zbiry.f

Go to the documentation of this file.
00001       SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
00002 C***BEGIN PROLOGUE  ZBIRY
00003 C***DATE WRITTEN   830501   (YYMMDD)
00004 C***REVISION DATE  890801   (YYMMDD)
00005 C***CATEGORY NO.  B5K
00006 C***KEYWORDS  AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
00007 C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
00008 C***PURPOSE  TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
00009 C***DESCRIPTION
00010 C
00011 C                      ***A DOUBLE PRECISION ROUTINE***
00012 C         ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
00013 C         ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
00014 C         KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
00015 C         DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
00016 C         BOTH THE LEFT AND RIGHT HALF PLANES WHERE
00017 C         ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
00018 C         DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
00019 C         MATHEMATICAL FUNCTIONS (REF. 1).
00020 C
00021 C         INPUT      ZR,ZI ARE DOUBLE PRECISION
00022 C           ZR,ZI  - Z=CMPLX(ZR,ZI)
00023 C           ID     - ORDER OF DERIVATIVE, ID=0 OR ID=1
00024 C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
00025 C                    KODE= 1  RETURNS
00026 C                             BI=BI(Z)                 ON ID=0 OR
00027 C                             BI=DBI(Z)/DZ             ON ID=1
00028 C                        = 2  RETURNS
00029 C                             BI=CEXP(-AXZTA)*BI(Z)     ON ID=0 OR
00030 C                             BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
00031 C                             ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
00032 C                             AND AXZTA=ABS(XZTA)
00033 C
00034 C         OUTPUT     BIR,BII ARE DOUBLE PRECISION
00035 C           BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
00036 C                    KODE
00037 C           IERR   - ERROR FLAG
00038 C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
00039 C                    IERR=1, INPUT ERROR   - NO COMPUTATION
00040 C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z)
00041 C                            TOO LARGE ON KODE=1
00042 C                    IERR=3, CABS(Z) LARGE      - COMPUTATION COMPLETED
00043 C                            LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
00044 C                            PRODUCE LESS THAN HALF OF MACHINE ACCURACY
00045 C                    IERR=4, CABS(Z) TOO LARGE  - NO COMPUTATION
00046 C                            COMPLETE LOSS OF ACCURACY BY ARGUMENT
00047 C                            REDUCTION
00048 C                    IERR=5, ERROR              - NO COMPUTATION,
00049 C                            ALGORITHM TERMINATION CONDITION NOT MET
00050 C
00051 C***LONG DESCRIPTION
00052 C
00053 C         BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
00054 C         FUNCTIONS BY
00055 C
00056 C                BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
00057 C               DBI(Z)=C *  Z  * ( I(-2/3,ZTA) + I(2/3,ZTA) )
00058 C                               C=1.0/SQRT(3.0)
00059 C                             ZTA=(2/3)*Z**(3/2)
00060 C
00061 C         WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
00062 C
00063 C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
00064 C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
00065 C         OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
00066 C         THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
00067 C         THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
00068 C         FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
00069 C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
00070 C         ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
00071 C         ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
00072 C         FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
00073 C         LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
00074 C         MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
00075 C         AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
00076 C         PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
00077 C         PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
00078 C         ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
00079 C         NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
00080 C         DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
00081 C         EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
00082 C         NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
00083 C         PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
00084 C         MACHINES.
00085 C
00086 C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
00087 C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
00088 C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
00089 C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
00090 C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
00091 C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
00092 C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
00093 C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
00094 C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
00095 C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
00096 C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
00097 C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
00098 C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
00099 C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
00100 C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
00101 C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
00102 C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
00103 C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
00104 C         OR -PI/2+P.
00105 C
00106 C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
00107 C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
00108 C                 COMMERCE, 1955.
00109 C
00110 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00111 C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
