00001 SUBROUTINE SSUBSP(NMAX, N, A, B, Z, FTEST, EPS, NDIM, FAIL, IND) 00002 INTEGER NMAX, N, FTEST, NDIM, IND(N) 00003 LOGICAL FAIL 00004 REAL A(NMAX,N), B(NMAX,N), Z(NMAX,N), EPS 00005 C* 00006 C* GIVEN THE UPPER TRIANGULAR MATRIX B AND UPPER HESSENBERG MATRIX A 00007 C* WITH 1X1 OR 2X2 DIAGONAL BLOCKS, THIS ROUTINE REORDERS THE DIAGONAL 00008 C* BLOCKS ALONG WITH THEIR GENERALIZED EIGENVALUES BY CONSTRUCTING EQUI- 00009 C* VALENCE TRANSFORMATIONS QT AND ZT. THE ROW TRANSFORMATION ZT IS ALSO 00010 C* PERFORMED ON THE GIVEN (INITIAL) TRANSFORMATION Z (RESULTING FROM A 00011 C* POSSIBLE PREVIOUS STEP OR INITIALIZED WITH THE IDENTITY MATRIX). 00012 C* AFTER REORDERING, THE EIGENVALUES INSIDE THE REGION SPECIFIED BY THE 00013 C* FUNCTION FTEST APPEAR AT THE TOP. IF NDIM IS THEIR NUMBER THEN THE 00014 C* NDIM FIRST COLUMNS OF Z SPAN THE REQUESTED SUBSPACE. DSUBSP REQUIRES 00015 C* THE SUBROUTINE EXCHQZ AND THE INTEGER FUNCTION FTEST WHICH HAS TO BE 00016 C* PROVIDED BY THE USER. THE PARAMETERS IN THE CALLING SEQUENCE ARE : 00017 C* (STARRED PARAMETERS ARE ALTERED BY THE SUBROUTINE) 00018 C* 00019 C* NMAX THE FIRST DIMENSION OF A, B AND Z 00020 C* N THE ORDER OF A, B AND Z 00021 C* *A,*B THE MATRIX PAIR WHOSE BLOCKS ARE TO BE REORDERED. 00022 C* *Z UPON RETURN THIS ARRAY IS MULTIPLIED BY THE COLUMN 00023 C* TRANSFORMATION ZT. 00024 C* FTEST(LS,ALPHA,BETA,S,P) AN INTEGER FUNCTION DESCRIBING THE 00025 C* SPECTRUM OF THE DEFLATING SUBSPACE TO BE COMPUTED: 00026 C* WHEN LS=1 FTEST CHECKS IF ALPHA/BETA IS IN THAT SPECTRUM 00027 C* WHEN LS=2 FTEST CHECKS IF THE TWO COMPLEX CONJUGATE 00028 C* ROOTS WITH SUM S AND PRODUCT P ARE IN THAT SPECTRUM 00029 C* IF THE ANSWER IS POSITIVE, FTEST=1, OTHERWISE FTEST=-1 00030 C* EPS THE REQUIRED ABSOLUTE ACCURACY OF THE RESULT 00031 C* *NDIM AN INTEGER GIVING THE DIMENSION OF THE COMPUTED 00032 C* DEFLATING SUBSPACE 00033 C* *FAIL A LOGICAL VARIABLE WHICH IS FALSE ON A NORMAL RETURN, 00034 C* TRUE OTHERWISE (WHEN SEXCHQZ FAILS) 00035 C* *IND AN INTEGER WORKING ARRAY OF DIMENSION AT LEAST N 00036 C* 00037 INTEGER L, LS, LS1, LS2, L1, LL, NUM, IS, L2I, L2K, I, K, II, 00038 * ISTEP, IFIRST 00039 REAL S, P, D, ALPHA, BETA 00040 FAIL = .TRUE. 00041 NDIM = 0 00042 NUM = 0 00043 L = 0 00044 LS = 1 00045 C*** CONSTRUCT ARRAY IND(I) WHERE : 00046 C*** IABS(IND(I)) IS THE SIZE OF THE BLOCK I 00047 C*** SIGN(IND(I)) INDICATES THE LOCATION OF ITS EIGENVALUES 00048 C*** (AS DETERMINED BY FTEST). 00049 C*** NUM IS THE NUMBER OF ELEMENTS IN THIS ARRAY 00050 DO 30 LL=1,N 00051 L = L + LS 00052 IF (L.GT.N) GO TO 40 00053 L1 = L + 1 00054 IF (L1.GT.N) GO TO 10 00055 IF (A(L1,L).EQ.0.) GO TO 10 00056 C* HERE A 2X2 BLOCK IS CHECKED * 00057 LS = 2 00058 D = B(L,L)*B(L1,L1) 00059 S = (A(L,L)*B(L1,L1)+A(L1,L1)*B(L,L)-A(L1,L)*B(L,L1))/D 00060 P = (A(L,L)*A(L1,L1)-A(L,L1)*A(L1,L))/D 00061 IS = FTEST(LS,ALPHA,BETA,S,P) 00062 GO TO 20 00063 C* HERE A 1X1 BLOCK IS CHECKED * 00064 10 LS = 1 00065 IS = FTEST(LS,A(L,L),B(L,L),S,P) 00066 20 NUM = NUM + 1 00067 IF (IS.EQ.1) NDIM = NDIM + LS 00068 IND(NUM) = LS*IS 00069 30 CONTINUE 00070 C*** REORDER BLOCKS SUCH THAT THOSE WITH POSITIVE VALUE 00071 C*** OF IND(.) APPEAR FIRST. 00072 40 L2I = 1 00073 DO 100 I=1,NUM 00074 IF (IND(I).GT.0) GO TO 90 00075 C* IF A NEGATIVE IND(I) IS ENCOUNTERED, THEN SEARCH FOR THE FIRST 00076 C* POSITIVE IND(K) FOLLOWING ON IT 00077 L2K = L2I 00078 DO 60 K=I,NUM 00079 IF (IND(K).LT.0) GO TO 50 00080 GO TO 70 00081 50 L2K = L2K - IND(K) 00082 60 CONTINUE 00083 C* IF THERE ARE NO POSITIVE INDICES FOLLOWING ON A NEGATIVE ONE 00084 C* THEN STOP 00085 GO TO 110 00086 C* IF A POSITIVE IND(K) FOLLOWS ON A NEGATIVE IND(I) THEN 00087 C* INTERCHANGE BLOCK K BEFORE BLOCK I BY PERFORMING K-I SWAPS 00088 70 ISTEP = K - I 00089 LS2 = IND(K) 00090 L = L2K 00091 DO 80 II=1,ISTEP 00092 IFIRST = K - II 00093 LS1 = -IND(IFIRST) 00094 L = L - LS1 00095 CALL SEXCHQZ(NMAX, N, A, B, Z, L, LS1, LS2, EPS, FAIL) 00096 IF (FAIL) RETURN 00097 IND(IFIRST+1) = IND(IFIRST) 00098 80 CONTINUE 00099 IND(I) = LS2 00100 90 L2I = L2I + IND(I) 00101 100 CONTINUE 00102 110 FAIL = .FALSE. 00103 RETURN 00104 END