cbesi.f

Go to the documentation of this file.
00001       SUBROUTINE CBESI(Z, FNU, KODE, N, CY, NZ, IERR)
00002 C***BEGIN PROLOGUE  CBESI
00003 C***DATE WRITTEN   830501   (YYMMDD)
00004 C***REVISION DATE  890801   (YYMMDD)
00005 C***CATEGORY NO.  B5K
00006 C***KEYWORDS  I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
00007 C             MODIFIED BESSEL FUNCTION OF THE FIRST KIND
00008 C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
00009 C***PURPOSE  TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00010 C***DESCRIPTION
00011 C
00012 C         ON KODE=1, CBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
00013 C         BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
00014 C         ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
00015 C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESI RETURNS THE SCALED
00016 C         FUNCTIONS
00017 C
00018 C         CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z)   J = 1,...,N , X=REAL(Z)
00019 C
00020 C         WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
00021 C         RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
00022 C         NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
00023 C         FUNCTIONS (REF.1)
00024 C
00025 C         INPUT
00026 C           Z      - Z=CMPLX(X,Y),  -PI.LT.ARG(Z).LE.PI
00027 C           FNU    - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0E0
00028 C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
00029 C                    KODE= 1  RETURNS
00030 C                             CY(J)=I(FNU+J-1,Z), J=1,...,N
00031 C                        = 2  RETURNS
00032 C                             CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
00033 C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
00034 C
00035 C         OUTPUT
00036 C           CY     - A COMPLEX VECTOR WHOSE FIRST N COMPONENTS CONTAIN
00037 C                    VALUES FOR THE SEQUENCE
00038 C                    CY(J)=I(FNU+J-1,Z)  OR
00039 C                    CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X))  J=1,...,N
00040 C                    DEPENDING ON KODE, X=REAL(Z)
00041 C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
00042 C                    NZ= 0   , NORMAL RETURN
00043 C                    NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
00044 C                              DUE TO UNDERFLOW, CY(J)=CMPLX(0.0,0.0),
00045 C                              J = N-NZ+1,...,N
00046 C           IERR   - ERROR FLAG
00047 C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
00048 C                    IERR=1, INPUT ERROR   - NO COMPUTATION
00049 C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z) TOO
00050 C                            LARGE ON KODE=1
00051 C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
00052 C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
00053 C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
00054 C                            ACCURACY
00055 C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
00056 C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
00057 C                            CANCE BY ARGUMENT REDUCTION
00058 C                    IERR=5, ERROR              - NO COMPUTATION,
00059 C                            ALGORITHM TERMINATION CONDITION NOT MET
00060 C
00061 C***LONG DESCRIPTION
00062 C
00063 C         THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
00064 C         SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
00065 C         THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
00066 C         NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
00067 C         UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
00068 C         FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
00069 C         SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
00070 C
00071 C         THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
00072 C         CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
00073 C
00074 C         I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z)  REAL(Z).GT.0.0
00075 C                       M = +I OR -I,  I**2=-1
00076 C
00077 C         FOR NEGATIVE ORDERS,THE FORMULA
00078 C
00079 C              I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
00080 C
00081 C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
00082 C         THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
00083 C         INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
00084 C         NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
00085 C         K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
00086 C         TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
00087 C         UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
00088 C         OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
00089 C         LARGE MEANS FNU.GT.CABS(Z).
00090 C
00091 C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
00092 C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
00093 C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
00094 C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
00095 C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
00096 C         IERR=3 IS TRIGGERED WHERE UR=R1MACH(4)=UNIT ROUNDOFF. ALSO
00097 C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
00098 C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
00099 C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
00100 C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
00101 C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
00102 C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
00103 C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
00104 C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
00105 C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
00106 C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
00107 C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
00108 C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
00109 C
00110 C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
00111 C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
00112 C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
00113 C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
00114 C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
00115 C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
00116 C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
00117 C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
00118 C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
00119 C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
00120 C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
00121 C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
00122 C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
00123 C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
00124 C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
00125 C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
00126 C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
00127 C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
00128 C         OR -PI/2+P.
00129 C
00130 C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
00131 C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
00132 C                 COMMERCE, 1955.
00133 C
00134 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00135 C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
00136 C
00137 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00138 C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
00139 C
00140 C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00141 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
00142 C                 1018, MAY, 1985
00143 C
00144 C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00145 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
00146 C                 MATH. SOFTWARE, 1986
00147 C
00148 C***ROUTINES CALLED  CBINU,I1MACH,R1MACH
00149 C***END PROLOGUE  CBESI
00150       COMPLEX CONE, CSGN, CY, Z, ZN
00151       REAL AA, ALIM, ARG, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, S1, S2,
00152      * TOL, XX, YY, R1MACH, AZ, FN, BB, ASCLE, RTOL, ATOL
00153       INTEGER I, IERR, INU, K, KODE, K1, K2, N, NN, NZ, I1MACH
00154       DIMENSION CY(N)
00155       DATA PI /3.14159265358979324E0/
00156       DATA CONE / (1.0E0,0.0E0) /
00157 C
00158 C***FIRST EXECUTABLE STATEMENT  CBESI
00159       IERR = 0
00160       NZ=0
00161       IF (FNU.LT.0.0E0) IERR=1
00162       IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
00163       IF (N.LT.1) IERR=1
00164       IF (IERR.NE.0) RETURN
00165       XX = REAL(Z)
00166       YY = AIMAG(Z)
00167 C-----------------------------------------------------------------------
00168 C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
00169 C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
00170 C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
00171 C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
00172 C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
00173 C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
00174 C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
00175 C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
00176 C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
00177 C-----------------------------------------------------------------------
00178       TOL = AMAX1(R1MACH(4),1.0E-18)
00179       K1 = I1MACH(12)
00180       K2 = I1MACH(13)
00181       R1M5 = R1MACH(5)
00182       K = MIN0(IABS(K1),IABS(K2))
00183       ELIM = 2.303E0*(FLOAT(K)*R1M5-3.0E0)
00184       K1 = I1MACH(11) - 1
00185       AA = R1M5*FLOAT(K1)
00186       DIG = AMIN1(AA,18.0E0)
00187       AA = AA*2.303E0
00188       ALIM = ELIM + AMAX1(-AA,-41.45E0)
00189       RL = 1.2E0*DIG + 3.0E0
00190       FNUL = 10.0E0 + 6.0E0*(DIG-3.0E0)
00191       AZ = CABS(Z)
00192 C-----------------------------------------------------------------------
00193 C     TEST FOR RANGE
00194 C-----------------------------------------------------------------------
00195       AA = 0.5E0/TOL
00196       BB=FLOAT(I1MACH(9))*0.5E0
00197       AA=AMIN1(AA,BB)
00198       IF(AZ.GT.AA) GO TO 140
00199       FN=FNU+FLOAT(N-1)
00200       IF(FN.GT.AA) GO TO 140
00201       AA=SQRT(AA)
00202       IF(AZ.GT.AA) IERR=3
00203       IF(FN.GT.AA) IERR=3
00204       ZN = Z
00205       CSGN = CONE
00206       IF (XX.GE.0.0E0) GO TO 40
00207       ZN = -Z
00208 C-----------------------------------------------------------------------
00209 C     CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
00210 C     WHEN FNU IS LARGE
00211 C-----------------------------------------------------------------------
00212       INU = INT(FNU)
00213       ARG = (FNU-FLOAT(INU))*PI
00214       IF (YY.LT.0.0E0) ARG = -ARG
00215       S1 = COS(ARG)
00216       S2 = SIN(ARG)
00217       CSGN = CMPLX(S1,S2)
00218       IF (MOD(INU,2).EQ.1) CSGN = -CSGN
00219    40 CONTINUE
00220       CALL CBINU(ZN, FNU, KODE, N, CY, NZ, RL, FNUL, TOL, ELIM, ALIM)
00221       IF (NZ.LT.0) GO TO 120
00222       IF (XX.GE.0.0E0) RETURN
00223 C-----------------------------------------------------------------------
00224 C     ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
00225 C-----------------------------------------------------------------------
00226       NN = N - NZ
00227       IF (NN.EQ.0) RETURN
00228       RTOL = 1.0E0/TOL
00229       ASCLE = R1MACH(1)*RTOL*1.0E+3
00230       DO 50 I=1,NN
00231 C       CY(I) = CY(I)*CSGN
00232         ZN=CY(I)
00233         AA=REAL(ZN)
00234         BB=AIMAG(ZN)
00235         ATOL=1.0E0
00236         IF (AMAX1(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 55
00237           ZN = ZN*CMPLX(RTOL,0.0E0)
00238           ATOL = TOL
00239    55   CONTINUE
00240         ZN = ZN*CSGN
00241         CY(I) = ZN*CMPLX(ATOL,0.0E0)
00242         CSGN = -CSGN
00243    50 CONTINUE
00244       RETURN
00245   120 CONTINUE
00246       IF(NZ.EQ.(-2)) GO TO 130
00247       NZ = 0
00248       IERR=2
00249       RETURN
00250   130 CONTINUE
00251       NZ=0
00252       IERR=5
00253       RETURN
00254   140 CONTINUE
00255       NZ=0
00256       IERR=4
00257       RETURN
00258       END
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines