = MIN0(IABS(K1),IABS(K2)) 00184 ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0) 00185 K1 = I1MACH(14) - 1 00186 AA = R1M5*DBLE(FLOAT(K1)) 00187 DIG = DMIN1(AA,18.0D0) 00188 AA = AA*2.303D0 00189 ALIM = ELIM + DMAX1(-AA,-41.45D0) 00190 RL = 1.2D0*DIG + 3.0D0 00191 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0) 00192 C----------------------------------------------------------------------------- 00193 C TEST FOR PROPER RANGE 00194 C----------------------------------------------------------------------- 00195 AZ = XZABS(ZR,ZI) 00196 FN = FNU+DBLE(FLOAT(N-1)) 00197 AA = 0.5D0/TOL 00198 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 00199 AA = DMIN1(AA,BB) 00200 IF (AZ.GT.AA) GO TO 260 00201 IF (FN.GT.AA) GO TO 260 00202 AA = DSQRT(AA) 00203 IF (AZ.GT.AA) IERR=3 00204 IF (FN.GT.AA) IERR=3 00205 ZNR = ZR 00206 ZNI = ZI 00207 CSGNR = CONER 00208 CSGNI = CONEI 00209 IF (ZR.GE.0.0D0) GO TO 40 00210 ZNR = -ZR 00211 ZNI = -ZI 00212 C----------------------------------------------------------------------- 00213 C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE 00214 C WHEN FNU IS LARGE 00215 C----------------------------------------------------------------------- 00216 INU = INT(SNGL(FNU)) 00217 ARG = (FNU-DBLE(FLOAT(INU)))*PI 00218 IF (ZI.LT.0.0D0) ARG = -ARG 00219 CSGNR = DCOS(ARG) 00220 CSGNI = DSIN(ARG) 00221 IF (MOD(INU,2).EQ.0) GO TO 40 00222 CSGNR = -CSGNR 00223 CSGNI = -CSGNI 00224 40 CONTINUE 00225 CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL, 00226 * ELIM, ALIM) 00227 IF (NZ.LT.0) GO TO 120 00228 IF (ZR.GE.0.0D0) RETURN 00229 C----------------------------------------------------------------------- 00230 C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE 00231 C----------------------------------------------------------------------- 00232 NN = N - NZ 00233 IF (NN.EQ.0) RETURN 00234 RTOL = 1.0D0/TOL 00235 ASCLE = D1MACH(1)*RTOL*1.0D+3 00236 DO 50 I=1,NN 00237 C STR = CYR(I)*CSGNR - CYI(I)*CSGNI 00238 C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR 00239 C CYR(I) = STR 00240 AA = CYR(I) 00241 BB = CYI(I) 00242 ATOL = 1.0D0 00243 IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55 00244 AA = AA*RTOL 00245 BB = BB*RTOL 00246 ATOL = TOL 00247 55 CONTINUE 00248 STR = AA*CSGNR - BB*CSGNI 00249 STI = AA*CSGNI + BB*CSGNR 00250 CYR(I) = STR*ATOL 00251 CYI(I) = STI*ATOL 00252 CSGNR = -CSGNR 00253 CSGNI = -CSGNI 00254 50 CONTINUE 00255 RETURN 00256 120 CONTINUE 00257 IF(NZ.EQ.(-2)) GO TO 130 00258 NZ = 0 00259 IERR=2 00260 RETURN 00261 130 CONTINUE 00262 NZ=0 00263 IERR=5 00264 RETURN 00265 260 CONTINUE 00266 NZ=0 00267 IERR=4 00268 RETURN 00269 END