zbesj.f

Go to the documentation of this file.
00001       SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
00002 C***BEGIN PROLOGUE  ZBESJ
00003 C***DATE WRITTEN   830501   (YYMMDD)
00004 C***REVISION DATE  890801   (YYMMDD)
00005 C***CATEGORY NO.  B5K
00006 C***KEYWORDS  J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
00007 C             BESSEL FUNCTION OF FIRST KIND
00008 C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
00009 C***PURPOSE  TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT
00010 C***DESCRIPTION
00011 C
00012 C                      ***A DOUBLE PRECISION ROUTINE***
00013 C         ON KODE=1, CBESJ COMPUTES AN N MEMBER  SEQUENCE OF COMPLEX
00014 C         BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE
00015 C         ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
00016 C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED
00017 C         FUNCTIONS
00018 C
00019 C         CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z)   I = 1,...,N , Y=AIMAG(Z)
00020 C
00021 C         WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
00022 C         LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
00023 C         ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
00024 C         (REF. 1).
00025 C
00026 C         INPUT      ZR,ZI,FNU ARE DOUBLE PRECISION
00027 C           ZR,ZI  - Z=CMPLX(ZR,ZI),  -PI.LT.ARG(Z).LE.PI
00028 C           FNU    - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0
00029 C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
00030 C                    KODE= 1  RETURNS
00031 C                             CY(I)=J(FNU+I-1,Z), I=1,...,N
00032 C                        = 2  RETURNS
00033 C                             CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N
00034 C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
00035 C
00036 C         OUTPUT     CYR,CYI ARE DOUBLE PRECISION
00037 C           CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
00038 C                    CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
00039 C                    CY(I)=J(FNU+I-1,Z)  OR
00040 C                    CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y))  I=1,...,N
00041 C                    DEPENDING ON KODE, Y=AIMAG(Z).
00042 C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
00043 C                    NZ= 0   , NORMAL RETURN
00044 C                    NZ.GT.0 , LAST NZ COMPONENTS OF CY SET  ZERO DUE
00045 C                              TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
00046 C                              I = N-NZ+1,...,N
00047 C           IERR   - ERROR FLAG
00048 C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
00049 C                    IERR=1, INPUT ERROR   - NO COMPUTATION
00050 C                    IERR=2, OVERFLOW      - NO COMPUTATION, AIMAG(Z)
00051 C                            TOO LARGE ON KODE=1
00052 C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
00053 C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
00054 C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
00055 C                            ACCURACY
00056 C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
00057 C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
00058 C                            CANCE BY ARGUMENT REDUCTION
00059 C                    IERR=5, ERROR              - NO COMPUTATION,
00060 C                            ALGORITHM TERMINATION CONDITION NOT MET
00061 C
00062 C***LONG DESCRIPTION
00063 C
00064 C         THE COMPUTATION IS CARRIED OUT BY THE FORMULA
00065 C
00066 C         J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z)    AIMAG(Z).GE.0.0
00067 C
00068 C         J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z)    AIMAG(Z).LT.0.0
00069 C
00070 C         WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION.
00071 C
00072 C         FOR NEGATIVE ORDERS,THE FORMULA
00073 C
00074 C              J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU)
00075 C
00076 C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
00077 C         THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
00078 C         INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A
00079 C         LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
00080 C         Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
00081 C         TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
00082 C         UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
00083 C         OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
00084 C         LARGE MEANS FNU.GT.CABS(Z).
00085 C
00086 C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
00087 C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
00088 C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
00089 C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
00090 C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
00091 C         IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
00092 C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
00093 C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
00094 C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
00095 C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
00096 C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
00097 C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
00098 C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
00099 C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
00100 C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
00101 C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
00102 C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
00103 C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
00104 C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
00105 C
00106 C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
00107 C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
00108 C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
00109 C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
00110 C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
00111 C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
00112 C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
00113 C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
00114 C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
00115 C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
00116 C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
00117 C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
00118 C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
00119 C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
00120 C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
00121 C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
00122 C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
00123 C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
00124 C         OR -PI/2+P.
00125 C
00126 C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
00127 C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
00128 C                 COMMERCE, 1955.
00129 C
00130 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00131 C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
00132 C
00133 C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
00134 C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
00135 C
00136 C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00137 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
00138 C                 1018, MAY, 1985
00139 C
00140 C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
00141 C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
00142 C                 MATH. SOFTWARE, 1986
00143 C
00144 C***ROUTINES CALLED  ZBINU,I1MACH,D1MACH
00145 C***END PROLOGUE  ZBESJ
00146 C
00147 C     COMPLEX CI,CSGN,CY,Z,ZN
00148       DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
00149      * ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
00150      * D1MACH, BB, FN, AZ, XZABS, ASCLE, RTOL, ATOL, STI
00151       INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
00152       DIMENSION CYR(N), CYI(N)
00153       DATA HPI /1.57079632679489662D0/
00154 C
00155 C***FIRST EXECUTABLE STATEMENT  ZBESJ
00156       IERR = 0
00157       NZ=0
00158       IF (FNU.LT.0.0D0) IERR=1
00159       IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
00160       IF (N.LT.1) IERR=1
00161       IF (IERR.NE.0) RETURN
00162 C-----------------------------------------------------------------------
00163 C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
00164 C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
00165 C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
00166 C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
00167 C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
00168 C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
00169 C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
00170 C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
00171 C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
00172 C-----------------------------------------------------------------------
00173       TOL = DMAX1(D1MACH(4),1.0D-18)
00174       K1 = I1MACH(15)
00175       K2 = I1MACH(16)
00176       R1M5 = D1MACH(5)
00177       K = MIN0(IABS(K1),IABS(K2))
00178       ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
00179       K1 = I1MACH(14) - 1
00180       AA = R1M5*DBLE(FLOAT(K1))
00181       DIG = DMIN1(AA,18.0D0)
00182       AA = AA*2.303D0
00183       ALIM = ELIM + DMAX1(-AA,-41.45D0)
00184       RL = 1.2D0*DIG + 3.0D0
00185       FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
00186 C-----------------------------------------------------------------------
00187 C     TEST FOR PROPER RANGE
00188 C-----------------------------------------------------------------------
00189       AZ = XZABS(ZR,ZI)
00190       FN = FNU+DBLE(FLOAT(N-1))
00191       AA = 0.5D0/TOL
00192       BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
00193       AA = DMIN1(AA,BB)
00194       IF (AZ.GT.AA) GO TO 260
00195       IF (FN.GT.AA) GO TO 260
00196       AA = DSQRT(AA)
00197       IF (AZ.GT.AA) IERR=3
00198       IF (FN.GT.AA) IERR=3
00199 C-----------------------------------------------------------------------
00200 C     CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
00201 C     WHEN FNU IS LARGE
00202 C-----------------------------------------------------------------------
00203       CII = 1.0D0
00204       INU = INT(SNGL(FNU))
00205       INUH = INU/2
00206       IR = INU - 2*INUH
00207       ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI
00208       CSGNR = DCOS(ARG)
00209       CSGNI = DSIN(ARG)
00210       IF (MOD(INUH,2).EQ.0) GO TO 40
00211       CSGNR = -CSGNR
00212       CSGNI = -CSGNI
00213    40 CONTINUE
00214 C-----------------------------------------------------------------------
00215 C     ZN IS IN THE RIGHT HALF PLANE
00216 C-----------------------------------------------------------------------
00217       ZNR = ZI
00218       ZNI = -ZR
00219       IF (ZI.GE.0.0D0) GO TO 50
00220       ZNR = -ZNR
00221       ZNI = -ZNI
00222       CSGNI = -CSGNI
00223       CII = -CII
00224    50 CONTINUE
00225       CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
00226      * ELIM, ALIM)
00227       IF (NZ.LT.0) GO TO 130
00228       NL = N - NZ
00229       IF (NL.EQ.0) RETURN
00230       RTOL = 1.0D0/TOL
00231       ASCLE = D1MACH(1)*RTOL*1.0D+3
00232       DO 60 I=1,NL
00233 C       STR = CYR(I)*CSGNR - CYI(I)*CSGNI
00234 C       CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
00235 C       CYR(I) = STR
00236         AA = CYR(I)
00237         BB = CYI(I)
00238         ATOL = 1.0D0
00239         IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
00240           AA = AA*RTOL
00241           BB = BB*RTOL
00242           ATOL = TOL
00243    55   CONTINUE
00244         STR = AA*CSGNR - BB*CSGNI
00245         STI = AA*CSGNI + BB*CSGNR
00246         CYR(I) = STR*ATOL
00247         CYI(I) = STI*ATOL
00248         STR = -CSGNI*CII
00249         CSGNI = CSGNR*CII
00250         CSGNR = STR
00251    60 CONTINUE
00252       RETURN
00253   130 CONTINUE
00254       IF(NZ.EQ.(-2)) GO TO 140
00255       NZ = 0
00256       IERR = 2
00257       RETURN
00258   140 CONTINUE
00259       NZ=0
00260       IERR=5
00261       RETURN
00262   260 CONTINUE
00263       NZ=0
00264       IERR=4
00265       RETURN
00266       END
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines