cbesj.f

Go to the documentation of this file.
00001       SUBROUTINE CBESJ(Z, FNU, KODE, N, CY, NZ, IERR)
00002 C***BEGIN PROLOGUE  CBESJ
00003 C***DATE WRITTEN   830501   (YYMMDD)
00004 C***REVISION DATE  890801   (YYMMDD)
00005 C***CATEGORY NO.  B5K
00006 C***KEYWORDS  J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
00007 C             BESSEL FUNCTION OF FIRST KIND
00008 C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
00009 C***PURPOSE  TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT
00010 C***DESCRIPTION
00011 C
00012 C         ON KODE=1, CBESJ COMPUTES AN N MEMBER  SEQUENCE OF COMPLEX
00013 C         BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE
00014 C         ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
00015 C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED
00016 C         FUNCTIONS
00017 C
00018 C         CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z)   I = 1,...,N , Y=AIMAG(Z)
00019 C
00020 C         WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
00021 C         LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
00022 C         ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
00023 C         (REF. 1).
00024 C
00025 C         INPUT
00026 C           Z      - Z=CMPLX(X,Y),  -PI.LT.ARG(Z).LE.PI
00027 C           FNU    - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0E0
00028 C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
00029 C                    KODE= 1  RETURNS
00030 C                             CY(I)=J(FNU+I-1,Z), I=1,...,N
00031 C                        = 2  RETURNS
00032 C                             CY(I)=J(FNU+I-1,Z)*EXP(-ABS(Y)), I=1,...
00033 C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
00034 C
00035 C         OUTPUT
00036 C           CY     - A COMPLEX VECTOR WHOSE FIRST N COMPONENTS CONTAIN
00037 C                    VALUES FOR THE SEQUENCE
00038 C                    CY(I)=J(FNU+I-1,Z)  OR
00039 C                    CY(I)=J(FNU+I-1,Z)*EXP(-ABS(Y))  I=1,...,N
00040 C                    DEPENDING ON KODE, Y=AIMAG(Z).
00041 C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
00042 C                    NZ= 0   , NORMAL RETURN
00043 C                    NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
00044 C                              DUE TO UNDERFLOW, CY(I)=CMPLX(0.0,0.0),
00045 C                              I = N-NZ+1,...,N
00046 C           IERR   - ERROR FLAG
00047 C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
00048 C                    IERR=1, INPUT ERROR   - NO COMPUTATION
00049 C                    IERR=2, OVERFLOW      - NO COMPUTATION, AIMAG(Z)
00050 C                            TOO LARGE ON KODE=1
00051 C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
00052 C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
00053 C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
00054 C                            ACCURACY
00055 C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
00056 C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
00057 C                            CANCE BY ARGUMENT REDUCTION
00058 C                    IERR=5, ERROR              - NO COMPUTATION,
00059 C                            ALGORITHM TERMINATION CONDITION NOT MET
00060 C
00061 C***LONG DESCRIPTION
00062 C
00063 C         THE COMPUTATION IS CARRIED OUT BY THE FORMULA
00064 C
00065 C         J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z)    AIMAG(Z).GE.0.0
00066 C
00067 C         J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z)    AIMAG(Z).LT.0.0
00068 C
00069 C         WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION.
00070 C
00071 C         FOR NEGATIVE ORDERS,THE FORMULA
00072 C
00073 C              J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU)
00074 C
00075 C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
00076 C         THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
00077 C         INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A
00078 C         LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
00079 C         Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
00080 C         TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
00081 C         UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
00082 C         OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
00083 C         LARGE MEANS FNU.GT.CABS(Z).
00084 C
00085 C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
00086 C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
00087 C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
00088 C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
00089 C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
00090 C         IERR=3 IS TRIGGERED WHERE UR=R1MACH(4)=UNIT ROUNDOFF. ALSO
00091 C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
00092 C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
00093 C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
00094 C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
00095 C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
00096 C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
00097 C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
00098 C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
00099 C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
00100 C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
00101 C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
00102 C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
00103 C
00104 C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
00105 C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
00106 C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
00107 C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
00108 C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
00109 C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
00110 C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
00111 C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
00112 C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
00113 C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
00114 C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
00115 C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
00116 C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
00117 C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
00118 C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
00119 C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
00120 C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
00121 C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
00122 C         OR -PI/2+P.
00123 C
00124 C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
00125 C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
00126 C                 COMMERCE, 1955.
00127 C
00128 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00129 C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
00130 C
00131 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00132 C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
00133 C
00134 C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00135 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
00136 C                 1018, MAY, 1985
00137 C
00138 C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00139 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
00140 C                 MATH. SOFTWARE, 1986
00141 C
00142 C***ROUTINES CALLED  CBINU,I1MACH,R1MACH
00143 C***END PROLOGUE  CBESJ
00144 C
00145       COMPLEX CI, CSGN, CY, Z, ZN
00146       REAL AA, ALIM, ARG, DIG, ELIM, FNU, FNUL, HPI, RL, R1, R1M5, R2,
00147      * TOL, YY, R1MACH, AZ, FN, BB, ASCLE, RTOL, ATOL
00148       INTEGER I, IERR, INU, INUH, IR, KODE, K1, K2, N, NL, NZ, I1MACH, K
00149       DIMENSION CY(N)
00150       DATA HPI /1.57079632679489662E0/
00151 C
00152 C***FIRST EXECUTABLE STATEMENT  CBESJ
00153       IERR = 0
00154       NZ=0
00155       IF (FNU.LT.0.0E0) IERR=1
00156       IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
00157       IF (N.LT.1) IERR=1
00158       IF (IERR.NE.0) RETURN
00159 C-----------------------------------------------------------------------
00160 C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
00161 C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
00162 C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
00163 C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
00164 C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
00165 C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
00166 C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
00167 C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
00168 C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
00169 C-----------------------------------------------------------------------
00170       TOL = AMAX1(R1MACH(4),1.0E-18)
00171       K1 = I1MACH(12)
00172       K2 = I1MACH(13)
00173       R1M5 = R1MACH(5)
00174       K = MIN0(IABS(K1),IABS(K2))
00175       ELIM = 2.303E0*(FLOAT(K)*R1M5-3.0E0)
00176       K1 = I1MACH(11) - 1
00177       AA = R1M5*FLOAT(K1)
00178       DIG = AMIN1(AA,18.0E0)
00179       AA = AA*2.303E0
00180       ALIM = ELIM + AMAX1(-AA,-41.45E0)
00181       RL = 1.2E0*DIG + 3.0E0
00182       FNUL = 10.0E0 + 6.0E0*(DIG-3.0E0)
00183       CI = CMPLX(0.0E0,1.0E0)
00184       YY = AIMAG(Z)
00185       AZ = CABS(Z)
00186 C-----------------------------------------------------------------------
00187 C     TEST FOR RANGE
00188 C-----------------------------------------------------------------------
00189       AA = 0.5E0/TOL
00190       BB=FLOAT(I1MACH(9))*0.5E0
00191       AA=AMIN1(AA,BB)
00192       FN=FNU+FLOAT(N-1)
00193       IF(AZ.GT.AA) GO TO 140
00194       IF(FN.GT.AA) GO TO 140
00195       AA=SQRT(AA)
00196       IF(AZ.GT.AA) IERR=3
00197       IF(FN.GT.AA) IERR=3
00198 C-----------------------------------------------------------------------
00199 C     CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
00200 C     WHEN FNU IS LARGE
00201 C-----------------------------------------------------------------------
00202       INU = INT(FNU)
00203       INUH = INU/2
00204       IR = INU - 2*INUH
00205       ARG = (FNU-FLOAT(INU-IR))*HPI
00206       R1 = COS(ARG)
00207       R2 = SIN(ARG)
00208       CSGN = CMPLX(R1,R2)
00209       IF (MOD(INUH,2).EQ.1) CSGN = -CSGN
00210 C-----------------------------------------------------------------------
00211 C     ZN IS IN THE RIGHT HALF PLANE
00212 C-----------------------------------------------------------------------
00213       ZN = -Z*CI
00214       IF (YY.GE.0.0E0) GO TO 40
00215       ZN = -ZN
00216       CSGN = CONJG(CSGN)
00217       CI = CONJG(CI)
00218    40 CONTINUE
00219       CALL CBINU(ZN, FNU, KODE, N, CY, NZ, RL, FNUL, TOL, ELIM, ALIM)
00220       IF (NZ.LT.0) GO TO 120
00221       NL = N - NZ
00222       IF (NL.EQ.0) RETURN
00223       RTOL = 1.0E0/TOL
00224       ASCLE = R1MACH(1)*RTOL*1.0E+3
00225       DO 50 I=1,NL
00226 C       CY(I)=CY(I)*CSGN
00227         ZN=CY(I)
00228         AA=REAL(ZN)
00229         BB=AIMAG(ZN)
00230         ATOL=1.0E0
00231         IF (AMAX1(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 55
00232           ZN = ZN*CMPLX(RTOL,0.0E0)
00233           ATOL = TOL
00234    55   CONTINUE
00235         ZN = ZN*CSGN
00236         CY(I) = ZN*CMPLX(ATOL,0.0E0)
00237         CSGN = CSGN*CI
00238    50 CONTINUE
00239       RETURN
00240   120 CONTINUE
00241       IF(NZ.EQ.(-2)) GO TO 130
00242       NZ = 0
00243       IERR = 2
00244       RETURN
00245   130 CONTINUE
00246       NZ=0
00247       IERR=5
00248       RETURN
00249   140 CONTINUE
00250       NZ=0
00251       IERR=4
00252       RETURN
00253       END
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines