00001 SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR) 00002 C***BEGIN PROLOGUE ZBESJ 00003 C***DATE WRITTEN 830501 (YYMMDD) 00004 C***REVISION DATE 890801 (YYMMDD) 00005 C***CATEGORY NO. B5K 00006 C***KEYWORDS J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT, 00007 C BESSEL FUNCTION OF FIRST KIND 00008 C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES 00009 C***PURPOSE TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT 00010 C***DESCRIPTION 00011 C 00012 C ***A DOUBLE PRECISION ROUTINE*** 00013 C ON KODE=1, CBESJ COMPUTES AN N MEMBER SEQUENCE OF COMPLEX 00014 C BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE 00015 C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE 00016 C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED 00017 C FUNCTIONS 00018 C 00019 C CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z) 00020 C 00021 C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND 00022 C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION 00023 C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS 00024 C (REF. 1). 00025 C 00026 C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION 00027 C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI 00028 C FNU - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0 00029 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION 00030 C KODE= 1 RETURNS 00031 C CY(I)=J(FNU+I-1,Z), I=1,...,N 00032 C = 2 RETURNS 00033 C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N 00034 C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1 00035 C 00036 C OUTPUT CYR,CYI ARE DOUBLE PRECISION 00037 C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS 00038 C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE 00039 C CY(I)=J(FNU+I-1,Z) OR 00040 C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)) I=1,...,N 00041 C DEPENDING ON KODE, Y=AIMAG(Z). 00042 C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW, 00043 C NZ= 0 , NORMAL RETURN 00044 C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET ZERO DUE 00045 C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0), 00046 C I = N-NZ+1,...,N 00047 C IERR - ERROR FLAG 00048 C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED 00049 C IERR=1, INPUT ERROR - NO COMPUTATION 00050 C IERR=2, OVERFLOW - NO COMPUTATION, AIMAG(Z) 00051 C TOO LARGE ON KODE=1 00052 C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE 00053 C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT 00054 C REDUCTION PRODUCE LESS THAN HALF OF MACHINE 00055 C ACCURACY 00056 C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA- 00057 C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI- 00058 C CANCE BY ARGUMENT REDUCTION 00059 C IERR=5, ERROR - NO COMPUTATION, 00060 C ALGORITHM TERMINATION CONDITION NOT MET 00061 C 00062 C***LONG DESCRIPTION 00063 C 00064 C THE COMPUTATION IS CARRIED OUT BY THE FORMULA 00065 C 00066 C J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z) AIMAG(Z).GE.0.0 00067 C 00068 C J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z) AIMAG(Z).LT.0.0 00069 C 00070 C WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION. 00071 C 00072 C FOR NEGATIVE ORDERS,THE FORMULA 00073 C 00074 C J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU) 00075 C 00076 C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE 00077 C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE 00078 C INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A 00079 C LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER, 00080 C Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF 00081 C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY 00082 C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN 00083 C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE, 00084 C LARGE MEANS FNU.GT.CABS(Z). 00085 C 00086 C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- 00087 C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS 00088 C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. 00089 C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN 00090 C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG 00091 C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS 00092 C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. 00093 C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS 00094 C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS 00095 C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE 00096 C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS 00097 C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3 00098 C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION 00099 C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION 00100 C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN 00101 C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT 00102 C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS 00103 C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC. 00104 C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES. 00105 C 00106 C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX 00107 C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT 00108 C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- 00109 C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE 00110 C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), 00111 C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF 00112 C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY 00113 C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN 00114 C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY 00115 C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER 00116 C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, 00117 C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS 00118 C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER 00119 C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY 00120 C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER 00121 C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE 00122 C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, 00123 C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, 00124 C OR -PI/2+P. 00125 C 00126 C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ 00127 C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF 00128 C COMMERCE, 1955. 00129 C 00130 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT 00131 C BY D. E. AMOS, SAND83-0083, MAY, 1983. 00132 C 00133 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT 00134 C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 00135 C 00136 C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX 00137 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- 00138 C 1018, MAY, 1985 00139 C 00140 C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX 00141 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. 00142 C MATH. SOFTWARE, 1986 00143 C 00144 C***ROUTINES CALLED ZBINU,I1MACH,D1MACH 00145 C***END PROLOGUE ZBESJ 00146 C 00147 C COMPLEX CI,CSGN,CY,Z,ZN 00148 DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG, 00149 * ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR, 00150 * D1MACH, BB, FN, AZ, XZABS, ASCLE, RTOL, ATOL, STI 00151 INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH 00152 DIMENSION CYR(N), CYI(N) 00153 DATA HPI /1.57079632679489662D0/ 00154 C 00155 C***FIRST EXECUTABLE STATEMENT ZBESJ 00156 IERR = 0 00157 NZ=0 00158 IF (FNU.LT.0.0D0) IERR=1 00159 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 00160 IF (N.LT.1) IERR=1 00161 IF (IERR.NE.0) RETURN 00162 C----------------------------------------------------------------------- 00163 C SET PARAMETERS RELATED TO MACHINE CONSTANTS. 00164 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. 00165 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. 00166 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND 00167 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR 00168 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. 00169 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. 00170 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). 00171 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU. 00172 C----------------------------------------------------------------------- 00173 TOL = DMAX1(D1MACH(4),1.0D-18) 00174 K1 = I1MACH(15) 00175 K2 = I1MACH(16) 00176 R1M5 = D1MACH(5) 00177 K = MIN0(IABS(K1),IABS(K2)) 00178 ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0) 00179 K1 = I1MACH(14) - 1 00180 AA = R1M5*DBLE(FLOAT(K1)) 00181 DIG = DMIN1(AA,18.0D0) 00182 AA = AA*2.303D0 00183 ALIM = ELIM + DMAX1(-AA,-41.45D0) 00184 RL = 1.2D0*DIG + 3.0D0 00185 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0) 00186 C----------------------------------------------------------------------- 00187 C TEST FOR PROPER RANGE 00188 C----------------------------------------------------------------------- 00189 AZ = XZABS(ZR,ZI) 00190 FN = FNU+DBLE(FLOAT(N-1)) 00191 AA = 0.5D0/TOL 00192 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 00193 AA = DMIN1(AA,BB) 00194 IF (AZ.GT.AA) GO TO 260 00195 IF (FN.GT.AA) GO TO 260 00196 AA = DSQRT(AA) 00197 IF (AZ.GT.AA) IERR=3 00198 IF (FN.GT.AA) IERR=3 00199 C----------------------------------------------------------------------- 00200 C CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE 00201 C WHEN FNU IS LARGE 00202 C----------------------------------------------------------------------- 00203 CII = 1.0D0 00204 INU = INT(SNGL(FNU)) 00205 INUH = INU/2 00206 IR = INU - 2*INUH 00207 ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI 00208 CSGNR = DCOS(ARG) 00209 CSGNI = DSIN(ARG) 00210 IF (MOD(INUH,2).EQ.0) GO TO 40 00211 CSGNR = -CSGNR 00212 CSGNI = -CSGNI 00213 40 CONTINUE 00214 C----------------------------------------------------------------------- 00215 C ZN IS IN THE RIGHT HALF PLANE 00216 C----------------------------------------------------------------------- 00217 ZNR = ZI 00218 ZNI = -ZR 00219 IF (ZI.GE.0.0D0) GO TO 50 00220 ZNR = -ZNR 00221 ZNI = -ZNI 00222 CSGNI = -CSGNI 00223 CII = -CII 00224 50 CONTINUE 00225 CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL, 00226 * ELIM, ALIM) 00227 IF (NZ.LT.0) GO TO 130 00228 NL = N - NZ 00229 IF (NL.EQ.0) RETURN 00230 RTOL = 1.0D0/TOL 00231 ASCLE = D1MACH(1)*RTOL*1.0D+3 00232 DO 60 I=1,NL 00233 C STR = CYR(I)*CSGNR - CYI(I)*CSGNI 00234 C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR 00235 C CYR(I) = STR 00236 AA = CYR(I) 00237 BB = CYI(I) 00238 ATOL = 1.0D0 00239 IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55 00240 AA = AA*RTOL 00241 BB = BB*RTOL 00242 ATOL = TOL 00243 55 CONTINUE 00244 STR = AA*CSGNR - BB*CSGNI 00245 STI = AA*CSGNI + BB*CSGNR 00246 CYR(I) = STR*ATOL 00247 CYI(I) = STI*ATOL 00248 STR = -CSGNI*CII 00249 CSGNI = CSGNR*CII 00250 CSGNR = STR 00251 60 CONTINUE 00252 RETURN 00253 130 CONTINUE 00254 IF(NZ.EQ.(-2)) GO TO 140 00255 NZ = 0 00256 IERR = 2 00257 RETURN 00258 140 CONTINUE 00259 NZ=0 00260 IERR=5 00261 RETURN 00262 260 CONTINUE 00263 NZ=0 00264 IERR=4 00265 RETURN 00266 END