Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024 #ifdef HAVE_CONFIG_H
00025 #include <config.h>
00026 #endif
00027
00028 #include "oct-norm.h"
00029 #include "defun-dld.h"
00030 #include "error.h"
00031 #include "gripes.h"
00032
00033 template <class ColumnVector, class Matrix, class RowVector>
00034 static void
00035 do_mgorth (ColumnVector& x, const Matrix& V, RowVector& h)
00036 {
00037 octave_idx_type Vc = V.columns ();
00038 h = RowVector (Vc + 1);
00039 for (octave_idx_type j = 0; j < Vc; j++)
00040 {
00041 ColumnVector Vcj = V.column (j);
00042 h(j) = RowVector (Vcj.hermitian ()) * x;
00043 x -= h(j) * Vcj;
00044 }
00045
00046 h(Vc) = xnorm (x);
00047 if (real (h(Vc)) > 0)
00048 x = x / h(Vc);
00049 }
00050
00051 DEFUN_DLD (mgorth, args, nargout,
00052 "-*- texinfo -*-\n\
00053 @deftypefn {Loadable Function} {[@var{y}, @var{h}] =} mgorth (@var{x}, @var{v})\n\
00054 Orthogonalize a given column vector @var{x} with respect to a given\n\
00055 orthonormal basis @var{v} using a modified Gram-Schmidt orthogonalization. \n\
00056 On exit, @var{y} is a unit vector such that:\n\
00057 \n\
00058 @example\n\
00059 @group\n\
00060 norm (@var{y}) = 1\n\
00061 @var{v}' * @var{y} = 0\n\
00062 @var{x} = @var{h}*[@var{v}, @var{y}]\n\
00063 @end group\n\
00064 @end example\n\
00065 \n\
00066 @end deftypefn")
00067 {
00068 octave_value_list retval;
00069
00070 int nargin = args.length();
00071
00072 if (nargin != 2 || nargout > 2)
00073 {
00074 print_usage ();
00075 return retval;
00076 }
00077
00078 octave_value arg_x = args(0);
00079 octave_value arg_v = args(1);
00080
00081 if (arg_v.ndims () != 2 || arg_x.ndims () != 2 || arg_x.columns () != 1
00082 || arg_v.rows () != arg_x.rows ())
00083 {
00084 error ("mgorth: V should me a matrix, and X a column vector with"
00085 " the same number of rows as V.");
00086 return retval;
00087 }
00088
00089 if (! arg_x.is_numeric_type () && ! arg_v.is_numeric_type ())
00090 {
00091 error ("mgorth: X and V must be numeric");
00092 }
00093
00094 bool iscomplex = (arg_x.is_complex_type () || arg_v.is_complex_type ());
00095 if (arg_x.is_single_type () || arg_v.is_single_type ())
00096 {
00097 if (iscomplex)
00098 {
00099 FloatComplexColumnVector x = arg_x.float_complex_column_vector_value ();
00100 FloatComplexMatrix V = arg_v.float_complex_matrix_value ();
00101 FloatComplexRowVector h;
00102 do_mgorth (x, V, h);
00103 retval(1) = h;
00104 retval(0) = x;
00105 }
00106 else
00107 {
00108 FloatColumnVector x = arg_x.float_column_vector_value ();
00109 FloatMatrix V = arg_v.float_matrix_value ();
00110 FloatRowVector h;
00111 do_mgorth (x, V, h);
00112 retval(1) = h;
00113 retval(0) = x;
00114 }
00115 }
00116 else
00117 {
00118 if (iscomplex)
00119 {
00120 ComplexColumnVector x = arg_x.complex_column_vector_value ();
00121 ComplexMatrix V = arg_v.complex_matrix_value ();
00122 ComplexRowVector h;
00123 do_mgorth (x, V, h);
00124 retval(1) = h;
00125 retval(0) = x;
00126 }
00127 else
00128 {
00129 ColumnVector x = arg_x.column_vector_value ();
00130 Matrix V = arg_v.matrix_value ();
00131 RowVector h;
00132 do_mgorth (x, V, h);
00133 retval(1) = h;
00134 retval(0) = x;
00135 }
00136 }
00137
00138 return retval;
00139 }
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154