00112 C
00113 C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00114 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
00115 C                 1018, MAY, 1985
00116 C
00117 C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00118 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
00119 C                 MATH. SOFTWARE, 1986
00120 C
00121 C***ROUTINES CALLED  ZBINU,XZABS,ZDIV,XZSQRT,D1MACH,I1MACH
00122 C***END PROLOGUE  ZBIRY
00123 C     COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
00124       DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
00125      * BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
00126      * DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
00127      * SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
00128      * TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, XZABS
00129       INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
00130       DIMENSION CYR(2), CYI(2)
00131       DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
00132      * 6.14926627446000736D-01,4.48288357353826359D-01,
00133      * 5.77350269189625765D-01,3.14159265358979324D+00/
00134       DATA CONER, CONEI /1.0D0,0.0D0/
00135 C***FIRST EXECUTABLE STATEMENT  ZBIRY
00136       IERR = 0
00137       NZ=0
00138       IF (ID.LT.0 .OR. ID.GT.1) IERR=1
00139       IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
00140       IF (IERR.NE.0) RETURN
00141       AZ = XZABS(ZR,ZI)
00142       TOL = DMAX1(D1MACH(4),1.0D-18)
00143       FID = DBLE(FLOAT(ID))
00144       IF (AZ.GT.1.0E0) GO TO 70
00145 C-----------------------------------------------------------------------
00146 C     POWER SERIES FOR CABS(Z).LE.1.
00147 C-----------------------------------------------------------------------
00148       S1R = CONER
00149       S1I = CONEI
00150       S2R = CONER
00151       S2I = CONEI
00152       IF (AZ.LT.TOL) GO TO 130
00153       AA = AZ*AZ
00154       IF (AA.LT.TOL/AZ) GO TO 40
00155       TRM1R = CONER
00156       TRM1I = CONEI
00157       TRM2R = CONER
00158       TRM2I = CONEI
00159       ATRM = 1.0D0
00160       STR = ZR*ZR - ZI*ZI
00161       STI = ZR*ZI + ZI*ZR
00162       Z3R = STR*ZR - STI*ZI
00163       Z3I = STR*ZI + STI*ZR
00164       AZ3 = AZ*AA
00165       AK = 2.0D0 + FID
00166       BK = 3.0D0 - FID - FID
00167       CK = 4.0D0 - FID
00168       DK = 3.0D0 + FID + FID
00169       D1 = AK*DK
00170       D2 = BK*CK
00171       AD = DMIN1(D1,D2)
00172       AK = 24.0D0 + 9.0D0*FID
00173       BK = 30.0D0 - 9.0D0*FID
00174       DO 30 K=1,25
00175         STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
00176         TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
00177         TRM1R = STR
00178         S1R = S1R + TRM1R
00179         S1I = S1I + TRM1I
00180         STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
00181         TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
00182         TRM2R = STR
00183         S2R = S2R + TRM2R
00184         S2I = S2I + TRM2I
00185         ATRM = ATRM*AZ3/AD
00186         D1 = D1 + AK
00187         D2 = D2 + BK
00188         AD = DMIN1(D1,D2)
00189         IF (ATRM.LT.TOL*AD) GO TO 40
00190         AK = AK + 18.0D0
00191         BK = BK + 18.0D0
00192    30 CONTINUE
00193    40 CONTINUE
00194       IF (ID.EQ.1) GO TO 50
00195       BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
00196       BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
00197       IF (KODE.EQ.1) RETURN
00198       CALL XZSQRT(ZR, ZI, STR, STI)
00199       ZTAR = TTH*(ZR*STR-ZI*STI)
00200       ZTAI = TTH*(ZR*STI+ZI*STR)
00201       AA = ZTAR
00202       AA = -DABS(AA)
00203       EAA = DEXP(AA)
00204       BIR = BIR*EAA
00205       BII = BII*EAA
00206       RETURN
00207    50 CONTINUE
00208       BIR = S2R*C2
00209       BII = S2I*C2
00210       IF (AZ.LE.TOL) GO TO 60
00211       CC = C1/(1.0D0+FID)
00212       STR = S1R*ZR - S1I*ZI
00213       STI = S1R*ZI + S1I*ZR
00214       BIR = BIR + CC*(STR*ZR-STI*ZI)
00215       BII = BII + CC*(STR*ZI+STI*ZR)
00216    60 CONTINUE
00217       IF (KODE.EQ.1) RETURN
00218       CALL XZSQRT(ZR, ZI, STR, STI)
00219       ZTAR = TTH*(ZR*STR-ZI*STI)
00220       ZTAI = TTH*(ZR*STI+ZI*STR)
00221       AA = ZTAR
00222       AA = -DABS(AA)
00223       EAA = DEXP(AA)
00224       BIR = BIR*EAA
00225       BII = BII*EAA
00226       RETURN
00227 C-----------------------------------------------------------------------
00228 C     CASE FOR CABS(Z).GT.1.0
00229 C-----------------------------------------------------------------------
00230    70 CONTINUE
00231       FNU = (1.0D0+FID)/3.0D0
00232 C-----------------------------------------------------------------------
00233 C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
00234 C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
00235 C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
00236 C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
00237 C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
00238 C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
00239 C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
00240 C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
00241 C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
00242 C-----------------------------------------------------------------------
00243       K1 = I1MACH(15)
00244       K2 = I1MACH(16)
00245       R1M5 = D1MACH(5)
00246       K = MIN0(IABS(K1),IABS(K2))
00247       ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
00248       K1 = I1MACH(14) - 1
00249       AA = R1M5*DBLE(FLOAT(K1))
00250       DIG = DMIN1(AA,18.0D0)
00251       AA = AA*2.303D0
00252       ALIM = ELIM + DMAX1(-AA,-41.45D0)
00253       RL = 1.2D0*DIG + 3.0D0
00254       FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
00255 C-----------------------------------------------------------------------
00256 C     TEST FOR RANGE
00257 C-----------------------------------------------------------------------
00258       AA=0.5D0/TOL
00259       BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
00260       AA=DMIN1(AA,BB)
00261       AA=AA**TTH
00262       IF (AZ.GT.AA) GO TO 260
00263       AA=DSQRT(AA)
00264       IF (AZ.GT.AA) IERR=3
00265       CALL XZSQRT(ZR, ZI, CSQR, CSQI)
00266       ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
00267       ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
00268 C-----------------------------------------------------------------------
00269 C     RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
00270 C-----------------------------------------------------------------------
00271       SFAC = 1.0D0
00272       AK = ZTAI
00273       IF (ZR.GE.0.0D0) GO TO 80
00274       BK = ZTAR
00275       CK = -DABS(BK)
00276       ZTAR = CK
00277       ZTAI = AK
00278    80 CONTINUE
00279       IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
00280       ZTAR = 0.0D0
00281       ZTAI = AK
00282    90 CONTINUE
00283       AA = ZTAR
00284       IF (KODE.EQ.2) GO TO 100
00285 C-----------------------------------------------------------------------
00286 C     OVERFLOW TEST
00287 C-----------------------------------------------------------------------
00288       BB = DABS(AA)
00289       IF (BB.LT.ALIM) GO TO 100
00290       BB = BB + 0.25D0*DLOG(AZ)
00291       SFAC = TOL
00292       IF (BB.GT.ELIM) GO TO 190
00293   100 CONTINUE
00294       FMR = 0.0D0
00295       IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
00296       FMR = PI
00297       IF (ZI.LT.0.0D0) FMR = -PI
00298       ZTAR = -ZTAR
00299       ZTAI = -ZTAI
00300   110 CONTINUE
00301 C-----------------------------------------------------------------------
00302 C     AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
00303 C     KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
00304 C-----------------------------------------------------------------------
00305       CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
00306      * ELIM, ALIM)
00307       IF (NZ.LT.0) GO TO 200
00308       AA = FMR*FNU
00309       Z3R = SFAC
00310       STR = DCOS(AA)
00311       STI = DSIN(AA)
00312       S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
00313       S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
00314       FNU = (2.0D0-FID)/3.0D0
00315       CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
00316      * ELIM, ALIM)
00317       CYR(1) = CYR(1)*Z3R
00318       CYI(1) = CYI(1)*Z3R
00319       CYR(2) = CYR(2)*Z3R
00320       CYI(2) = CYI(2)*Z3R
00321 C-----------------------------------------------------------------------
00322 C     BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
00323 C-----------------------------------------------------------------------
00324       CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
00325       S2R = (FNU+FNU)*STR + CYR(2)
00326       S2I = (FNU+FNU)*STI + CYI(2)
00327       AA = FMR*(FNU-1.0D0)
00328       STR = DCOS(AA)
00329       STI = DSIN(AA)
00330       S1R = COEF*(S1R+S2R*STR-S2I*STI)
00331       S1I = COEF*(S1I+S2R*STI+S2I*STR)
00332       IF (ID.EQ.1) GO TO 120
00333       STR = CSQR*S1R - CSQI*S1I
00334       S1I = CSQR*S1I + CSQI*S1R
00335       S1R = STR
00336       BIR = S1R/SFAC
00337       BII = S1I/SFAC
00338       RETURN
00339   120 CONTINUE
00340       STR = ZR*S1R - ZI*S1I
00341       S1I = ZR*S1I + ZI*S1R
00342       S1R = STR
00343       BIR = S1R/SFAC
00344       BII = S1I/SFAC
00345       RETURN
00346   130 CONTINUE
00347       AA = C1*(1.0D0-FID) + FID*C2
00348       BIR = AA
00349       BII = 0.0D0
00350       RETURN
00351   190 CONTINUE
00352       IERR=2
00353       NZ=0
00354       RETURN
00355   200 CONTINUE
00356       IF(NZ.EQ.(-1)) GO TO 190
00357       NZ=0
00358       IERR=5
00359       RETURN
00360   260 CONTINUE
00361       IERR=4
00362       NZ=0
00363       RETURN
00364       END
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines